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Abstract

This paper presents a proof of the associativity of demonic composition of relations in
Dedekind categories and shows that the demonic composition is monotonic with respect to
two demonic orderings on relations, which are defined by quasi-total relations, respectively.

1 Introduction

Relation algebras [8] are suitable for describing semantics of relational programming [4]. In particular
demonic composition [2, 9, 1, 5, 10] and demonic orderings will be useful for designing nondetermin-
istic programs [3, 10, 11]. For concrete relations R and S, the demonic composition R ¯ S relates
elements x with elements y exactly if x is related with y by the usual relational composition RS and
the image of x under R may not lie outside the domain of S (which should never be confused with
the categorical concept of source of morphism):

(x, y) ∈ R¯ S ⇔ [∀z : (x, z) ∈ R ⇒ z ∈ dom(S)] ∧ (x, y) ∈ RS.

In this paper the demonic composition in Dedekind categories [6, 7] will be defined (without using
complement operator). The proofs of associative law of demonic compositions are given earlier in
[2, 9, 1, 5], here we give a proof using properties of Dedekind compositions. Moreover we study two
demonic orderings of relations originally introduced by Desharnais et al. [5] and Xu et al. [10] and
show several fundamental properties of them in Dedekind categories. In Section 2, we first review
the definition of Dedekind categories. Then we introduce the demonic composition in a Dedekind
category, and show some of its properties. In Section 3, we define quasi-totality of relations and
give the definition of two refinement orderings, and provide existence conditions of the supremum
and values of supremum and infimum of a set of relations with respect to both refinement orderings,
respectively. Finally we prove the monotonicity of the demonic composition on these orderings.

2 Demonic Compositions

We will generalize demonic compositions into Dedekind categories and give a proof of associativity
of the demonic compositions using properties of Dedekind compositions.

We first review the definition of a Dedekind category, a kind of relation category (following Olivier
and Serrato, 1980) which is our general framework.

Throughout this paper, a morphism α from an object A into an object B in a Dedekind category
(which will be defined below) will be called a relation, and denoted by a half arrow α : A ⇁ B. The



composite of a relation α : A ⇁ B followed by a relation β : B ⇁ C will be written as αβ : A ⇁ C.
We denote the identity relation on an object A by idA. The composition operator will bind stronger
than all other binary operators.

Definition 2.1 A Dedekind category D is a category satisfying the following:
D1. [Complete Heyting Algebra] For all pairs of objects X and Y the hom-set D(X, Y ) consisting of
all relations of X into Y is a complete Heyting algebra with the least relation 0XY and the greatest
relation ∇XY . Its algebraic structure will be denoted by

D(X, Y ) = (D(X, Y ),v,t,u, 0XY ,∇XY ).

That is, (a) v is a partial order on D(X, Y ), (b) ∀α ∈ D(X, Y ) :: 0XY v α v ∇XY , (c) tλ∈Λαλ v α
iff αλ v α for all λ ∈ Λ, (d) α v uλ∈Λαλ iff α v αλ for all λ ∈ Λ, and (e) αu(tλ∈Λαλ) = tλ∈Λ(αuαλ).
D2. [Converse] There is given a converse operation ] : D(X, Y ) → D(Y, X). That is, for all relations
α, α′ : X ⇁ Y , β : Y ⇁ Z, the following laws hold:
(a) (αβ)] = β]α], (b) (α])] = α, (c) If α v α′, then α] v α′].
D3. [Dedekind Formula] For all relations α : X ⇁ Y , β : Y ⇁ Z and γ : X ⇁ Z the Dedekind
formula αβ u γ v α(β u α]γ) holds.
D4. [Residue] For all relations β : Y ⇁ Z and γ : X ⇁ Z the residue (or division, weakest
precondition) γ ÷ β : X ⇁ Y is a relation such that αβ v γ if and only if α v γ ÷ β for all
morphisms α : X ⇁ Y . ¤

If all relations in a Dedekind category have complements, then the Dedekind category is called a
Schröder category. It is well known that in a Schröder category the Dedekind formula is equivalent
to an equivalence

αβ v γ ⇔ α]γ− v β− ⇔ γ−β] v α−

which is called Schröder rule. A relation f : X ⇁ Y such that f ]f v idY (univalent) and idX v ff ]

(total) is called a function and may be introduced as f : X → Y . A Dedekind category D is called
uniform if ∇XY∇Y Z = ∇XZ holds for all objects X, Y and Z in D.

