
Equational Tree Automata:

Towards Automated Verification of Network Protocols�

Hitoshi Ohsaki and Toshinori Takai

National Institute of Advanced Industrial Science and Technology (AIST)
Nakoji 3–11–46, Amagasaki 661–0974, Japan

{ ohsaki , takai }@ni.aist.go.jp

Abstract. An extension of tree automata framework, called equational
tree automata, is presented. This theory is useful to deal with unification
modulo equational rewriting. In the manuscript, we demonstrate how
equational tree automata can be applied to several realistic unification
examples, e.g. including a security problem of network protocols.

1 Equational Tree Languages

Unification modulo equational theory is a central topic in automated reason-
ing. Tree automata are the powerful technique for handling unification modulo
rewriting [2]. On the other hand, to model some network security problems like
Diffie-Hellman key exchange algorithm, rewrite rules and equations (e.g. asso-
ciativity and commutativity axioms) have to be separately dealt with in the
underlying theory, but it causes the situation where the standard tree automata
technique is useless. In our recent papers [5, 7], we have proposed an extension
of tree automata, which is called equational tree automata. This framework sub-
sumes Petri nets (Example 1). In a practical example, equational tree automata
can be used to verify a security problem of Diffie-Hellman protocol (Example 2).

We start this section with basics of tree automata and the equational exten-
sion. A tree automaton (TA for short) A is defined by the 4-tuple (F ,Q,Qfin ,∆):
each of those components is a signature F (a finite set of function symbols with
fixed arities), a finite set Q of states (special constants with F∩Q = ∅), a subset
Qfin of Q consisting of so-called final states and a finite set ∆ of transition rules
in the following form:

– f(p1, . . . , pn) → t

for some f ∈ F with arity(f) = n and p1, . . . , pn ∈ Q. The right-hand side t is a
term consisting of f and state symbols. A function symbol f in the right-hand
side must be the same as one in the left-hand side.

Each of FA and FC consists of some binary function symbols of the signature
F . The intersection of FA and FC is denoted by FAC. A set of associativity axioms
f(f(x, y), z) ≈ f(x, f(y, z)) for all f ∈ FA is denoted by A(FA). Likewise, a set
of commutativity axioms f(x, y) ≈ f(y, x) for all f ∈ FC is C(FC). The union of
of A(FAC) and C(FAC) is represented by AC(FAC). If unnecessary to be explicit,
� This paper is a modified version of the authors’ UNIF2002 paper [6].

we write A, C and AC, respectively. An equational tree automaton (ETA for
short) A/E is the combination of a TA A and a set E of equations over the same
signature F . An ETA A/E is called

– regular if the right-hand side t is a single state q,
– monotone if the right-hand side t is a single state q or a term f(q1, . . . , qn)

for every transition rule f(p1, . . . , pn) → t in ∆. Equational tree automata de-
fined in [4, 5, 7] are in the above monotone case.

A term t in T (F) is accepted by A/E if t →∗
A/E q for some q ∈ Qfin . The set

of terms accepted by A/E is denoted by L(A/E). A tree language (TL for short)
L over F is some subset of T (F). A TL L is E-recognizable if there exists A/E
such that L = L(A/E). Similarly, L is called E-monotone (E-regular) if A/E is
monotone (regular). If L is E-recognizable with E = ∅, we say L is recognizable.
Likewise, we say L is monotone (regular) if L is ∅-monotone (∅-regular). We
say A/E is a C-TA (A-TA, AC-TA) if E = C (E = A, E = AC, respectively).

Lemma 1. Every C-recognizable tree language is regular.

Proof. We suppose a tree language is recognizable with a C-TA A/C, where
A = (F ,Q,Qfin ,∆). Define B = (F ,Q,Qfin ,∆′) with ∆′ = {f(p1, . . . , pn) → q |
f(q1, . . . , qn) → r ∈ ∆ such that f(p1, . . . , pn) ∼C f(q1, . . . , qn) and r →∗

A/C q}.
Then it can be proved that the regular TA B recognizes L(A/C). ��

Lemma 2. The following language hierarchy holds if E = A:

E-regular TL � E-monotone TL � E-recognizable TL

However, the classes of regular TL and E-recognizable TL are incomparable.

