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Pointwise and Sequential Continuity in

Constructive Analysis

Hajime Ishiharald O 0O OO
JAISTOODOODOODOODOOoOOoOog

We discuss various continuity properties, especially pointwise and se-
quential continuity, in Bishop’s constructive mathematics; see [1, 2, 11] for
Bishop’s constructive mathematics and [3, 4, 5, 9] for various continuity
properties. We say that a mapping f between metric spaces X and Y is
sequentially continuous if x,, — x implies that f(x,) — f(z); pointwise con-
tinuous if for each z € X and e > 0 there exists § > 0 such that d(z,y) < ¢
implies d(f(x), f(y)) < efor ally € X. We first show the following theorem.

Theorem 1 The following are equivalent.

1. Every sequentially continuous mapping of a separable metric space

mnto a metric space is pointwise continuous.

2. Every sequentially continuous mapping of a complete separable metric

space into a metric space is pointwise continuous.
3. BD-N. Every countable pseudo-bounded subset of N is bounded.

Here a subset A of N is said to be pseudo-bounded if for each sequence
{a,} in A, a, < n for all sufficiently large n. Note that although BD-N
holds in classical mathematics, intuitionistic mathematics and constructive
recursive mathematics of Markov’s school, a natural recursivisation of BD-N
is independent of Heyting arithmetic [3, 5, 8, 10].

We also show that very important theorems in functional analysis —
Banach’s inverse mapping theorem, the open mapping theorem, the closed
graph theorem, the Banach-Steinhaus theorem and the Hellinger-Toeplitz
theorem — can be proved in Bishop’s constructive mathematics for sequen-
tially continuous linear mappings [6, 7]. However it has emerged that the

theorems for pointwise continuous linear mappings are equivalent to BD-N

[8].
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1 Introduction

Most of the studies of computable analysis have been capturing the computabil-
ity of structures over real numbers. However, there are started some studies on
other general mathematical structures recently.

Hertling studied computability over algebraic structures [H], however he did
not discuss topology. Schroder studied week limit spaces [S], however he did not
discuss modulus of convergence. The author believe that the notions of topology
and modulus of convergence are most important in the study of computable
analysis. This work aims to combine their works, and to apply to the discussion
on modulus of convergence.

In discussing modulus of convergence, it seems natural to do with uniform
topology, which Yasugi and others studied [Y]. They discuss the computabil-
ity under uniform topology with computability structure, while Hertling and
Schroder did with representation.

There are several methods in studying computable analysis. One of them is
representation and another is computability structure.

The notion of representation has been studied by Weihrauch [W] and others.
It is a kind of a mechanical method. A representation r of a mathematical
structure X is a surjective partial function of X'* into X. A function f: X — X
is computable if the is a computable partial function f of £* into X* such that
for=rof. We will use N — N as X%, the domain of representation. It seems
that representations have too much information which comes from the details
of implementation of computation models.

The notion of computability structure is studied by Pour-El et al. [P]. It is
a kind of an axiomatic method. A computability structure over a mathemati-
cal structure X is a subset of X“ which satisfies the axioms of computability
structure. A function f over X is called computable if f is locally uniformly
continuous and preserves the computability structure over X. In order to assert
that a computability structure is natural, the mathematical structure X has
been requested to have a distance. Yasugi et al. attempt to replace the distance
with effective uniform topology in the literature [Y].

This work aims at comparing these two ways, that by computability struc-
ture and that by representation. The author would like to show that the essential
notions are equivalently defined by both ways.



There are several ways to define effective uniform topology. Yasugi et al.
defined it with effective uniform neighbourhood system in the literature [Y].
This work defines it with effective limit, which has not been used in any other
works. An effective limit is a partial function of arity w over the underlying
set, while an effective neighbourhood system is a family of subsets. It seems
that a partial function is more familiar in computational theory than a family
of subset is.

There are three similar words ‘recursive’, ‘effective’ and ‘computable’,; all of
which appear in this paper. There are only little difference in the senses of these
words. In this paper, the word ‘recursive’ is used only for the notions concerned
to recursive functions over natural numbers. The word ‘computable’ is used only
for the notion of computability structure which defined by Pour-El et al. [P].
The word ‘effective’ is used for other mathematical structures, Thus, a function
represented by a recursive Type-2 function is called a recursive function in this
paper, although Weihrauch and others call it a computable function [W].

2 Uniform Topology
Notation 2.1 We write N for {1,2,3,...}.

Definition 2.2 (Partial function) A function f is a partial function of X
into YV iff f is a function of X' C X into Y’ C Y. This X' is called the domain
of f and written as dom(f). We write f : X —, Y when f is a partial function
of X into Y. For x € X, we say that f(x) is defined when x € dom(f), and f(x)
is undefined if not. When we write f(z) =y, we implicitly assert = € dom(f).

The range of f: X —, Y is the set {f(z) € Y | z € dom(f)} and written as
range(f). For f : X —,Y and ¢g:Y —, Z, the concatenation go f : X —, Z
is defined as following: dom(go f) = {x € X | € dom(f), f(z) € dom(g)} and
go f(x) = g(f(x)) for z € dom(g o f).

For partial functions f : X —, Y and g : X' —, Y, the relation f C, g
holds iff dom(f) C dom(g) and f(x) = g(z) for all z € dom(f). It may be the
case that X # X' or Y # Y although f C, ¢g. For partial functions f and g, it
holds f=gif f C,gand g C,, f.

Notation 2.3 We write X — Y for the function space {f | f: X — Y}, and
X —, Y for the set of all the partial functions {f | f : X —, Y}. Thus, the
notation £ C X — Y does not mean F : X =, Y but means Vf € E. f: X —
Y.

The operators — and —, are right associative. Thus, the notation X —
Y —, Z is an abbreviation of X — (Y —, 2).

Definition 2.4 (Modular Limit) Let X be a set. An partial function LM is
a modular limit over X if there is a strictly increasing function m : N — N and
the followings hold:

0. LM : X¥ =, X



1. Foreach z € X, LM (z,z,z,..) =z

2. Let f be a function of N — N such that f(n) > n for any n € N. If
(w1,22,3,...) € dom(LM), then (xf),T¢2),Zf(3),--) € dom(LM) and
LM(xf(l),mf(z),xf(g), ) = LM($1,$2,$3, )

3. Let {z;;}i; be a double sequence in X, that is, z; ; € X for any i,j € N.

Let (y1,y2,¥s,...) be a sequence in X. and z be a point in X. Suppose
that y; = LM (z;1,®;2,%; 3, ...) for each i.

If LM (y1,y2,Y3,--) = 2, then LM (Tpy(1),m(1)> Tm(2),m(2)> Tm(3),m(3)» ) =
Z.

4. Let {z; ;}i; be a double sequence in X, that is, ; ; € X for any i,j € N.
Let (y1,y2,¥s,-.-) be a sequence in X. and z be a point in X. Suppose
that y; = LM (z;1,%i2,%;3,...) for each i.

If LM (z11,%22,733,-.-) = 2, then LM (Y1), Ym(2), Ym(3), ) = 2-

The function m( ), which appears in the conditions 3 and 4, is called a modulus
of diagonal convergence.

Definition 2.5 (Effective Limit) A modular limit is called an effective limit
when the modulus of diagonal convergence of it is a recursive function.

Remark 2.6 The conditions 3 and 4 in the definition of modular limit means
that all the converging sequence under the modular limit are uniformly converg-
ing.

Definition 2.7 (Uniform Neighbourhood System) Let X be a set. The
series of subsets {V;(z) }ien,zex 18 a uniform neighbourhood system iff it satisfies
the followings:

1. z € Vi(x) C X for each i € N and each z € X.

2. Vi(z) D Vj(z) fori < j

3. There is a function m : N — N such that if y € V,,;)(z) then = € Vi(y)
4

. There is a function m' : N — N such that if y € Vj,;) (%) then Vi, ;) (y) C
Vi(z)

The functions m and m' in the conditions 3 and 4 are called the moduls.

Definition 2.8 (Effective Uniform Neighbourhood System) The uni-
form neighbourhood system is effective if both of the moduli are recursive func-
tions.

Remark 2.9 When we replace the condition 4 of the definition above with:
Ve e X.Vie N3j e NVy € Vj(z).3k € N. Vi (y) C Vi(z)

then, the conditions defines the ordinary notion of countable neighbourhood

systems. If we exchange the order of quantifiers Yy and 3k, then, this condition

is equivalent to the condition 4 of the definition above.



Proposition 2.10 Let X be a set and {Vi(z)}; . be a uniform neighbourhood
system over X. Then, X is a Hausdorff space iff [\ Vi(z) = {z} for any
ieN

reX.

Remark 2.11 There are several well-known definitions of uniform topology
which are equivalent to each other. One of them is the definition by uniform
neighbourhood systems. The following propositions show that modulus limit
also gives the equivalent definition of uniform topology.

Definition 2.12 (Closeness relation) Let LM be the modular limit of X.
The relation 2 = y holds iff there is a sequence (1, %2, 3, ...) such that z = x;
and LM (zq,x2,xs3,...) =y. We call this relation closeness relation.

Proposition 2.13 The followings hold. The function m( ) is the modulus of
diagonal convergence of the modular limit in the followings.