Before we define the demonic composition of relations in a Dedekind category, we consider the
Dedekind composition αª β defined by α]γ v β iff γ v αª β for relations γ : X ⇁ Z. It is easy to
see that αª β = (β] ÷ α)].

The demonic composition in a Dedekind category D is defined by

α¯ β = αβ u (αª β∇ZZ)

for relations α : X ⇁ Y and β : Y ⇁ Z. In Schröder categories it is clear that the demonic
composition α¯ β can be rewritten to

α¯ β = αβ u (α(β∇ZZ)−)−.

The proofs of associativity of demonic composition using properties relate to complement were given
in [2, 5]. Desharnais et al. [5] also give a proof of associativity by embedding a demonic semilattice
in a relation algebra.

Proposition 2.2 Let α : X ⇁ Y and β : Y ⇁ Z be relations in a Dedekind category D. If α is
univalent or β is total, then α¯ β = αβ. In particular, idX ¯ α = α¯ idX = α.

Proof. First note that α ¯ β = αβ iff αβ v α ª β∇ZZ iff α]αβ v β∇ZZ . When α is univalent,
α]αβ v β v β∇ZZ . Next assume β is total. Then ∇Y Z v ββ]∇Y Z v β∇ZZ , and so α]αβ v β∇ZZ .
Consequently the last claim is clear from the fact that idX is univalent and total. ¤

The domain relation dom α : X ⇁ X and the range (codomain) relation ran α : Y ⇁ Y of
α : X ⇁ Y are defined by dom α = αα] u idX and ran α = α]α u idY , respectively.

We have the following properties relate to the domain and range relations.
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Proposition 2.3 Let α : X ⇁ Y , β : Y ⇁ Z and γ : X ⇁ Z be relations in a Dedekind category
D. Then the following hold:

(a) α(ran α) = α and (dom α)α = α.

(b) ran γ v ran β ⇔ γ v ∇XY β and dom γ v dom α ⇔ γ v α∇Y Z .

(c) α¯ β = (dom γ)αβ where γ = αª (β∇ZZ).

(d) If u v idX and ∇XZ∇ZX = ∇XX , then u v dom γ iff ran (uα) v dom β where γ = α ª
(β∇ZZ).

Proof. (a) It is clear from

α(ran α) v α { ran α v idY }
= α u α idY

v α(α]α u idY ) { Dedekind formula }
= α(ran α).

(b) Assume that ran γ v ran β. Then

γ = γ(ran γ) { (a) }
v γ(ran β) { assumption }
v γβ]β { ran β = β]β u idZ v β]β }
v ∇XY β. { γβ] v ∇XY }

Conversely assume that γ v ∇XY β. Then

ran γ = γ]γ u idZ { definition of range }
v γ]∇XY β u idZ { assumption }
= (γ]∇XY u idZβ])β u idZ { Dedekind Formula }
v β]β u idZ

= ran β. { definition of range }
(c) Set γ = αª β∇ZZ . First we show that γ = (dom γ)∇XZ . We have

γ = (dom γ)γ { (a) }
v (dom γ)∇XZ { γ v ∇XZ }
= (γγ] u idX)∇XZ { definition of domain }
v γ∇ZZ { γ]∇XZ v ∇ZZ }
= γ. { Proposition A.3(e) }

Hence γ = (dom γ)∇XZ . Thus α ¯ β = αβ u γ = αβ u (dom γ)∇XZ = (dom γ)αβ by Proposition
A.1(a).
(d) Assume u v idX and ∇XZ∇ZX = ∇XX , and set γ = αª β∇ZZ . Then

u v dom γ ⇔ dom u v dom γ { u = dom u }
⇔ u v γ∇ZX = αª β∇ZX { (b) and Proposition A.3(e):∇XZ∇ZX = ∇XX }
⇔ α]u v β∇ZX

⇔ uα v ∇XZβ] { conversion }
⇔ ran (uα) v ran β] = dom β { (b) }

¤
Backhouse and van der Woude [1] and Xu et al. [10] also gave the definition of demonic composi-

tion. The device used by them to restrict the domain of a relational composition is not intersection,
but, instead, composition with a so-called ‘monotype’, that is, a relation below identity relation.
The equivalence of their definition to our definition of demonic composition is clear from (c) and
(d) of the last proposition. In [1] there is a proof of associative law for demonic composition using
properties of monotype.