Proof. The first inclusion relation is proved in [7]. For the second inclusion, we
suppose F = F0∪{f} with FA = {f}. Here F0 denotes a set of constant symbols.
Then, a (word) language W over F0 is context-sensitive if and only if an A-
monotone TL is maximal for W . A TL L is called maximal for a language W
if for all terms t in T (F), leaf(t) ∈ W if and only if t ∈ L. Similarly, it holds
that a language W is recursively enumerable if and only if an A-recognizable TL
is maximal for W . It is known that recursively enumerable languages strictly
include context-sensitive languages. The difference of the classes of regular TL
and E-recognizable TL are proved by taking the TL L1 = {f(f(a, a), a)} under
the assumption of FA = {f}. The TL L1 is regular (as it is finite), but it not
recognizable with A-TA, because an A-TA which accepts f(f(a, a), a) also accepts
f(a, f(a, a)). On the other hand, we take the TL L2 = {t | |t|a = |t|b} over the
signature F = {f, a, b}, where arity(f) = 2 and a, b are constant symbols. If
FA = {f} then L is A-regular (Lemma 8, [5]), but is not regular. ��

Remark 1. We know the same hierarchy holds also for E = AC, except

E-monotone TL � E-recognizable TL.

The above relation remains as an open question.

2

.

.

p1

p2

p3 p4t1

t2

t3

Fig. 1. A Petri net example: P

2 AC-Tree Automata for Unification Problems

In this section we discuss the applications of equational tree automata, in par-
ticular AC-tree automata, for unification problems. Our examples rely on the
following decidability result.

Theorem 1 (Reachable property problem). Given a ground AC-TRS R/AC
and tree languages L1, L2 over F with FAC. If L1 and L2 are AC-recognizable
tree languages, it is decidable whether there exist some s in L1 and t in L2 such
that s →∗

R/AC t, i.e. (→∗
R/AC)[L1] ∩ L2 	= ∅ is a computable question.

Proof. For a singleton FAC, the proof proceeds in the way of Lemma 4 in [5].
To extend FAC by allowing to have arbitrary many AC-symbols, we apply the
similar argument of Section 3 in [5]. ��

Example 1. Petri nets are known to be a special class of ground AC-TRSs. A
Petri net is a triple (P, T,W), where P is a finite set of places, T is a finite set
of transitions and W is a weight-function (P × T)∪ (T ×P) → N. For instance,
the Petri net P illustrated in Fig. 1 has W with W (p1, t1) = 1, W (p2, t1) = 1,
W (p3, t2) = 1, W (p4, t3) = 1, W (t1, p3) = 1, W (t2, p1) = 1, W (t2, p4) = 1,
W (t3, p2) = 1, W (t3, p3) = 1. In the figure, places are denoted by circles, and
transitions are squares. The value of W determines the weight of directed arcs
between places and transitions. Then, the associated ground AC-TRS (F ,R/AC)
is defined by F = {+}∪{ε, p1, . . . , p4}, FAC = {+} and R = {p1+p2 → p3, p3 →
p1+p4, p4 → p2+p3}∪{ε+pi → pi, pi → pi+ ε | 1 � i � 4}. In this setting, a
state of a Petri net (the number of tokens on each place) is encoded by a multiset
of place symbols. The empty multiset is represented by ε.

Given two sets L1, L2 of states of P. According to Theorem 1, it is decidable
whether there exist states m1 ∈ L1 and m2 ∈ L2 such that m1 →∗

P m2, provided
L1, L2 are leaf-languages of AC-recognizable tree languages over F . The binary
relation →∗

P is the reflexive-transitive closure of one-step transition relation. This
decidability property generalizes the result of Mayr [3].

3

N, k(A) ◦ N

k(B) ◦ N
A B

E(k(A) ◦ k(B) ◦ N, M)

Fig. 2. Diffie-Hellman key exchange algorithm

Using the above property, for instance, we can solve coverability problem,
which is a question of whether there exists m3 such that m1 →∗

P m3 and m2 ⊆
m3. Actually, it is verified by solving the following question, which is decidable:

∃σ?. t1 →∗
R/AC t2 + xσ.