1. Ifi<jand x5y, thenz > y.

2. If m(i) < j and x EN y, then y 5 .

3. If m(i) <7, xi>y andyi>z, then © % 2.

4. If m(m(7)) < j and x ENpL y, then A Y-

5. If it holds that x; mg) y for each i, then LM (x1,x2,3,...) = y.

Lemma 2.14 Let X be a set and LM be a modular limit of modulus m over
X. For each i € N and each © € X, a subet Vi(x) C X is defined as Vi(x) =

{y |y = x} Then, {Vi(z)}i. is a uniform neighbourhood system of modulus m
over X, and it makes X a Hausdorff space.

Moreover, if LM is an effective limit, then {Vi(z)}: . is an effective uniform
neighbourhood system.

Lemma 2.15 Let X be a set and {V;(z)}i . be a uniform neighbourhood system
over X which makes X a Hausdorff space. A partial function LM : X¥ —, X
is defined as follows:
dom(LM) = {(z1,x2,...) | Jy € X. Vi € N. z; € Vi(y)}
LM (z1,2s,...) =y iff Vi € N. 2; € Vi(y)
Note that such x is uniquely determined, because X is a Hausdorff space by the
neighbourhood system {V;(z)}i -
Then, LM is a modular limit of modulus m over X.
Moreover, if {Vi(x)}iq is an effective uniform neighbourhood system, then
LM is an effective limit.

Remark 2.16 The previous lemmata 2.14 and 2.15 mean that modular limit is
corresponds to uniform neighbourhood system, and effective limit is corresponds
to effective uniform neighbourhood system.

Example 2.17 Let R be the set of all the real numbers. Define a partial
function LimE : N¥ =, N as:



dom(LimE) = {(xl,xQ,xg, )

1 1
|CUZ' —lej| <7+7}
LimE(zy, zs,...) =z iff limz; = x
Then, this partial function LimFE is an effective limit with the modulus of diag-
onal convergence n — 2n.

Example 2.18 For i € N and z € R, put VR(z) C R as y € VR(z) iff
ly — x| < 1/i}. Then, VR(z) = {y | y & z} and {VR(z)};. is an effective
uniform neighbourhood system.

Example 2.19 The functional space N — N is regarded as a topological space.
Define a partial function LM NN : (N - N)¥ —, N — N as:

1. (z1,22,...) € dom(LM n ) iff for any ¢ < j <k, z;(i) = z4(3)

2. For (z1,22,...) € dom(LMNN), LMn N (21,22, ...) = (i = 2;(i))
The condition 1 means that =; and z; have the common initial segment of length
J where j < k. Then, this LM N n is a modular limit with the identity function
i + i as the modulus of diagonal convergence, and it induces the ordinary
topology of N — N.

3 Algebraic Structure

Definition 3.1 (Algebraic structure) A sequence X = (|X|, f1, f2, f3, -+
Ry, Ry, Rs,...) is an algebraic structure iff it consists of the underlying set |X|,
partial functions f; : | XY/ —  |X|, and subsets R; C |X|% YR Ap
algebraic structure X has finite partial functions or countably many infinite
partial functions, and also X has finite relations or countably many infinite
relations. For any f; and any R;, the arities arity(f;) and arity(R;) belong to
OUNU{w}. The set of the functions and relations { f1, fo, f3, ..., R1, R2, R3, ...}
are called the signature of X.

We sometimes identify X to | X|, and simply write X for |X|.

We may define that an algebraic structure has many sorted, or it refers some
other algebraic structures.

Definition 3.2 (Algebraic Structure With Uniform Topology) Let X =
(IX1|, f1, f2, f3, .-, R1, Ra, R3, ...) be an algebraic structure. Suppose that a par-
tial function f; = LM belongs to the signature, and f; = LM satisfies the
definition of modular limit over the domain |X|. Then, this X is an algebraic
structure with uniform topology by the modular limit LM .

If the modular limit is effective, then it is called an algebraic structure with
effective uniform topology

Example 3.3 we define an algebraic structure R = (|R|,0,1,+, —, X, /, LimE,
<) as follows:

The set |R| is the set of all the real numbers. The constants 0 and 1 are
the numbers 0 and 1 themselves. The functions 4+, — and x are the ordinary



summation, subtraction and multiplication. The partial function / is the or-
dinary division. The partial function LimE : R* —, R is defined as in the
example 2.17, which is a limit operation with modulus 1/n. The relation < is
the ordinary inequality without equality.

Then, This R is an algebraic structure with effective uniform topology.

We sometimes identify R and |R/.

4 Representation

Notation 4.1 We identify a function f : N — N to a infinite sequence (f(0),
f(), f(2),...) € N“. For a finite sequence z € N* and a finite or infinite
sequence y € N* U N¥, we write £ C y when z is an initial segment of y. Put
¢n+ 1 N — N* as the standard enumeration of N* and ¢¥n- : N* — N as its
inverse.

Definition 4.2 (Recursive Type-2 Function) A partial function of N¥ —,
N¢ is called a partial Type-2 function or partial functional. A partial functional
F : N¥ —, N¥ is recursive iff there is a partial recursive function f : N —, N
which satisfies the following three conditions. We write f for ¢n+ o f o PN+ :
N* — N*. Then, the conditions are the following:

1. The function f is monotone with respect to T, that is, for any y C 2 € N*,
) € f(2). A

2. For each x : N¥ z € dom(F) iff there are arbitrary long f(y) such that
y C z, that is, for every n € N, there exists y C x such that f(y) is longer than
the length n. .

3. For x € dom(F), F(x) is the infinite sequence such that f(y) C F(z) for any
yCx

Remark 4.3 This definition is equivalent to the notion of recursive functions
relative to another functions (which is given by Odifretti [O]). And also this is
equivalent to the notion defined by Type-2 machines (by Weihrauch [W]).

Definition 4.4 (Representation) A partial function r : N¥ —, X is a rep-
resentation of X iff it is a surjection, that is, range(r) = X.

Definition 4.5 (Pairing) A pairing function (—,—) : N x N — N is defined

as
-1 -2
<m,n>:(m+n )2(m+n )+m,
which is a standard bijection of N x N — N.
Remark 4.6 With this paring function (—, —), we can regard a unary function

as a binary function, such as a unary unction (n — f(n)) : N — N as a binary
function ((m,n) — f((m,n))) : N2 — N. As inverse, we can regard a binary
function as a unary function, such as a binary function ((m,n) — f(m,n)) :
N2 — N as a unary function ((m,n) — f(m,n)) : N — N.



Definition 4.7 (Recursive function with respect to representations)
Let X and Y be sets. Let r and ' be representations of X and of Y respectively.
A partial function f : X —, Y is recursive with respect to r and r' iff there is a
Type-2 partial recursive functional F : N* —, N“ such that for C,r' o F. If
X =Y and r =1/, then we say simply that the f is recursive with respect to r.

Remark 4.8 We say that f : X? —, X is recursive with respect to r iff it is
recursive with respect to (r',r) where 7' is defined as:
r'(n— (wi(n),wa(n))) = (r(wy), r(wy)) for any wy,ws € N¥.
We say similarly for f: X3 =, X, f: X* -, X and so forth.
We say that f : X“ —, X is recursive with respect to r iff it is recursive
with respect to (r",r) where r" is defined as:
r'(nw (i = w({n,i))) = r(w) for any w € N¥.

Definition 4.9 (Reducibility) Let X be a set, and r be a representation of
X. A partial function f : N¥ —, X is continuously reducible to r if there is a
partial continuous functional F' : N¥ — N¥ such that dom(f) = dom(F') and
f =roF. The partial function f is reducible to r if such F' is recursive.

Definition 4.10 (Admissibility) Let X be a topological space. A represen-
tation r : N —, X is admissible if the following conditions hold:

1. (continuity) r is continuous.

2. (finality) Every partial continuous function ¢ : N¥ —, X is continuously
reducible to 7.

Remark 4.11 The notion of admissibility is just a topological notion, and does
not include none of effectivity.

Lemma 4.12 Let X be an algebraic structure with uniform topology, and LM
be the modular limit of X, Let r be a representation of X. Suppose that LM is
computable with respect to r. Then any continuous partial function f : N¥ — X
r is continuously reducible to r.

Theorem 4.13 If a representation r of X is continuous, and the modular limit
of X is recursive with respect to r, then r is admissible.

5 Computability Structure

Remark 5.1 A binary partial recursive function f : N x N —, N induces a
total function of natural numbers into partial recursive functions (m — (n —
f(m,n))) : N - (N —, N). When we say a recursive function g : N —
(N —, N), we will denote that there is a binary partial recursive function
f:N xN —, N such that g : m — g(m) = (n — f(m,n)).

Definition 5.2 (Term) Let {f1, f2,..., R1, R2,...} be a signature and V =
{v1,v2,v3,...} be a set of countably infinitely many variables. Then we de-
fine the set of formal expressions Term, which is defined for each ordinal « as
follows:



Termg =V
Termy.1 = Term,
U {fi<t1, to, ..., tarity(fi)> | arity(fi) € {0} UN, t; € Terma}
U {fi(t1,ta,ts,...) | arity(f;) = w,t; € Termy}
Termy, = BU Termg for a limit ordinal «
<«
It is easy to seen that Term,, is saturated for uncountable ordinals «, because the
arity of every function is countable. Thus Term, is unique for any uncountable
ordinal a. We define Term as:
Term = Term,, for the least uncountable ordinal «.
Elements of Term are called terms.