Before we see associativity of the demonic compositions we have to show the following lemma.
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Lemma 2.4 Let α : X ⇁ Y , β : Y ⇁ Z and γ : Z ⇁ W be relations in a uniform Dedekind
category D. Then the following hold:

(a) αª (β ¯ γ)∇WW = (αª βγ∇WW ) u (αβ ª γ∇WW ).

(b) α(β ¯ γ) u (αβ ª γ∇WW ) = αβγ u (αβ ª γ∇WW ).

(c) α¯ (β ¯ γ) = αβγ u (αª (βγ∇WW u (β ª γ∇WW ))).

(d) (α¯ β)γ = αβγ u (αª β∇ZW ).

(e) (α¯ β)ª γ∇WW = (αª β∇ZW ) ⇒ (αβ ª γ∇WW ).

(f) (α¯ β)¯ γ = αβγ u (αª (β∇ZW u (β ª γ∇WW ))).

Proof. (a) It follows from

αª (β ¯ γ)∇WW

= αª (βγ u (β ª γ∇WW ))∇WW

= αª (βγ∇WW u (β ª γ∇WW )) { Propositions A.3(e) and A.1(b) }
= (αª βγ∇WW ) u (αª (β ª γ∇WW )) { Proposition A.3(c) }
= (αª βγ∇WW ) u (αβ ª γ∇WW ). { Proposition A.3(d) }

(b) It follows from

α(β ¯ γ) u (αβ ª γ∇WW )
= α(βγ u (β ª γ∇WW )) u (αª (β ª γ∇WW )) { Proposition A.3(d) }
= αβγ u (αª (β ª γ∇WW )) { Proposition A.3(f) }
= αβγ u (αβ ª γ∇WW ). { Proposition A.3(d) }

(c) It is a direct corollary of (a) and (b):

α¯ (β ¯ γ) = α(β ¯ γ) u (αª (β ¯ γ)∇WW )
= α(β ¯ γ) u (αª βγ∇WW ) u (αβ ª γ∇WW ) { (a) }
= αβγ u (αª βγ∇WW ) u (αβ ª γ∇WW ) { (b) }
= αβγ u (αª βγ∇WW ) u (αª (β ª γ∇WW )) { Proposition A.3(d) }
= αβγ u (αª (βγ∇WW u (β ª γ∇WW ))). { Proposition A.3(c) }

(d) It follows from

(α¯ β)γ = (αβ u (αª β∇ZZ))γ
= (αβ u (αª β∇ZZ)∇ZZ)γ { Proposition A.3(e) }
= αβγ u (αª β∇ZZ)∇ZW { Proposition A.1(b) }
= αβγ u (αª β∇ZW ). { Proposition A.3(e) }

(e) It is immediate from

(α¯ β)ª γ∇WW

= (αβ u (αª β∇ZZ))ª γ∇WW

= (αβ u (αª β∇ZZ)∇ZZ)ª γ∇WW { Proposition A.3(e) }
= (αª β∇ZZ)∇ZW ⇒ (αβ ª γ∇WW ) { Proposition A.3(h) }
= (αª β∇ZW ) ⇒ (αβ ª γ∇WW ). { Proposition A.3(e) }

(f) It is a corollary of (d) and (e):

(α¯ β)¯ γ
= (α¯ β)γ u ((α¯ β)ª γ∇WW )
= αβγ u (αª β∇ZW ) u ((αª β∇ZW ) ⇒ (αβ ª γ∇WW )) { (d), (e) }
= αβγ u (αª β∇ZW ) u (αβ ª γ∇WW ) { Proposition A.2(c) }
= αβγ u (αª (β∇ZW u (β ª γ∇WW ))). { Propositions A.3(d) and A.3(c) }

¤
Now we show the associative law of the demonic compositions.
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Theorem 2.5 Let α : X ⇁ Y , β : Y ⇁ Z and γ : Z ⇁ W be relations in a uniform Dedekind
category D. Then the associative law α¯ (β ¯ γ) = (α¯ β)¯ γ of the demonic compositions holds.