Here t1, t2 are terms over F such that leaf(t1) = m1 and leaf(t2) = m2.

Example 2. We consider a simple network protocol. The protocol illustrated in
Fig. 2 is called Diffie-Hellman key exchange algorithm (e.g., Section 22.1, [8]). In
the protocol, a principal A chooses a prime number N and sends to B together
with an integer k(A)◦N that is generated with a random number k(A). Here we
suppose that nobody else can guess k(A) from k(A)◦N . Then B returns k(B)◦N
to A. By assuming ◦ to be associative and commutative, k(A) ◦ k(B) ◦ N can
be used as a common secret key for A and B. It enables A to send only B a
secret message M encrypted with this key. A security problem for this protocol
is whether or not someone else can retrieve a secret message M by listening on
the channel.

In term rewriting, the axiom of encryption and decryption and the property of
keys are specified by the AC-rewrite system R = {D(x,E(x, y)) → y} and AC =
{x◦y ≈ y◦x, (x◦y)◦z ≈ x◦(y◦z)}. On the other hand, a principal C wiretapping
the channel can obtain N , k(A) ◦ N , k(B) ◦ N and E(k(A) ◦ k(B) ◦ N, M).
Moreover, C is supposed to have personal data C, k(C) and to be able to use
function symbols D,E, ◦. So C’s knowledge is the set L of terms constructible
from these components. Then, the security problem is verified by solving the
following unification problem:

∃σ?. xσ →∗
R/AC M for some xσ ∈ L.

In this setting, (→∗
R/AC)[L] is an AC-monotone tree language. One should notice

that in order to compute (→∗
R/AC)[L] by using a modified algorithm of Kaji et

al. [2], intersection-emptiness problem for AC-monotone tree languages must be
decidable. Obviously a membership problem M ∈ (→∗

R/AC)[L] is decidable.

Decidability results and closure properties for equational tree languages are
summarized in Fig.3. In the figure, the check mark � means “positive” and the
cross × is “negative”. The question mark ? means “open”. If the same result
holds in both regular and non-regular cases, it is represented by a single mark
in a large column.

4

C A AC

L(Å/E) = ∅?
regular

non-regular
�

�
×

�

L(Å/E) ⊆ L(B/E)?
regular

non-regular
� ×

�
?

L(Å/E) = T (F)?
regular

non-regular
� ×

�
?

L(Å/E) ∩ L(B/E) = ∅?
regular

non-regular
� × �

C A AC

closed under ∪
regular

non-regular
� � �

closed under ∩
regular

non-regular
�

×
�

�

closed under ()
regular

non-regular
�

×
�

�
?

Fig. 3. Decidability results and closure properties

References

1. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi: Tree Automata Techniques and Applications, 2002. Draft available
on http://www.grappa.univ-lille3.fr/tata/

2. Y. Kaji, T. Fujiwara and T. Kasami: Solving a Unification Problem under Con-
strained Substitutions Using Tree Automata, JSC 23, pp. 79–117, 1997.

3. E.W. Mayr: An Algorithm for the General Petri Net Reachability Problem, SIAM
J. Comput. 13(3), pp. 441–460, 1984.

4. H. Ohsaki, H. Seki, and T. Takai: Recognizing Boolean Closed A-Tree Languages
with Membership Conditional Rewriting Mechanism, Proc. of 14th RTA, 2003. To
appear in LNCS.

5. H. Ohsaki and T. Takai: Reachability and Closure Properties of Equational Tree
Languages, Proc. of 13th RTA, LNCS 2378, pp. 114-128, 2002.

6. H. Ohsaki and T. Takai: A Tree Automata Theory for Unification Modulo Equa-
tional Rewriting, Proc. of 16th UNIF, 2002.

7. H. Ohsaki: Beyond Regularity: Equational Tree Automata for Associative and Com-
mutative Theories, Proc. of 15th CSL, LNCS 2142, pp. 539–553, 2001.

8. B. Schneier: Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition, John Wiley & Sons, 1996.

5