Definition 5.3 (Evaluation) Let X be a structure. We define a partial func-
tion [-] : Term x (N =, X) =, X
— For a variable v; € V' = Termg and a partial function p: N =, X,
[vi], is defined iff so is p(i), and [v;], = p(3).
—For aterm f;(t1,t2,...) € Termqy1 — Termg and a partial function p: N —, X,
[fi(t1,t2,...)], is defined iff f;([t1],, [t2]p, ...) is defined
and [i{tr, t2, -y = Filltrlps [t2]s )

Definition 5.4 (Standard representation of terms) We define a represen-
tation r7 of Term with representations r, of T'erm, for any ordinals a.
Let j; : N — N be a function such that j;(n) = 1+ (i,n). Note that
UN Ji(N) = {2,3,4, ...} and all the summands are disjoint to each other.
i€

The function rg of V= Termyg is defined as follows.
For x : N¥, & € dom(rg) iff (1) =1
For z € dom(ro), ro(7) = vy(2)
The representation r,41 of Termy is defined as follows.
For z : N“, z € dom(ro) iff either
x € dom(ry)
or,
2(1) #1,
the signature has the function fy(1)_1
and z o j; € dom(r,) for each i < arity(fy(1)-1)
For z € dom(ra41),
if © € dom(ry) then roqq(z) = r4(),
otherwise ro41(%) = fo1)-1(ra(z 0 j1),ra(z 0 j2),ra(x 0 j3),...)
The representation r, of T'erm, for a limit ordinal « is defined as follows.
dom(ry) = BU dom(rg)
< «a

For a € dom(r,),
if x € dom(ro) then r,(z) = ro(z) = v(1),
and if z € dom(rg41) — dom(rg) then rq(x) = rgy1(z)
This r, is saturate as « is uncountable. We define rr as
rr(x) = ro(z) for the least uncountable ordinal .



Remark 5.5 It is obvious that this r, : N¥ —, Term, is surjective. Thus, r7
is a surjection into Term.

Definition 5.6 (Computability Structure) Let X be an algebraic structure.
A subset S C N — X is a computability structure over X if S satisfies the
followings:

1. (Permutation) For each s € S and each total recursive function f : N — N,
it holds that so f € S.

2. (Merging) For any s,s' € S, there is " € S such that s”(2n) = s(n) and
s"(2n 4+ 1) = s'(n).

3. (Effective sequence of terms) For each s € S and each recursive function
f:N = (N =, N),if f(m) € dom(rr) and [r7(f(m))](iss((n,i))) is defined for
each m,n € N, then there is s' € S such that s'((m,n)) = [r7(f(m))](iss(n.i))

Example 5.7 Regard N“ as an algebraic structure with uniform topology
(N“, LM N N), as in Example 2.19. Put S as

{f:N—=N¥]| f(i)(j) = g(i,7), g is a binary total recursive function}.
Then, this SN« is a computability structure over N“. This SN« is the standard
computability structure of it.

Definition 5.8 (Computable function) Let X and Y be algebraic structure
with effective uniform topology, and LM* and LMY be the effective limits of
them, respectively. Let Sx and Sy be computability structures of X and Y,
respectively.

Then, a partial function f : X — Y is computable if there exists a total
recursive function m : N> — N and the following five conditions hold:

1. There is a € Sx such that s(N) is dense in dom(f).

2. For each s € Sy, there is a partial recursive function i : N?> —, N such
that for each n € N, if s(n) € dom(f), then LM~ (a(i(n,1)),a(i(n,2)),
a(i(n,3)),...) = s(n).

3. foa€ Sy

4. For every (iy,ia,i3,...) € N¥, if (a(i1), a(iz), a(i3), ...) = dom(LM™), then
there is a sequence (j1,j2,73,...) € N¥ such that m(i;,,n) < j, for any
n € N.

5. if LM (a(i1),a(iz), a(iz), ...) = &, and m(ij,,n) < j, for any n € N, then
LMY (f(aliz)), f(aliz)), flaliz)), ) = f(@).

Proposition 5.9 Let f : X =, Y and g : Y —, Z be computable functions

with respect to (Sx,Sy) and (Sy, Sz), respectively. If range(f) C dom(yg), then
go f is computable with respect to (Sx,Sz).



Notation 5.10 We abbreviate the following condition over a quadruple (X,
LM,r,S) as the condition (x):

— The first component X is an algebraic structures with effective uniform topol-
ogy.

— The second LM is the effective limits of X.

— The third r is a representation of X such that all the partial functions of
the signature of X are recursive with respect to . Thus, S, is a computable
structures over X.

— As for the forth component, S = S,.

Lemma 5.11 Let (X,LM,r,S,) be a quadruple which satisfies the condition
(x). Then, for each function f : N¥ — X, if f is computable with respect to
(SNw, Sy), then f is reducible to r.

Remark 5.12 This proof follows the steps similar to those in the proof of
Lemma 4.12.

Corollary 5.13 A partial function f : N¥ —, N is recursive if it is com-
putable with respect to SN« .

Lemma 5.14 Let f be a partial function of N¥ —, N“. Suppose that f is
recursive and there is a € SN such that a(IN) is dense in dom(f). Then, f is
computable with respect to SN« .

Corollary 5.15 Let f be a partial function of N —, N“. Suppose that there
is a € Snw such that a(N) is dense in dom(f). Then, f is recursive iff it is
computable with respect to SN« .

Lemma 5.16 Let (X, LM r, Sx) be a quadruple which satisfies the condition
(¥). LetY be an algebraic structure with effective uniform topology, and LMY
be the effective limit of it. Let Sy be a computability structure over Y. Suppose
that r is computable with respect to (Snw,Sx)-

Then, for any f : X =, Y, if f or is computable with respect to (Sn«, Sy),
then f is computable with respect to (Sx,Sy).

Theorem 5.17 (Main Theorem) Let (X, LMY rx,Sx) and (Y,LMY  ry,
Sy) be quadruples which satisfy the condition (x). Suppose that rx and ry are
computable with respect to (Sn-,Sx) and (Sn«,Sy), respectively.

Let f: X =, Y and F : N¥ —, N¥ be partial functions which satisfy the
following:

1. forx =ryoF

2. range(F') C dom(Ry)

3. There is a € Sne such that a(N) is dense in dom(F).
Then, F' is recursive iff f is computable with respect to (Sx,Sy).

10



6 Computability in Yasugi’s sense

Remark 6.1 There is another definition of computable functions, which is
given by Yasugi et al. [Y]. Their definition is defined by using uniform neigh-
bourhood system. We call the computability defined by their definition the
computability in Yasugi’s sense, or Y-computability.

Definition 6.2 (Computable function in Yasugi’s sense) Let X = (|X|,
{VX(z)}iz,Sx) be a triples which consists of an underlying space X, an ef-
fective uniform neighbourhood system {V;X ()}, and a computability structure
Sx. As is usual, we identify |X| to X.

A partial function f : X —, R is computable in Yasugi’s sense, or Y-
computable, iff the following hold:
1. For s € Sx, if s(N) € dom(f), then fos € Sg.
2. For any s € Sx, there is a total recursive function j; : N — N¥ such that
FVG (@) CViH(f(=:)) for any i and n.
3. There are e € Sx and a total recursive function j. : N — N¢ such that

(3.1) The range e(N) is dense in X.

(3.2) f(V].f(i’n) (z;)) C VR(f(x;)) for any i and n.

X _

(3.3) igJN Vje(i,n)(wi) =X.
Lemma 6.3 Let X be an algebraic structure with effective uniform topology,
and LM be the effective limit of it. Put {V;(x)} be the effective uniform neigh-
bourhood system defined as Lemma 2.14. Let Sx be a computable structure over
X.

If a function f : X — R is computable, then it is Y-computable.

Lemma 6.4 Let X be an algebraic structure with effective uniform topology,
and LM be the effective limit of it. Put {V;(x)} be the effective uniform neigh-
bourhood system defined as Lemma 2.14. Let Sx be a computable structure over
X. Suppose the following set is recursively enumerable for each s € Sx:
{(i,j,myn') € N* | Vi (s(n")) C Vi(s(n))}
If a function f : X — R is Y-computable, then it is computable.

Corollary 6.5 Under the same assumption as the previous lemma (6.4), a
function f : X — R is computable iff it is Y-computable.

Remark 6.6 The algebraic structure R satisfies the assumption of the previous
lemma (6.4). Therefore, for each function of R — R, it is computable iff it is
Y-computable.

Remark 6.7 This condition appears in the definition of computability by Ya-
sugi et al.:

X 0\ —
U V(o) = X.

The function j, corresponds to the modulus m in our definition.

11



In their definition, the condition asserts only the existence of 7 such that
z € VXj.(i,n)(x;) for z, but not the effectivity of such i. Our definition asserts
the effectivity of such ¢, because our definition asserts the numerical inequality,
which is recursively justified.

7 Conclusional remark

The essential definition of this work is Definition 5.8, which defines computable
functions over algebraic structures with effective uniform topology. The main
theorem (Theorem 5.17) says that the computability in our definition is equiv-
alent to that in the definition by Weihrauch and others, with some suitable
assumption. And also, Corollary 6.5 says that our computability is equivalent
to that by Yasugi and others, with some suitable assumption.