Proof. By Lemmas 2.4(c) and (f) it suffices to see an equality β∇ZW u (β ª γ∇WW ) = βγ∇WW u
(β ª γ∇WW ). Applying Proposition A.3(f) one can see that

β∇ZW u (β ª γ∇WW )
= β(∇ZW u γ∇WW ) u (β ª γ∇WW ) { Proposition A.3(f) }
= βγ∇WW u (β ª γ∇WW ).

¤

Example 2.6 Take the following homogeneous relations α, α′ and β on a set X = {1, 2} represented
by Boolean matrices:

α =
(

1 0
0 0

)
, α′ =

(
1 1
0 0

)
and β =

(
1 0
0 0

)
.

Then α v α′, but α¯ β 6v α′ ¯ β since

α¯ β = αβ =
(

1 0
0 0

)(
1 0
0 0

)
=

(
1 0
0 0

)
and

α′ ¯ β =
(

1 1
0 0

)
¯

(
1 0
0 0

)
=

(
0 0
0 0

)
.

3 Demonic Orderings

As we see in Example 2.6 the demonic composition is not monotonic with respect to the ordering v
on relations. For ensuring the existence of the fixed points of a recursively defined program, we need
other orderings among relations on which the demonic composition is monotonic. There are two
refinement orderings which are introduced by Xu et al. [10] and Desharnais et al. [5], respectively.
In this section we define these refinement orderings in Dedekind categories, and show some of their
properties, and finally prove the monotonicity of the demonic composition on these two refinement
orderings.

We first recall that each hom-set D(X, Y ) has relative pseudo-complement, that is, for any two
relations α and β in D there is a relation α ⇒ β such that α u γ v β iff γ v α ⇒ β for all relations
γ.

Define α+ = α∇Y Y ⇒ α for every relation α : X ⇁ Y in a Dedekind category D. A relation α
is called quasi-total if α+ = α. We can easily see that all total relations are quasi-total as follows: If
α is total, then ∇XY = idX∇XY v αα]∇XY v α∇Y Y . Hence α+ = α∇Y Y ⇒ α = ∇XY ⇒ α = α.
All quasi-total relations are total in uniform Schröder categories. To prove this claim it is enough
to show that α∇Y X = ∇XX for each quasi-total relation α, because of the fact that idX v αα]

iff α∇Y X = ∇XX . If α is quasi-total then α∇Y Y ⇒ 0XY v α∇Y Y ⇒ α = α v α∇Y Y and so
α∇Y Y ⇒ 0XY = (α∇Y Y ⇒ 0XY ) u α∇Y Y = 0XY . In boolean lattices (or equivalently, in Schröder
categories) δ ⇒ 0XY = δ− for each relation δ : X ⇁ Y , and so α∇Y Y = (α∇Y Y )−− = (α∇Y Y ⇒
0XY ) ⇒ 0XY = 0XY ⇒ 0XY = ∇XY . Therefore α∇Y X = α∇Y Y∇Y X = ∇XY∇Y X = ∇XX by the
uniformity.

Proposition 3.1 Let α : X ⇁ Y be a relation in a Dedekind category D.

(a) α v α+ and α++ = α+. (Every α+ is quasi-total.)

(b) α∇Y Y = α iff α+ = ∇XY . In particular 0+
XY = ∇XY and (α∇Y Y )+ = ∇XY .
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Proof. (a) It is trivial that α v α+. Also α++ = α+∇Y Y ⇒ (α∇Y Y ⇒ α) = (α+∇Y Y u α∇Y Y ) ⇒
α = α∇Y Y ⇒ α = α+ by Proposition A.2(d).
(b) Assume α∇Y Y = α. Then α+ = α ⇒ α = ∇XY . Conversely assume α∇Y Y ⇒ α = ∇XY . Then
α∇Y Y = α∇Y Y u∇XY = α∇Y Y u α+ = α by Proposition A.2(c). Hence α = α∇Y Y . ¤

In a Dedekind category D two demonic refinement orderings ≤ and ¹ of relations α, α′ : X ⇁ Y
are respectively defined in [10] and [5] as follows:

α ≤ α′
def⇔ α v α′ v α+ { Xu et al. [10] }
⇔ α′ u α∇Y Y = α
⇔ α+ = α∇Y Y ⇒ α′

α ¹ α′
def⇔ α∇Y Y v α′∇Y Y ∧ α′ v α+ { Desharnais et al. [5] }

We can obtain straightforwardly from the above definitions that α ≤ α′ implies α ¹ α′.

