
Talks 1:

(1) “Review of Taylor-Wiles system.”
We will give a review of the method of Taylor-Wiles system in [TW], and [D1]. We
also explain how the method of Taylor-Wiles system developed until now.

(2) “Galois representations associated to Hilbert modular forms via congruence after
Taylor.”
We explain the construction of Galois representations associated to Hilbert modular
forms in the case of 2 | [F : Q] via congruences after Taylor [T1].

(3) “Global-local compatibility after Carayol.”
We explain the global-local compatibility of Langlands correspondence for Hilbert
modular forms in ` 6= p after Carayol [Ca1].

(4) “Modularity lifting for potentially Barsotti-Tate deformations after Kisin I.”
We explain axiomatically Kisin’s technique of Rred = T in [K1]. We study global
deformation rings over local ones, and a moduli of finite flat group schemes to get
informations about local deformation rings in [K1]. We can use this technique in
the non-minimal cases too.

(5) “Base change argument of Skinner-Wiles.”
We explain Skinner-Wiles level lowering technique allowing solvable field extensions
in Kisin’s paper [K1].

(6) “Integral p-adic Hodge theory after Breuil and Kisin.”
We prepare the tools of integral p-adic Hodge theory used in [K1]. We can consider
them as variants of Berger’s theory.

(7) “Modularity lifting for potentially Barsotti-Tate deformations after Kisin II.”
The sequel to the previous talk.

(8) “Modularity lifting for crystalline deformations of intermediate weights after Kisin.”
We show Kisin’s modularity lifting theorem for crystalline deformations of interme-
diate weights [K3]. We use results of Berger-Li-Zhu [BLZ] and Berger-Breuil [BB1]
about mod p reduction of crystalline representations of intermediate weights.

(9) “p-adic local Langlands correspondence and mod p reduction of crystalline repre-
sentations after Berger, Breuil, and Colmez.”
We explain results of Berger-Li-Zhu and Berger-Breuil about mod p reduction of
crystalline representations of intermediate weights [BLZ], [BB1]. We use p-adic lo-
cal Langlands ([C1], [C2], [BB2]) in the latter case.

(10) “Modularity lifting of residually reducible case after Skinner-Wiles.”
We explain Skinner-Wiles’ modularity lifting theorem for residually reducible rep-
resentations [SW1].
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(11) “Potential modularity after Taylor.”
We explain Taylor’s potential modularity [T2], [T3]. This is a variant of Wiles’
(3, 5)-trick replaced by Hilbert-Blumenthal abelian varieties.

(12) “Taylor-Wiles system for unitary groups after Clozel-Harris-Taylor I.”
We explain Clozel-Harris-Taylor’s Taylor-Wiles system for unitary groups [CHT],
and Taylor’s improvement for non-minimal case by using Kisin’s arguments [T4].

(13) “Taylor-Wiles system for unitary groups after Clozel-Harris-Taylor II.”
The sequel to the previous talk.

(14) “Proof of Sato-Tate conjecture after Taylor et al.”
We show Sato-Tate conjecture after Taylor et al. under mild conditions. We use a
variant of (3, 5)-trick replaced by a family of Calabi-Yau varieties [HSBT].

(15) “First step of the induction of the proof of Serre’s conjecture after Tate, Serre, and
Schoof.”
We show the first step of the proof of Serre’s conjecture, that is, p = 2 [Ta2],
p = 3 [Se2], and p = 5 [Sc]. We use Odlyzko’s discriminant bound, and Fontaine’s
discriminant bound.

(16) “Proof of Serre’s conjecture of level one case after Khare.”
We explain Khare-Wintenberger’s constuction of compatible systems by using Tay-
lor’s potential modularity [T2], [T3] and Böckle’s technique of lower bound of the
dimension of global deformation rings [Bo]. We show Serre’s conjecture of level one
case after Khare [Kh1].

(17) “Proof of Serre’s conjecture after Khare-Wintenberger.”
We prove Serre’s conjecture after Khare-Wintenberger [KW2], [KW3].

(18) “Breuil-Mézard conjecture and modularity lifting for potentially semistable defor-
mations after Kisin.”
We explain Breuil-Mézard conjecture, and Kisin’s approach of modularity lifting
theorem for potentially semistable deformations via Breuil-Mézard conjecture [K6].
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