The author think that this definition 5.8 has some conditions on the domain
of the function, which seems inessential. The author would like to make this
condition more natural as a future work.
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T ::= Dbool (booleans)
| nat (natural numbers)
| bsol (bounded partial solids)



T1 - T2 (function type)

Terms
t = x_T (variables)
| c_T (constants)
| A t1:T.t2 (abstraction)
| (t1) (£2) (application)
| undef _T (undefined)
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P: bsol - bsol - bool
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Abstract. We consider formal provabil-
ity with structural induction and related
proof principles in the A-calculus presented
with first-order abstract syntax over one-
sorted variable names. As well as sum-
marising and elaborating on earlier, for-
mally verified proofs (in Isabelle/HOL)
of the relative renaming-freeness of (-
residual theory and [-confluence, we also
present proofs of n-confluence, Bn-confluence,
the strong weakly-finite (-development (aka
residual-completion) property, residual (-
confluence, n-over-g-postponement, and no-
tably g-standardisation. In the latter case, the
known proofs fail in instructive ways. Interest-
ingly, our uniform proof methodology, which
has relevance beyond the A-calculus, prop-
erly contains pen-and-paper proof practices in
a precise sense. The proof methodology also
makes precise what is the full algebraic proof
burden of the considered results, which we,
moreover, appear to be the first to resolve.

1 Introduction

The use of structural induction and related proof prin-
ciples for simple syntax (i.e., first-order abstract syntax
over one-sorted variable names) is a long-standing and
widely-used practice in the programming-language the-
ory community. Unfortunately, at a first, closer inspec-
tion it seems that the practice is not formally justifi-
able because of a need to avoid undue variable capture
when performing substitution, thus breaking the syntac-
tic equality underlying structural induction, etc.. Even
more worrying is the fact that, in spite of substantial
efforts in the mechanised theorem-proving community,
no formal proof developments (prior to what we report
on here) have been able to overcome the problems that
are encountered with substitution and go on to success-
fully employ the proof principles in question. Indeed,
and starting with de Bruijn [6], it has become an active
research area to define, formalise, and automate alter-
native syntactic frameworks that, on the one hand, pre-
serve as much of the inherent naturality of simple syntax

* vester@jaist.ac.jp, http://www jaist.ac.jp/” vester

as possible. At the same time, they are customised to
provide suitable induction and recursion principles for
any considered language [6-10,12,17,21]. However, by
changing the underlying syntactic framework, the alge-
braic meaning of, e.g., a diamond property also changes,
which means that, e.g., confluence as proved and as de-
fined no longer coincide, cf. Lemma 18 and [25].

In the recognition that the above is both unfortu-
nate as far as the formal status of the existing informal
literature is concerned and unsatisfactory from a math-
ematical perspective, we pursue the naive approach in
this article (while incorporating the relevant aspects of
[24,25]). In particular, we show that it is, indeed, pos-
sible to base formal proofs on first-order abstract syn-
tax over one-sorted variable names and hope to con-
vince the reader that, while the technical gap between
pen-and-paper and formal proofs is rather large, the
conceptual gap is somewhat smaller. Furthermore, we
hope that the comprehensive range of applications of
the proof methodology that we present here will estab-
lish its wider relevance.

1.1 Syntax of the A-Calculus

The A-calculus is intended to capture the concept of
a function. It does so, first of all, by providing syntax
that can be used to express function application and
definition:

e = x| ejes | Axee

The above, informal syntax says that a A-term, e,
is defined inductively as either a variable name, as an
application of one term to another, or as a A-, or func-
tional, abstraction of a variable name over a term. The
variable names, x, are typically taken to be, or range
over, words over the Latin alphabet. In Section 2, we
will review the exact requirements to variable names in
an abstract sense. Being based on a simple, inductive
definition, A-terms also come equipped with a range of
primitive proof principles [1, 3].

Syntactic Equality As a A-term, e, is finite and con-
sists of variable names, the obvious variable-name equal-
ity, =y, which exists at least in the case of words over
the Latin alphabet, canonically extends to all A-terms:

_ / ’ ’
T =VN Y €1 =Avar €] €2 =Avar €5 T =pPN Y € =pvar €

T =Apvar Y €1€9 = pAvar e'le'z Ax.e = pvar )\y.e'

Structural Induction In order to prove properties
about the set of A-terms, we can proceed by means of
structural induction, mimicking the inductive definition

of the terms:

Vz.P(x) Ver,ea.P(er) A P(ez) = Pleiez) Vz,e.P(e) = P(\x.e)

Ve.P(e)



o= €] e ifx=y
Ylv = €lcu y  otherwise
Ay.eo

(Ay.eo)[z := €]cu = { Ay.eo[z := €]cu

(e1e2)[z 1= €]cu = e1[z := €]cuez[z := €]cu

Az.eoly := z]culz := €]cu

ifx=y
ife#£y ANygFV(e) V 2 €FV(ep))
o/w; first z & {x} UFV(e) UFV(eq)

Fig. 1. Curry-style capture-avoiding substitution

TFy

ez :=€elcu = el e[z :=e|cu = €h

z[lz:=e€]cu =e

ylz == eleu =y

(ere2)[x :=€]cu = eeh

v#y (y&FV(e)Va g FV(eh) colz = eleu = ch

(Az.e0)[z := €]cu = Az.€o

(Ay.e0)[x := €]cu = My.€)

rx#y y€FV(e) z € FV(eo) 2 = Fresh((eoe)x) eoly := 2]cu = € €g[x = €]cu = €§

(Ay.eo0)[z := €]cu = Az.e(

Fig. 2. Curry-style substitution (re-)defined inductively

Structural Case-Splitting As each syntax construc-
tor of the A-calculus is unique, we see that it is possible
to case-split on terms — with F; in some suitable meta-
language:

case e of x = Ei(x)
| erez = Es(eq,e2)
| Ax.eg = E3(.’E,60)

Structural Recursion Based on case-splitting and
well-foundedness of terms, we can even define functions
on A-terms by means of structural recursion, i.e., by
making recursive calls only on the sub-terms of a given
constructor:

f(z) = Ex(2)

flere2) = Ea(f(e1), f(e2))

f(Az.e) = E3(z, f(e))
The above implies that f is well-defined: it is com-
putable by virtue of well-foundedness of terms and to-
tal because the definition case-splits exhaustively on A-
terms. As an example application, we define the function
that computes the free variables in a term, i.e., the vari-
able names that do not occur inside a A-abstraction of
themselves.

Definition 1
FV(y) ={y}
FV(€1€2) = FV(el) U FV(€2>
FV(Ay.e) = FV(e) \ {y}

Proposition 2 FV(—) is a total, computable function.

1.2 Reduction and Substitution

In order to have A-abstractions act as functions and not
to have too many, e.g., identity functions, amongst other
things, we are typically interested in the following rela-
tions that can be applied anywhere in a term — their
precise form is due to Curry [4].

1. (Az.e)e’ ——»gcu e[z := €']cy
2. dy.e[r = y|cu ~—rqcu Azee, if y € FV(e)

Our interest in 2., above is the equivalence relation it
induces. We denote it by ==, cf. Appendix B, and we
will eventually factor it out, as is standard.

Variable Capture In his seminal formalist presenta-
tion of the A-calculus [4], Curry defines the above substi-
tution operator, —[— := —]cy, essentially as in Figure 1.
The last clause is the interesting one. It renames the con-
sidered y into the first z that has not been used already.!
Consider, for example, the substitution of z for z in the
two terms Az.z and Ay.z. Both terms-as-functions dis-
card their argument. If we simply replace the z in the
terms with x, the latter would still discard its argument
but the former would become the identity function and
this discrepancy would lead to inconsistencies.

Well-Definedness Of formalist relevance, we remark
that Curry-style substitution is not well-defined by con-
struction as the definition does not employ structural

! While the notion “the first 2z” is trivially well-defined in
the present case, the issue is a bit more subtle in a wider
context, as we shall see in Section 2.



recursion. The offender is the last clause that applies
—[z := €] to a term, egly := 2|, which is not a subterm of
Ay.ep in general. It can be observed that while e[y := 2]
is not a sub-term of Ay.eq, it will have the same size
as eg and we can thus establish the well-formedness of
—[— := —]cu by external means. Alternatively, we can
introduce a more advanced, parallel substitution oper-
ator [22]. However, as we eventually will distance our-
selves from the use of renaming in substitution, we will
do neither but instead refer to Section 2.3 for an alter-
native derivation of Curry-style substitution.

Variable-Name Indeterminacy Having initially
committed ourselves to using renaming in substitution,
a range of problems are brought down on us. Hindley
[11] observed, for example, that it becomes impossible
to predict the variable name used for a given abstrac-
tion after reducing, thus putting, e.g., confluence out of

reach:
Cu

QCL\
5 Ay zzy)y ——- Azay

(Az.(Ay-Az.zy)x)y _
ﬂCu Az Az.za)y - —Bgu)\z.zy

In the lower branch, the innermost x-abstraction must
be renamed to a z-abstraction, while the upper branch
never encounters the variable-name clash. Hindley pro-
ceeded to define a (-relation on a-equivalence classes
that overcomes the above indeterminacy by factoring it
out:

le] =2 {e’ | e ==a '}

ler] —pgmi lea] =2 e € |e1],eh € |ea).€] ~—240u €h

No relevant proof principles are introduced by this
and the approach can not be used in a formal setting as
it stands.

Broken Induction Steps Instead of factoring out
a-equivalence altogether, one could attempt to reason
up to post-fixed name unification. Unfortunately, this
would lead to a range of unusual situations as far as sub-
sequent uses of abstract rewriting is concerned. An ex-
ample is the following attempted adaptation of the well-
known equivalence between confluence and the Church-
Rosser property. Please refer to Appendix A for a precise
definition of our diagram notation.

Non-Lemma 3
[ )
[ ) / \ [ )

o o O 0]
Proof (FﬂILS) By reflexive, transitive, %Immetric in-
duction in =.