Proposition 3.2 Let α : X ⇁ Y and α′ : X ⇁ Y be relations in a Dedekind category D. Then the
following hold:

(a) If α∇Y Y = α, then α ≤ α′ iff α v α′. In particular 0XY ≤ α and 0XY ¹ α.

(b) If α∇Y Y = α, then α ¹ α′ iff α v α′∇Y Y . In particular α∇Y Y ¹ α.

(c) α ≤ α+ and α ¹ α+.

(d) αα]α ¹ α.

(e) If α∇Y Y w α′∇Y Y and α ¹ α′, then α′ v α.

Proof. (a) Assume α∇Y Y = α. Then the assertion is trivial since α+ = ∇XY by Proposition 3.1(b).
(b) It is trivial from the definition.
(c) By Proposition 3.1(a) we have α v α+ v α+ which means α ≤ α+, and so α ¹ α+.
(d) It follows from αα]α∇Y Y v α∇Y Y and α v αα]α v (αα]α)+ by Proposition 3.1(a).
(e) Assume that α∇Y Y w α′∇Y Y and α ¹ α′. Then we have α′ = α′∇Y Y u α′ v α∇Y Y u α+ = α
by Proposition A.2(c). ¤

Next we see the demonic refinement orderings are orderings on the hom-set D(X, Y ).

Proposition 3.3 Relations ≤ and ¹ on the hom-set D(X, Y ) are orderings.

Proof. (Reflexive law) α ≤ α and α ¹ α follows from a fact α v α v α+ by Proposition 3.1(a).
(Transitive law) Assume that α ≤ α′ and α′ ≤ α′′, that is, α v α′ v α+ and α′ v α′′ v α′+. Hence
α v α′ v α′′ and

α′′ v α′∇Y Y ⇒ α′ { α′′ v α′+ }
v α′∇Y Y ⇒ (α∇Y Y ⇒ α) { α′ v α+ }
= (α′∇Y Y u α∇Y Y ) ⇒ α { Proposition A.2(d) }
= α∇Y Y ⇒ α. { α v α′ }
= α+

Similarly α ¹ α′ and α′ ¹ α′′ imply α ¹ α′′.
(Anti-symmetric law) Assume that α ¹ α′ and α′ ¹ α. First note that α∇Y Y = α′∇Y Y . Then using
Proposition 3.2(e) we have α v α′ and α′ v α. Hence α = α′. Anti-symmetry of ≤ is trivial. ¤

Example 3.4 Consider the following relations on a set X = {1, 2} represented by matrices:

α =
(

1 1
0 0

)
= α∇XX and α′ =

(
1 0
0 1

)
= idX .

Then α ¹ α′ (α∇XX v ∇XX = α′∇XX and α′ v ∇XX = α+), but α 6≤ α′ because α 6v α′.
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Lemma 3.5 Let α, α′ : X ⇁ Y be relations in a Dedekind category D. If α′ is univalent and α v α′,
then α′ v α+ and consequently α ≤ α′ and α ¹ α′.

Proof. Assume α′]α′ v idY and α v α′. Then

α′ u α∇Y Y v αα]α′ { Dedekind Formula }
v αα′]α′ { α v α′ }
v α. { α′]α′ v idY }

Hence α′ v α+. ¤

By the above lemma if α is quasi-total and α′ is univalent, then α v α′ implies α = α′.

The following proposition characterizes maximal elements in the demonic orderings:

Proposition 3.6 (a) A relation α : X ⇁ Y is maximal in (D(X, Y ),≤) iff it is quasi-total (α =
α+).

(b) Suppose a relational axiom1of choice. Then a relation α : X ⇁ Y is maximal in (D(X, Y ),¹)
iff α = α+ and α]α v idY .

