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Many formulations of proof nets and sequent calculi for Classical Linear
Logic (CLL) [7, 8] take it for granted that a type A is identical to its double
negation A⊥⊥. On the other hand, since Seely [13], it has been assumed that
∗-autonomous categories [1, 2] are the appropriate semantic models of (the
multiplicative fragment of) CLL. However, in general, in a ∗-autonomous
category an object A is only canonically isomorphic to its double involution
A∗∗. For instance, in the category of finite dimensional vector spaces and
linear maps, a vector space V is only isomorphic to its double dual V ∗∗.
This raises the questions whether ∗-autonomous categories do not, after all,
provide an accurate semantic model for these proof nets and whether there
could be semantically non-identical proofs (or morphisms), which must be
identified in any system which assumes a type is identical to its double
negation. Whether this can happen is not completely obvious even when
one examines purely syntactic descriptions of proofs with the isomorphism
between A and A⊥⊥ present such as [11, 9] or the alternative proof net
systems of [4] which are faithful to the categorical semantics.

Fortunately, there is no such semantic gap: in this talk we provide a
coherence theorem on the double involution on ∗-autonomous categories,
which tells us that there is no difference between the up-to-identity approach
and the up-to-isomorphism approach, as far as this double-negation problem
is concerned.

Theorem. Any free ∗-autonomous category is strictly equivalent
to a free ∗-autonomous category in which the double-involution
(−)∗∗ is the identity functor and the canonical isomorphism A '
A∗∗ is an identity arrow for all A.

This remains true under the presence of linear exponential comonads and
finite products (the semantic counterpart of exponentials and additives re-
spectively). Our proof is fairly short and simple, and we suspect that this
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is folklore among specialists (at least everyone would expect such a result),
though we are not aware of an explicit treatment of this issue in the litera-
ture.

This result should be compared with the classical coherence theorem for
monoidal categories, as found e.g. in [12, 10]. In fact, we follow the proof
strategy by Joyal and Street in [10]. We first show a weaker form of coherence
theorem which turns a ∗-autonomous category into an equivalent one with
“strict involution” (where A∗∗ is identical to A), for which we make use of
(a simplified version of) a construction of Cockett and Seely [6]. We then
strengthen it to a form of “all diagrams commute” result by some additional
arguments on the structure-preserving functors. In this way, this work also
demonstrates the applicability of the Joyal-Street argument (which actually
can be seen an instance of a general flexibility result on free algebras of
2-monads developped by Blackwell, Kelly and Power [3]) to other sorts of
coherence problems.
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