Base, Reflexive, Symmetric Cases: Simple.

Abstract Reasoning

m

Administrative Proof Layer

T

Commutativity Lemma (-.
L

Substitutivity Lemma h
N O

Variable Monotonicity

e

Substitution Sanity

Substitution Lerrir'na e

Fig. 3. The proof-layer hierarchy for primitive equational
reasoning about the A-calculus as simple syntax

Transitive Case: Breaks down

M,y
\, LH / \ LH.
N —— Assm. 4
«
o \y
~ o N—— N6 .

Broken a-Equality in Sub-Terms Having failed in
our attempts to control limited use of a-equivalence,
one might think that the syntactic version of Hindley’s
approach, cf. Section 1.2, could work: that it is possible
to state all properties about terms up to ==, rather than
the primitive = gvar.

Lemma 4 (Simplified Substitution modulo «)
e1==q 2 AT # Yi Ny1 # Ya
!

61[1’1 = yl]Cu[CUQ = yQ]Cu ==« 62[$2 = yQ]Cu[l’l = yl]Cu
Proof (FAILS) By structural induction in e;.

Most Cases: Trivial.
Last Abstraction Case (simplified): Breaks down.

(Ay1-e)[z1 := y1]culr2 := Yo
= Az.€'[z1 := y1]culr2 == y2lcu
==5 )\z.e'[x2 = ya]cul1 = Y1]cu
= ()\Z.e/)[l‘g = yz]cu[xl = yl]Cu
The problem above is that e and e’ are not actually a-
equivalent, even if Ay;.e and Az.e’ are, and the ==,-step
can thus not be substantiated by the induction hypoth-
esis. Consider, e.g., € as y; and €’ as z. The above result

is certainly correct but, unfortunately, not provable with
the tools we have at our disposal at the moment.



1.3 This article

The results we are dealing with are mostly well-known
and have been addressed in several contexts. Indeed, a
number of truly beautiful and concise informal proofs
exist; see, in particular, Takahashi [23], whom we owe a
great debt. This article, therefore, spends little energy
on those parts of the proofs and focuses instead on what
it takes to formalise them. There are two key issues: (i)
the syntactic properties that can actually be established
up to =var (as opposed to ==, which we have seen to
be highly problematic) and (ii) how to generalise these
to the algebraic properties we are seeking. The full type-
set proofs (roughly 100 pages for the proofs alone) are
available from our homepage.

In general, our proofs follow the structure that we
present in Figure 3. It is based on nested inductions. The
full-coloured arrows mean “is the key lemma for”, while
the others mean “is used to substantiate side-conditions
on lemma applications”. The first issue above, (i), is
expressed in the addition of the “Variable Monotinicity”
proof layer in Figure 3. The second issue, (ii), is entirely
accounted for in the “Administrative Proof Layer” in
Figure 3.

The proofs underpinning Sections 3 and 4.1 have been
verified in full in Isabelle/HOL (at least in the case of
one of the alternatives they present) [24,25]. By the
nature of Figure 3, this means that substantial parts of
the other proofs essentially have been verified as well.

Apart from the various technical sections in the body
of this paper, the appendix section contains an expla-
nation of our diagram notation (Appendix A) and our
other notation (Appendix B) as well as some well-known
rewriting results that we use (Appendix C).

2 The A\V®'-Calculus

Having seen that the standard presentations of the A-
calculus lead to formalist problems, we will now give an
alternative presentation that overcomes them. The dif-
ferent presentations differ only in how they lend them-
selves to provability. Their equational properties are
equivalent.

2.1 Formal Syntax

We use e’s to range over the inductively built-up set of
M-terms. The variable names, VN, are generic but must
meet certain minimal requirements.

Definition 5 A" ::= VN | AV A | NYN A"

Assertion 6 VN is a single-sorted set of objects, aka
variable names.

Assertion 7 VN -equality, =y, is decidable.

BV(y) =0
BV(eie2) = BV(e1) UBV(e2)
BV(\y.e) = {y} UBV(e)

Capt, (y) = 0
Capt,(e1e2) = Capt,(e1) U Capt, (e2)

[ {y}uCapt,(e) if x € FV(Ay.e)
Capt, (Ay.c) = {(Z) otherwise

Fig. 4. Bound and capturing variable names

Assertion 8 There exists a total, computable func-
tion, Fresh(—) : A" — VN, such that:?

Fresh(e) € FV(e) UBV(e)

The last assertion trivially implies that VA is infinite.?

We shall use s, y’s, and z’s as meta-variables of VA/
and, by a slight abuse of notation, also as actual vari-
able names in terms. We will suppress the VN suffix on
variable-name equality and merely write, e.g., x = y.

2.2 Orthonormal Reduction

The key technicality to prevent implicit renaming is our
use of a predicate, Capt,(e1) NFV(ez) = 0, cf. Figure 4,
which guarantees that no capture takes place in the sub-
stitution: eq[x := es]. It coincides with the notion of not
free for.

Definition 9 (The A\Y*'-Calculus) The terms of the
AV _calculus are AV, cf. Definition 5. The (indexed)

a-, B-, and n-reduction relations of A\Y*: =34, --33,
and --», are given inductively in Figure 5. The plain
a-relation is:

1, def Y /
e--v,€ & ye-=3,,¢

Unlike the situation with Curry-style substitution, we
see that our notion of substitution is defined by struc-
tural recursion and, hence, is well-defined by construc-
tion.

Proposition 10 —[z := €] is a total, computable func-
tion.

2 For the definition of BV(—), see Figure 4.

3 In the setting of Nominal Logic [19], the assertion also val-
idates the axiom of choice, which is known to be provably
inconsistent with the Fraenkel-Mostowski set theory that
underpins Nominal Logic. Nominal Logic instead guar-
antees the existence of some fresh variable name, which
by design can be any variable name except for a finite
number. More work needs to be done to clarify the cor-
respondence between simple syntax and syntax based on
Nominal Logic.



o= ] eifx=y
Y= y otherwise
(e1e2)[z := €] = e1][z := e]ea]r :=¢]
3 _J ez =elifz#FyAny EFV(e)
(Ay-eo)lw :=e] = { Ay.eo otherwise
y & Capt,(e) UFV(e) ( e-Ysin e €1 -rin el €2 -2 €5
a
v
AT.€ -=%ia Ay.e[x = y} Ax.e —géia Ax.e eles —geia 6362 e1es —geia eleé
Captz(el) n FV(@Q) = (Z] (ﬁ) € -->3 6/ €1 -3 6,1 €2 ——23 6/2
(Az.e1)es --+5 e1[z := e2] Ax.e ——»g dx.e  eres ——vgelea  erea ——3p ereh
zZFV(e) =10 ) e -—y e e1 ——y el ez -—*y s
n
Az.ex --3y € Az.e --y Az.e’ e1ea -, 6;62 e1ez -3, eleg
Fig. 5. Renaming-free substitution, —[— := —], defined recursively, and a-, (-, n-reduction defined inductively over A"**

The (- and n-relations we have presented above do
not incur any renaming that could have been performed
in a stand-alone fashion by the a-relation, thus making
them orthogonal. The normality part of our informal
orthonormality principle is established by the following
property, symmetry of --»,, which implies that the a-
relation itself is renaming-free.

_ «Q
o~ Se

«

Lemma 11

2.3 Curry’s A-Calculus Decomposed

In order to assure ourselves that the AV*'-calculus is
indeed the right calculus and partly to test the use-
fulness of the associated primitive proof principles, we
now show how to derive Curry’s presentation from ours.
First, we show that as far as our use of substitution is
—] coincides with —[— := —]cy.

concerned, —[— :

Proposition 12

Capt, (e, =0
\

eor = €] = eqlx = €]cu

YNFV(e)

Proof A straightforward structural induction in e,. O

What might not be obvious is that Curry-style sub-
stitution can be shown to decompose into the AV&'-
calculus. In contrast to the structurally flawed Figure 1,
Figure 2 introduces a primitively-defined, 4-ary relation
that ¢s Curry-style substitution, albeit with no claim of
well-definedness.

Lemma 13

Alep.eq —-»4 € A ep[r:=¢€] =€)
Proof By rule induction in Curry-style substitution-

as-a-relation, cf. Figure 2. Uniqueness of e, is guaran-
teed by the functionality of Fresh(—). O

We stress that the above property is not provable
by structural induction in e, and that it ensures that
Curry-style substitution is, indeed, well-defined and
functional.

Lemma 14 For any x and e, —[z := €]cy = — is a
total, computable function of the first, open argument
onto the second, open argument.

Lemma 13 also establishes the decomposition of
Curry’s calculus as a whole into the AV*'-calculus.

Lemma 15 --», C (--340u)71 C --»,

-

Lemma 16 —=sgcn © —-wg;--ag

o

2.4 The Real A-Calculus

As suggested previously, the actual calculus we are in-
terested in is the a-collapse of A¥?". Algebraically speak-
ing, this means that we want to consider the following
structure, cf. Hindley’s presentation, Section 1.2.

Definition 17 (The Real A-Calculus)

— A :def Avar/==a



UB(z) = True
UB(ere2) = UB(e1) A UB(e2) A (BV(e1) NBV(e2) = 0)
UB(A\z.e) = UB(e) Az & BV(e)

Fig. 6. The uniquely bound A -predicate

L_J :defAvar — A
e — {e|e==4¢}

— ler) —p lea] @99 €1 ==0; -2 p==0 €2
— le1] — [e2] @defel == T T €2

It can be shown (without too much trouble) that
Curry’s, Hindley’s, and our relations all are pointwise
identical, cf. [25]. For now, we merely present the part
of that result that pertains to the current set-up.