Proof. (a) Assume that α = α+ and α ≤ α′. Then α v α′ and α′ v α+ = α. Hence α = α′ and so α
is maximal. Conversely assume that α is maximal in (D(X, Y ),≤). Then α = α+ follows from the
maximality of α since α ≤ α+ by Proposition 3.2(c).
(b) Let α = α+ and α]α v idY . Assume α ¹ α′. Then α′ v α+ = α and so α′ ¹ α by Lemma
3.5. Hence α = α′ by the anti-symmetric law of ¹, which proves the maximality of α. Conversely
assume that α is maximal in (D(X, Y ),¹). Since α ¹ α+ by Proposition 3.2(c) the maximality of
α leads α = α+. Now by the relational axiom∗ of choice there exists a univalent relation f : X → Y
such that f v α and f∇Y Y = α∇Y Y . Then α ¹ f since α∇Y Y = f∇Y Y and f v α = α+. Again
by the maximality of α we have α = f , which proves that α is univalent. ¤

Theorem 3.7 Let A be a nonempty subset of D(X, Y ).

(a) The supremum of the set A in (D(X, Y ),≤) exists if and inly if

tα∈Aα v uα∈Aα+.

When this condition is satisfied, the supremum is

sup≤A = tα∈Aα.

(b) The infimum of A in (D(X, Y ),≤) always exists, that is,

inf≤A = t{α0 | α0 v uα∈Aα and tα∈A α v α+
0 }.

In particular, inf≤A = uα∈Aα when tα∈Aα v (uα∈Aα)+.

Proof. (a) Set α0 = tα∈Aα. We prove the existence condition and the value of the supremum. Let
α′ be any relation. Then

∀α ∈ A : α ≤ α′

⇔ { definition }
∀α ∈ A : α′ u α∇Y Y = α ∧ α0 v uα∈Aα+

⇔ { ⇒: α′ u α0∇Y Y = tα∈A(α′ u α∇Y Y ) = α0

⇐: Because α v α0 v α′ and α′ u α∇Y Y = α′ u α0∇Y Y u
α∇Y Y = α0 u α∇Y Y v α+ u α∇Y Y = α. }

α′ u α0∇Y Y = α0 ∧ α0 v uα∈Aα+

⇔ { definition }
α0 ≤ α′ ∧ α0 v uα∈Aα+.

1A relational axiom of choice: for every relation α : X ⇁ Y there exists a univalent relation f : X → Y such that
f v α and f∇Y Y = α∇Y Y .
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(b) Denote by A0 the set of all lower bounds α0 of A, that is A0 = {α0|α0 v uα∈Aα∧tα∈Aα v α+
0 },

and set α∗ = tα0∈A0α0. Obviously A0 is a nonempty set, since a zero relation 0XY is a lower bound
of A. Let α′ be any relation, then we obtain

∀α ∈ A : α′ ≤ α
⇔ { definition }

∀α ∈ A : α u α′∇Y Y = α′

⇔ { ⇒: α∗ u α′∇Y Y v α u α′∇Y Y = α′ u α′∇Y Y v α∗ u α′∇Y Y

since α′ ∈ A0. }
α∗ u α′∇Y Y = α′

⇔ { definition }
α′ ≤ α∗,

where the second ⇐ follows from α′ v α∗ v α and the next computation

α v uα0∈A0α
+
0

= uα0∈A0(α0∇Y Y ⇒ α0)
v uα0∈A0(α0∇Y Y ⇒ α∗) { Proposition A.2(g): α0 v α∗ }
= (tα0∈A0α0∇Y Y ) ⇒ α∗ { Proposition A.2(e) }
= α∗∇Y Y ⇒ α∗
v α′∇Y Y ⇒ α′+ { Proposition A.2(g): α′ v α∗ v α′+ }
= α′+. { Proposition A.2(d) }

¤

We next see the supremum and the infimum of a chain with respect to ≤ found in [10].

Proposition 3.8 Every chain A in (D(X, Y ),≤) has the supremum sup≤A = tα∈Aα and the infi-
mum inf≤A = uα∈Aα.

Proof. (i) By the virtue of the last theorem it suffices to see that every chain A in (D(X, Y ),≤)
satisfies tα∈Aα v uα∈Aα+. The inequality is equivalent to a fact that α′ v α+ for all α′, α ∈ A.
But A is a chain, so α ≤ α′ or α′ ≤ α. In the case of α ≤ α′ it is trivial that α′ v α+. Also in the
case of α′ ≤ α we have α′ v α v α+.
(ii) It suffices to show that uα∈Aα is a lower bound of A, that is, tα∈Aα v (uα∈Aα)+, which is
equivalent to α′ u (uα∈Aα)∇Y Y v α for all α′, α ∈ A. But A is a chain in (D(X, Y ),≤), so α ≤ α′

or α′ ≤ α. In the case of α ≤ α′ we have α′ u (uα∈Aα)∇Y Y v α′ u α∇Y Y = α. Also in the case of
α′ ≤ α it is trivial that α′ u (uα∈Aα)∇Y Y v α′ v α. ¤

We now see the supremum and the infimum with respect to ¹ found in [5].