Lemma 18 For X € {8,n,08n} (any X, in fact), we
have:

le] —»x [€'] ©@e--»ox €
Proof By definition of the real relations and reflexive,
transitive closure, we immediately see that

le] —»x /] & e(==a;--2x;==0)" € Ve==,¢

The result thus follows directly from Lemma 11. O

3 Residual Theory

This section shows that residual theory, i.e., the ex-
clusive contraction of pre-existing, or marked, redexes,
provides a nice setting for quantifying the “computing
power” of the renaming-free (-relation. We use ¢;’s as
meta-variables over the marked terms and we allow our-
selves to use AY®-concepts for the marked terms with
only implicit coercions; in particular, we assume there
is an a®-relation that can rename all (not just marked)
abstractions.

Definition 19 (The Marked A\*'-Calculus)
AG" n=x | Ag Ag” | AWN.AGT | (AWN.AGY) @ Ag”

--+go is like --s5 ewcept only marked re-
dexes, (Ax.t1)Qty, may be contracted (provided
Capt,(t1) NFV(t2) =0). We further define a residual-
completion relation, --+ga, by induction over terms
that attempts to contract all (marked) redexes in one
step, starting from within.*

4 The relation corresponds closely to the parallel S-relation
of Figure 7.

To address any inherent requirements for renaming
in the A-calculus, we introduce a formal notion called
Barendregt Conventional Form (BCF),5 which, as it
turns out, provides a rational reconstruction of the usual
(informal) Barendregt Variable Convention [2], cf. [25].
BCFs are terms where all variable names are different.

Definition 20 Cf. Figures 4 and 6:
BCF(e) = UB(e) A (BV(e) NFV(e) = 0)

As a first approximation to renaming-freeness, we
note that it is a straightforward proof that BCF's resid-
ually completes, i.e., that all marked redexes in a BCF
can be contracted from within without causing variable
clashes.

Lemma 21 (BCF) e o
/8@

We also show that the residual-completion relation is

functional on the full G-residual theory of a term, i.e.,

that residual completion always catches up with itself.

Lemma 22

e —————- Sl e o —————— Sl e
\\ o /\ \\ o
Be e

Proof The right-most conjunct follows from the
left-most by a simple reflexive, transitive induction
in which the latter constitutes the base case. The
left-most conjunct follows by a rule induction in
--4ge for which it is paramount that redexes are en-
abled if Capt,(—)NFV(—) =0 rather than only if
BV(—=)NFV(—)=0. Other than that, the proof is
mostly straightforward, albeit big. O

The above property asserts that when residual com-
pletion exists, the considered divergence can be resolved
as shown. The property allows us to prove that -
residual theory is renaming-free up to BCF-initiality,
i.e., that no redexes are blocked by their side-condition.

Theorem 23 (BCF) e ————» o

@ @
Proof Consider a BCF and a -~ ga-reduction of it.
By Lemma 21, the considered BCF also residually com-
pletes and, by Lemma 22, the thus-created divergence
can be resolved by a trailing residual completion. O

A subtle point of interest is that the above proof, in
fact, shows that the fg-residual theory of any term that
residually-completes, i.e., is renaming-free if contracted
from within, is renaming-free in general.

5 The term was suggested to us by Randy Pollack.
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4 Confluence

The previous section establishes a rather large fragment
of the A'®'-calculus as susceptible to primitive equa-
tional reasoning. This section summarises and elabo-
rates on our formally verified efforts to bring this to
bearing on -confluence [25]. We also present proofs that
apply the methodology to prove 7- and (n-confluence.

4.1 B-Confluence

The --»g-relation does not enjoy the diamond prop-
erty because a redex that is contracted in one direction
of a divergence can be duplicated (and erased) in the
other direction by the substitution operator. As shown
by Tait and Martin-Lof, the potential divergence “blow-
up” does not materialise because it can be controlled by
parallel reduction. Please refer to Figure 7 for the Av#'-
version of this relation.

Lemma 24

(BCF) o—-H—)o
L AL
B

Proof Rather than prove this property by an exhaus-
tive case-splitting, thus resulting in a minimally resolv-
ing end-term, Takahashi observed that the considered
diamond can be diagonalised by the relation that con-
tracts all redexes in one step, i.e., by a maximally re-
solving end-term [23]. As we saw in Section 3 this is
within reach of the structural proof principles of A¥#*. [

The Full Proof Burden A real version of the parallel
[B-relation on syntax can be defined along the lines of
Definition 17 (which, further to Lemma 21, turns out to
be the real real parallel S-relation).

Definition 25 |e1| -5 [e2] PN ==q; -t ) ==q €2
In order to prove the diamond property for —+-g3, we

need some measure of commutativity between a- and
(B-reduction.

Fresh-Naming As the general a-/g-commutativity re-
sult is not provable, we introduce the following restricted
a-relation, which only fresh-names.

Definition 26
e g, € % Jze N ¢ FV(e) UBV(e)

The fresh-naming a-relation can straightforwardly be
proven to commute with the parallel (actually, any)
[B-relation with the proviso that the resolving a-steps
are not necessarily fresh-naming (because of §-incurred
term duplication).

Lemma 27

g
OZ()% H OOé
B

Similarly, the fresh-naming a-relation can be shown
to resolve a-equivalence to a BCF (although the formal
proof of this is surprisingly involved, cf. [25]).

Lemma 28

e========@g¢
«
Qg o Op
(BCF)

Applying Administration With these results in
place, we can lift Lemma 24 to the real A-calculus.

Lemma 29 o(—3) A o(--»4;-t>3)

Proof As for the left-most conjunct, see Figure 8 for
the step by step resolution of the definitionally-given
syntactic divergence. We trust the steps are self-evident
and that it can be seen that a slight adaptation of the
figure also proves the right-most conjunct. (Il

We are now in a position to establish -confluence.

Theorem 30

Confl(—g) A Confl(--+43)
A Confl(--»,cugou)
A Confl(— gui)

Proof The two top-most conjuncts are equivalent by
Lemma 18. They can also be proved independently by
applying the Diamond Tiling Lemma of Appendix C
to the corresponding conjunct in Lemma 29. The third
conjunct follows by Lemmas 15 and 16. The final con-
junct follows in an analogous manner. [l



4.2 n-Confluence

Unlike the g-relation, n-reduction is natively renaming-
free:

Lemma 31 (a/n Commutativity)

oe——-e

I n

|

ad «
[ ] [e]
n
Lemma 32 (n Commutativity)
oe———e e — e
I n
|
ni n Aol "

[ ] (0] [ ] (@]

Proof The left-mdst conjunct is” straightforwardly
provable by structural means. The proof of the right-
most property follows from the left-most as displayed in
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Fig. 9. The administrative proof layer for n-confluence 4.3 (Bn-Confluence

Since the n-relation is natively renaming-free and the -
relation relies on the a-relation, we must show that 7-
commutes with combined af-reduction in order to ap-
ply the Commuting Confluence Lemma of Appendix C.

Lemma 34

e——-e e——-e oe— e
: n : n :

B alB Aafy aB A afy of3
[ ] T]O [ ] 770 [ ) 770

Proof The proof of the left-most conjunct is straight-
forward. The a-step in the resolution on the right is
needed for the obvious divergence on Az.(Ay.e)z, with
x # y. The middle conjunct combines the left-most con-
junct and Lemma 31. The right-most conjunct follows
from the middle by the Hindley-Rosen Lemma of Ap-
pendix C. |
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Lemma 35

e—e oe—»e

| g nal ]

B g B B

[ ] ’I’, [ ] ’I’]O
Proof The left-most conjunct follows from the left-
most conjunct of Lemma 34 as shown in Figure 10.
The top part of the figure is by the general method;
the lower part is an optimisation based on (full) an-

commutativity, Lemma 31. The right-most conjunct fol-
lows by the Hindley-Rosen Lemma of Appendix C. O

o

Theorem 36 Confl(—g,) A Confl(--»43,)

Proof We first observe that the two conjuncts are
equivalent by Lemma 18. They can also be proved in-
dependently by the Commuting Confluence Lemma of
Appendix C applied to Theorems 30 and 33 as well as
Lemma 35 and Lemma 34, respectively. O

5 Residual 8-Confluence

We say that the reflexive, transitive closure of a residual
relation is the associated development relation, a step of
which is said to be complete if the target term does not
contain a mark, unMarked(—). With this terminology in
place, we define a weakened version of the strong finite
development property.5

6 The strong finite development property also requires that
the residual relation is strongly normalising. It is typically
used to prove (residual) confluence.
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Definition 37 Let —, be the residual relation of
—. We say that — enjoys the strong weakly-finite
development property, SWFDP(—), if

1.t —»ot' = 3"t —> 4 t” A unMarked(t”)
— developments can be completed

2. t —»q t; A unMarked(t;) A i € {1,2} = t1 =ts
— completions are unique

To motivate the name of the property, we see that,
indeed:

Proposition 38 SWFDP(—) = WN(—,)"
Proof By Definition 37, 1. and reflexivity of —» 4.

Surprisingly, perhaps, we have that already the SWFDP
implies residual confluence.

Lemma 39 SWFDP(—) = Confl(—,)
Proof Consider the following divergence:

M
@ Q/ \y@
M, Ms
” The predicate WN(—) stands for Weak Normalisation and
means that all terms reduce to a normal form.