Proposition 3.9 Let A be a nonempty subset of D(X, Y ).

(a) The supremum of the set A in (D(X, Y ),¹) exists if and only if

tα∈Aα∇Y Y v (uα∈Aα+)∇Y Y .

When this condition is satisfied, the supremum is

sup¹A = (tα∈Aα∇Y Y ) u (uα∈Aα+).

(b) The infimum of A in (D(X, Y ),¹) always exists, that is,

inf¹A = (tα∈Aα) u (uα∈Aα∇Y Y ),
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Proof. (a) Set α0 = (tα∈Aα∇Y Y ) u (uα∈Aα+). Noting that when the condition tα∈Aα∇Y Y v
(uα∈Aα+)∇Y Y holds

α0∇Y Y = (tα∈Aα∇Y Y ) u (uα∈Aα+)∇Y Y = tα∈Aα∇Y Y

and so α0 can be rewritten to
α0 = α0∇Y Y u (uα∈Aα+),

we prove the existence condition and the value of supremum of A. Let α′ be any relation. We have

∀α ∈ A : α ¹ α′

⇔ { definition }
tα∈Aα∇Y Y v α′∇Y Y ∧ α′ v uα∈Aα+ ∧ tα∈Aα∇Y Y v (uα∈Aα+)∇Y Y

⇔ { ⇒: α′ u α0∇Y Y v (uα∈Aα+) u α0∇Y Y = α0 }
α0∇Y Y v α′∇Y Y ∧ α′ v α+

0 ∧ tα∈Aα∇Y Y v (uα∈Aα+)∇Y Y

⇔ { definition }
α0 ¹ α′ ∧ tα∈Aα∇Y Y v (uα∈Aα+)∇Y Y ,

where the second ⇐ follows from

α′ u α∇Y Y

v α+
0 u α∇Y Y { α′ v α+

0 }
= (α0∇Y Y ⇒ α0) u α∇Y Y

= α0 u α∇Y Y { Proposition A.2(f): α∇Y Y v α0∇Y Y }
v α0

v α+,

which implies α′ v α∇Y Y ⇒ α+ = α+ for each α ∈ A by Proposition A.2(d).
(b) Set α0 = (tα∈Aα)u (uα∈Aα∇Y Y ). Then α0∇Y Y = uα∈Aα∇Y Y and so α0 = (tα∈Aα)uα0∇Y Y .
So we have the following equivalences for any given relation α′

∀α ∈ A : α′ ¹ α
⇔ ∀α ∈ A : α′∇Y Y v α∇Y Y ∧ α v α′+ { definition }
⇔ α′∇Y Y v α0∇Y Y ∧ tα∈Aα v α′+ { definition }
⇔ α′∇Y Y v α0∇Y Y ∧ α0 v α′+ { ⇒: α0 v tα∈Aα v α′+ }
⇔ α′ ¹ α0, { definition }

where the third ⇐ is shown as follows. Consider the following computation

(tα∈Aα) u α′∇Y Y v (tα∈Aα) u α0∇Y Y = α0 v α′+,

which implies tα∈Aα v α′+ by Proposition A.2(d). ¤

Lemma 3.10 Let α : X ⇁ Y and β : X ⇁ Z be relations. Then α¯ β = αβ u (α+ ª β∇ZZ).

Proof.
α¯ β = αβ u (αª β∇ZZ)

= αβ u (α∇Y Y u α+)ª β∇ZZ { α = α∇Y Y u α+ }
= αβ u (α∇Y Z ⇒ (α+ ª β∇ZZ)) { Proposition A.3(h) }
= αβ u (α+ ª β∇ZZ) { Proposition A.2(f) }

¤

In the following discussion, a map which is monotonic with respect to ≤ or ¹ is called ≤-
monotonic or ¹-monotonic, respectively. The next proposition shows that the demonic composition
¯ is ≤-monotonic and ¹-monotonic.