By Definition 37, 1., there exist Nj, Na, such that
unMarked (N ), unMarked(Ns) and:

M
@ Q/ \y@

M, My
0¥ to
Ny Ny

By transitivity of — and Definition 37, 2., we see
that, in fact, Ny = Ny and we are done. O

With direct reference to Section 3, we define the
following property, which is fairly easily proven to be
equivalent to the SWFDP.

Definition 40 A relation, —, enjoys the residual-
completion property, RCP(—), if there exists a
residual-completion relation, —i,, such that:

1. —4,C —>,
— residual-completion is a development

2. o o NF.
— residilal-completion totally completes
o — e

e o
— residual-completion is residually co-final

Lemma 41 RCP(—) & SWFDP(—)

Our interest in the RCP is its constructive nature, in
particular when the residual-completion relation is de-
fined as a computable function the way we did in Sec-
tion 3.

Lemma 42 RCP(—p3) A SWFDP(—p)

Proof We prove the left-most conjunct. Clause 1. fol-
lows from the easily established fact that --+5e C--»ga.
Clause 2 follows from Lemmas 21 and 28. Finally,
Clause 3 is proved as shown in Figure 11. O

Theorem 43 Confl(— ga) A Confl(--»,aza)

We see that SN(——ga) (i.e., the difference between
the SWFDP and the strong finite development prop-
erty) is not needed for concluding confluence from a
residual analysis of the [-relation, something which
is in stark contrast to established opinion [2, p.283].
Strong finite development essentially implies confluence
through Newman’s Lemma, thus relying crucially on the
(non-equational) SN-property for the residual relation.
We think it a nice “purification” of the equational im-
port of residual theory that an externally justified termi-
nation property is not needed for concluding confluence.
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Fig. 12. The parallel n-relation for A"
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Fig. 13. The administrative proof layer for n-postponing

6 mn-over-3-Postponement

As well as condensing Tait and Martin-Lof’s use of par-
allel (-reduction for proving B-confluence, Takahashi
[23] also shows how to adapt the parallel-reduction
technology to other typical situations in the equational
theory of the A-calculus. One such situation is for prov-
ing n-over-(-postponement, cf. Figure 12. The proof
presented by Takahashi [23] essentially goes through
up to BCF-initiality as it stands, albeit not completely.
Rather than focusing on the low-level technical details,
this section merely shows the Administrative and Ab-
stract proof layers of our formalisation of Takahashi’s
proof.

The notion of commutativity that we have considered
so far is orthogonal in nature to that employed in the 7-
over-(3-Postponement Theorem. Whereas the former can
be described as divergence commutativity, this section
focuses on composition commutativity.

Lemma 44 (BCF) B
o {>0
=,
i—Hao



Proof The parallel n-relation is used to allow for the
duplication of a n-redex by the [-contraction when the
latter is performed first. The parallel (-relation, on the
other hand, is used. e.g., for the following situation:

(. (y.en)a)es —y (Mp-er)es s exly = 3

This reduction sequence commutes into a leading par-
allel G-step with a trailing 7-step, which is in this case
is reflexive:

(Az.(Ay.e1)x)es -t €1y := z][z = eg]

BCF-initiality is used to enable the double (n-fold, in
general) substitution in the commuted reduction se-
quence. O

Lemma 45 B

o |0
ﬂ:lf _H_).U
Proof Please refer to Figuﬁe 13 for the details of the
proof. A novel aspect of the proof is the existence of an
ap-step from My to No. By construction, we know that
the two terms are a-equivalent. A simple lemma shows
that N5 is a BCF because 7-reduction preserves BCF's.
The final result that is needed, i.e., that ag-reduction
can reach any BCF that is a-equivalent to the start
term, can also be proved by structural means but it is
not as straightforward as could be imagined. This is due
to the need for the target BCF to be any BCF. O

With the one necessary technical lemma in place, we
present the postponement theorem.

Theorem 46

Proof By reflexive, transitive induction in —g,.
The only interesting case is the transitive case, which
follows in a manner akin to the Hindley-Rosen Lemma
of Appendix C using Lemma 45. (]

7 (B-Standardisation

Standardisation is also a composition-commutativity
result like postponement. It is a very powerful result
that, informally speaking, says that any reduction se-
quence can be performed left-to-right. Standardisation
implies results such as the left-most reduction lemma,
etc., [2], and guarantees the existence of evaluation-
order independent semantics [20].

This section addresses three different approaches to
proving standardisation due to Mitschke [18], Plotkin

Capt,(e1) NFV(e2) =0 (™) €1 - gun €] (@™

(Az.e1)ez -=»zwn e1]x 1= eg) e1€2 == gwn €€z

Fig. 14. Weak-head (-reduction
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Fig. 15. Inner and parallel inner B-reduction

[20], and David [5], respectively. The three approaches
are fairy closely related, with Plotkin’s proof bridging
the other two, so to speak. Mitschke’s and Plotkin’s
proofs both use semi-standardisation while David’s and
Plotkin’s both can be described as absorption standardi-
sation. In spite (actually because) of this, only Plotkin’s
approach is formally provable by the proof principles
we are considering. We shall examine the failures of the
other two proofs closely.

7.1 Semi-Standardisation with Hereditary
Recursion

In this section, we shall pursue a slight adaptation of
Takahashi’s adaptation [23] of Mitschke’s proof [18]. In-
stead of head and a corresponding notion of inner reduc-
tion, we base the proof on weak-head reduction. This
does not affect the formal status of the proof technique
but does allow us to reuse the results of this section
when pursuing Plotkin’s approach. The main proof bur-
den is to show that (weak-)head redexes can contracted
before any inner redexes, so-called semi-standardisation.

Definition 47 Weak-head B-reduction, --»gwn, is de-
fined in Figure 14. The corresponding (strong) inner,
--»g1, and parallel inner, -1 g1, B-relations are defined
in Figure 15.
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Fig. 17. The administrative proof layer for parallelization
of weak-head after inner

Lemma 48
ﬁWh ° //ﬁl /BWh ° //IBI
(BCF)Q———H——ﬂ—)o A °_H_ﬂ"

Proof Please refer to Figure 16 for the proof of the
right-most conjunct based on the left-most conjunct,
wich, in turn, is proved by rule induction in -#+5. O

The use of BCF-initiality in the left-most conjunct
above guarantees that weak-head redexes can be con-
tracted without waiting for the contraction of an inner
redex to eliminate a variable clash.

Lemma 49

p B
(BCF)e_ I} ° ° I °
ZP.//EWh A %./Wh
Proof Please refer to Figure 17 for the proof of the
right-most conjunct based on the left-most. We first
note that the figure invokes the obvious adaptation of
Lemma 27 to - g1. Although the proof as a whole is
similar to that of n-over-3-postponement, cf. Lemma 45,
we do not have that -#» g1 preserves BCFs, as is the case
with -t»,,. Instead, we can introduce a weakened notion
of BCF, wBCF, that allows identical binders to occur
in adjacent positions (but not nested and not coincid-
ing with any free variables) and show that - g sends
BCFs to wBCFs. In the same manner that ag-reduction
and the BCF-predicate correspond to each other, we can

introduce an «;-relation that corresponds to the wBCF-
predicate. The a;-relation is less well-behaved than the
agp-relation but we can, at least, show that it commutes
with --»5 (and thus --»4wn), up to a-resolution. The
left-most conjunct of the lemma, follows by rule induc-
tion in - gr. ([l

Lemma 50 (Semi-Standardisation)

6wh ° ﬁl

e—» e
Proof From Lemmas 48 andﬁ49, cf. the obvious reflex-
ive, transitive generalisation of Lemma 53 in the tran-
sitive case. O

At this point, the idea is to recursive over the o in
Lemma 50 and show that the sub-terms in which the
outgoing —gi-step are ordinary [-steps, themselves
can be semi-standardised and so on. Unfortunately, the
o is quantified over a-equivalence classes, for which no
recursion is possible and we are stuck.

7.2 Hereditary Weak-Head Standardisation

Plotkin [20] defines standardisation as the least
contextually-closed relation on terms that enjoys left-
absorptivity over weak-head reduction. The following
presentation of the proof methodology owes a great debt
to McKinna and Pollack [17]. The difference between
their and our presentation is that we focus on prov-
ability with structural induction, etc., while they work
with an alternative syntactic framework that is derived
from first-order abstract syntax with two-sorted vari-
able names. The proof requirements in their setting and
in ours are substantially different as a result.

A First (Failing) Approach A first approach, which im-
mediately fails, is to define Plotkin’s relation directly on
terms.

e--»gme € ——pe’

e =-p €e” T >--4p T

/ /
e] >-+4p €1 ez >--1p €y e =-4p e

e1es =--p €} € Az.e =--p Az.e/

As standardisation pertains to all S-reductions (i.e.,
—»g, not just --»g), the naive approach needs the
full A-calculus to be renaming-free, which it is not. The
problem manifests itself in the required administrative
proof layer for the standardisation property and its ex-
act nature is of independent interest. The point is that,
even if it is possible to prove the following key property
(which, in fact, seems to be the case®), we cannot prove

8 Coincidentally, it is interesting to note that the proof of
the property can only be conducted by rule induction in
>-+p and not in --»g3.
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full standardisation but at most standardisation of the
renaming-free fragment of the A\?"-calculus.

_B
(BCF)e ™ o7 Ve
P
Please refer to Figure 18 for the only two sensible

approaches to the administrative proof layer for the fol-
lowing property, which is derived from the one above.