Proposition 3.11 Let α, ξ : X ⇁ Y and β : Y ⇁ Z be relations. Then the following hold:
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(a) If α ≤ α′ and β ≤ β′, then α¯ β ≤ α′ ¯ β′.

(b) If α ¹ α′ and β ≤ β′, then α¯ β ¹ α′ ¯ β′.

Proof. (a) Assume that α v α′ v α+ and β v β′ v β+. Then

α¯ β = αβ u (α+ ª β∇ZZ) { Lemma 3.10 }
v α′β′ u (α′ ª β′∇ZZ) { α v α′ v α+, β v β′ }
= α′ ¯ β′.

and

(α′ ¯ β′) u (α¯ β)∇ZZ

v α′β′ u α∇Y Z u (α+ ª β∇ZZ)
{ (α¯ β)∇ZZ = αβ∇ZZ u (α+ ª β∇ZZ) v α∇Y Z u (α+ ª β∇ZZ) }

v α+β′ u (α+ ª β∇ZZ) u α∇Y Z { α′ v α+ }
v α+(β′ u β∇ZZ) u α∇Y Z { Dedekind formula and Proposition A.3(a) }
v α+β u α∇Y Z { β′ u β∇ZZ v β by β′ v β+ }
= (α+ u α∇Y Y )β { Proposition A.1(b) }
= αβ.

Hence (α′ ¯ β′) u (α¯ β)∇ZZ v α¯ β and so α′ ¯ β′ v (α¯ β)+.
(b) Assume that α∇Y Y v α′∇Y Y , β∇ZZ v β′∇ZZ , α′ v α+ and β′ v β+. First note that
α+ ª β∇ZZ v α′ ª β′∇ZZ by the assumptions α′ v α+, β∇ZZ v β′∇ZZ and Proposition A.3(i).
Then

(α¯ β)∇ZZ

= αβ∇ZZ u (α+ ª β∇ZZ) { Lemma 3.10, Proposition A.1(b) and A.3(e) }
v αβ∇ZZ u (α′ ª β′∇ZZ)
v α′∇Y Z u (α′ ª β′∇ZZ) { assumption }
v α′β′∇ZZ u (α′ ª β′∇ZZ) { Dedekind formula and Proposition A.3(a) }
v (α′ ¯ β′)∇ZZ .

We have to see α′¯β′ v (α¯β)+, but this claim can be shown by the same argument of the second
part in the proof for (a). ¤
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A Basic Properties of Relations

In this section we list a few basic properties of relations.

Proposition A.1 Let α : X ⇁ Y , β : Y ⇁ Z, η : X ⇁ W and u : X ⇁ X be relations in a
Dedekind category D. Then the following hold:

(a) If u v idX then u∇XY u α = uα.

(b) (α u η∇WY )β = αβ u η∇WZ .

¤

Proposition A.2 Let α, β, γ : X ⇁ Y be relations in a Dedekind category D. Then the following
hold:

(a) β v α ⇒ β.

(b) α ⇒ α = ∇XY and ∇XY ⇒ α = α.

(c) α u (α ⇒ β) = α u β. In particular α∇Y Y u α+ = α.

(d) α ⇒ (β ⇒ γ) = (α u β) ⇒ γ. In particular α∇Y Y ⇒ α+ = α+.

(e) (α t α′) ⇒ β = (α ⇒ β) u (α′ ⇒ β).

(f) If α v β, then α u (β ⇒ γ) = α u γ.

(g) If α w α′ and β v β′, then α ⇒ β v α′ ⇒ β′.

¤

Proposition A.3 Let α, α′ : X ⇁ Y , β, β′ : Y ⇁ Z, δ : Z ⇁ W and ξ : X ⇁ W be relations in a
Dedekind category D. Then the following hold:

(a) α](αª β) v β.

(b) (αª β)δ v αª (βδ).

(c) αª (β u β′) = (αª β) u (αª β′).

(d) (αβ)ª δ = αª (β ª δ).

(e) If ∇WZ∇ZW = ∇WW , then (αª β∇ZZ)∇ZW = αª β∇ZW .

(f) α(β u β′) u αª β′ = αβ u αª β′.

(g) (ξ∇WX u idX)ª α = ξ∇WY ⇒ α.

(h) (ξ∇WY u α)ª β = ξ∇WZ ⇒ (αª β).

(i) If α w α′ and β v β′, then αª β v α′ ª β′.

¤
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