Non-Lemma 51

B P
./N.m.
P

The left-most diagram in the figure attempts to align
itself with Figure 13, which fails because >--+p only
commutes with --»,,. The right-most diagram adheres
to this and fails because of the inserted --+,,, which
we cannot incorporate into the syntactic version of the
property. It is even straightforward to come up with a
counter-example.

(As.s8)( Az Ay.zy) --+5 Az y.zy)(Az.dy.zy)

We can turn the end-term into an a-equivalent BCF, as
it happens, which standardises:

()\l‘l.)\yl .xlyl)()\ZQ.AyQ.nyQ) =—-p >\y1 .)\yQ.ylyQ

As the end-term of this step uses the two y copies nested
within each other, we see that the original start term
does not standardise to it.

I
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Fig. 19. The administrative proof layer for the (A, )-case
of Lemma 54

Combining Term Structure and a-Collapsed Reduction
In order to avoid these problems, we adapt the above
definition slightly.

Definition 52

le] —»gwn l€'] € =-un e’

(V>Iwh)

T >-dwh T

€ >=-4wn €' (bore)
w.

/
€ >-dwh €

men) T (M)
AZ.€ =-d4yn AL.€

/ /
€1 >—-1dwh €1 €2 >--dwh €2

’
€1€2 >~--dwh €1€2

The definition mixes the advantages of being able to
define relations inductively over terms with the use of
reduction in the real A-calculus to avoid issues of renam-
ing. Note, however, that, further to the failed proof of
Lemma 4, it is by no means obvious whether this mix-
ture will lend itself to primitive structural reasoning.
The proof-technical issue surfaces in the (V. , )-case of
the proof of Lemma 54.

Lemma 53 ﬂWh
[ ] [e]

Iil: 3l
ﬁ oe—»e IB
Proof The property can B derived from Lemmas 48
and 49 based on a suitable adaptation of the Hindley-
Rosen Lemma, cf. Appendix C. O

The key technical lemma in the present standardisa-
tion proof development is the following absorption prop-
erty.

Lemma 54

lei] —=pt [ea] A ea =-dyn ez = €1 =--wn €3
Proof The proof is by rule induction in -4y, and
uses Lemma 53 before applying the I.LH. and the defini-
tional left-absorptivity over weak-head reduction when
needed. As far as administration is concerned, the only
interesting case is for abstraction.

Case (., ): We are considering the following situa-
tion (although this takes some effort to substanti-
ate).

Ay.e1 ==o AY'.€] ~t> 51 Ay'.€) ==4 AT.€3 = -4wn AT.€3



By Definition 47 and the case, we have
el -rgey and ex —-dynes. If Yy =z, we
can prove e, ==, ey, which means that we
are  considering |e}| —+—pg |e5] =-4wn €3, SO
to speak. From Lemma 48, we thus have:
1) —>gun €] g [eh] =—un s An  ap-
plication of the I.H. and an invocation of the
(whpye)-rule will then give us that €] >--wn e3 and
we have Ax.ej >=--wn Az.eg by the (., )-rule. A
final (reflexive) application of the (whpye)-rule thus
finishes the case: A\y.e; >=-4wn Az.e3. Unfortunately,
we can not guarantee y' = x. Instead, Figure 19
shows how to overcome this using our general
administrative proof-layer technology, cf. Figure 3.
Based on the upper line, we first rewrite Ay’.e] to
(the BCF) Az.eq (although it takes some effort to
substantiate that this is possible). The commuting
square involving Az.e| can then be constructed
by the obvious adaptation of Lemma 27 and the
diagram can finally be closed based on Lemma 11.
To show that Ay.e; >=--yn-standardises to Az.es,
first apply the reasoning above to show that A\z.eq
does and, then, use the (whp,e)-rule reflexively to
show the result we are after.

Other Cases: Fairly straightforward. O

Theorem 55 |e1]| —»p |e2| = €1 >—wn €2

Proof By reflexive, left-transitive induction in —g.
The reflexive case is a straightforward structural in-
duction. The left-transitive case follows by an I.H.-
application followed by a case-split on the considered
—pa-step into —gwn and — g1 (seeing that we can
show that the union of the latter two is the former). In
case of — gwn, we are done by definition of >-+yy. In
case of — g1, we are done by Lemma 54. O

7.3 (Failing) Progression Standardisation

An alternative proof development for standardisation
was proposed by David [5] and pursued, more or less
independently, in [13-15]. The idea is to define a stan-
dardisation relation directly by induction over terms (al-
though this is only done implicitly in [5]): >-4prg, and
to show that this relation right-absorbs the ordinary /-
relation. In that sense, the proof development is the dual
approach to what we considered in the previous section.
Informally, the key technical point is to contract terms
as follows, cf. [13,15]:°

(.-(e[z := eole1)..)er ==-tprg €

(.((Az.e)eg)er..)er ==-prg €

9 In order for the relation to make sense in the current set-
ting, it is necessary to supply it with a finite axiomatisa-
tion, which can be done.

This ensures that contraction progresses from left-to-
right while at the same time allowing newly created re-
dexes to be contracted. Other rules allow redexes not to
be contracted as the relation otherwise would be left-
most reduction.

Right-Absorptivity As mentioned, the key technical
lemma is purported to show right-absorptivity of
>=--prg over --»g, which appears to be straightforward,
at least in the case of the above contraction rule [5, 13-
15].

Non-Lemma 56

_pg _p
(BCF).Y Yo~ e
prg

Unfortunately, not even the BCF-initial version of the
property is true. The following is a counter-example.

(As.s8)(Ax.(Ay.xy)z) =-prg (A\y.(Az.x2)y)z --25 (A\y.yz)z

The problem in the counter-example is the last step of
the standardisation, which amounts to the contraction
of the redex involving the inner y-abstraction below.

(Ay.(Az.(Ay.zy)2)y)=

As it happens, this is the point where the considered
--sg-step (i.e., the contraction of the redex involving the
x-abstraction) must be inserted but that is not possible
because of a clash with the inner y-abstraction.

Left-Absorptivity In sharp contrast with the above (and
surprisingly, at first), it turns out that it is possible to
prove left-absorptivity, as also seen at the beginning of
Section 7.2.

_B _pr
(BCF)e ™ ST T Yo
prg

The difference between right- and left-absorptivity is
that the universal quantification over >-+prg covers far
fewer steps in the latter case than in the former. As we
saw, this manifests itself when trying to prove standard-
isation for the real A-calculus.

Non-Lemma 57

g pry
[ .(—N.
pry

The counter-example at the beginning of Section 7.2
applies.



8 Conclusion

Standard, informal practice in the programming lan-
guage theory community when using structural induc-
tion and related proof principles is to assume that vari-
ables clashes are not an issue (aka Barendregt’s Variable
Convention). We have shown this to be formally correct
for a range of standard properties, possibly up to BCF-
initiality, cf. Lemmas 21, 22, 24, 32, 34, 44, 48, 49, and
54. For the most part, we have been able to show that
the undertaken proof burden resolution is formally in-
complete in the sense that the formal proof burden can
be met by the addition of a fairly simple administra-
tive proof layer, cf. Figures 8, 9, 10, 11, 13, 16, and 17.
The administrative proof layers mostly rely on the same
additional lemmas, thus preventing a blow-up of proof
obligations. We studied standardisation in some detail
and found that only one out of three proof techniques
appears to be amenable to the use of structural induc-
tion, etc..

A Commutative Diagrams

We use commutative diagrams in three different ways,
which are distinguished in the way they write vertices.

A.1 Vertices as Terms

When written with terms as vertices, commutative dia-
grams simply describe reduction scenarios.

A.2 Vertices as M’s, N’s

We shall see next that commutative diagrams are used
to express rewriting predicates such as:

“For all terms, such that, ..., there exist terms,
such that, ....”

In order to prove these results, we start by writing M’s
for the universally quantified terms and gradually in-
troduce N’s from supporting lemmas to eventually sub-
stantiate the existence claims. Please note that we use
Y to signify “claimed” existences that are impossible.

A.3 Vertices as @’s, 0’s

Formally, a commutative diagram of this nature is a set
of vertices and a set of directed edges between pairs
of vertices. Informally, the colour of a vertex (e vs o)
denotes quantification modes over terms, universal and
existential, respectively. A vertex may be guarded by
a predicate. Edges are written as the relational sym-
bol they pertain to and are either full-coloured (black)
or half-coloured (gray). Informally, the colour indicates
assumed and concluded relations, respectively. An edge

connected to a o must be half-coloured. A diagram must
be type-correct on domains. A property is read off of a
diagram thus:

1. write universal quantifications for all e’s

2. assume the full-coloured relations and the validation
of any guard for a e

3. conclude the guarded existence of all os and their
relations

The following diagram and property are thus equivalent.

(P)e — o e1 — ey N ep —eg A Ple)
{ i3
] 0 (Q) Jey.ea —eq4 A e3 —eq N Qey)

B Notation and Terminology

We say that a term reduces to another if the two are
related by a reduction relation and we denote the rela-
tionship by an infix arrow between the two terms. The
“direction” of the reduction should be thought of as be-
ing from-left-to-right. The sub-term of the left-hand side
that a reduction step “acts upon” is called the redex of
the reduction and it is said to be contracted.

— The converse of a relation, —, is written (—)~1.
— Composition is:

a—1;—9c <% a1 A boge

— Given two reduction relations —1 and —9, we have:
__def

—1,2 —1 U —9. If no confusion is possible,
we omit the comma.
— The reflexive closure of a relation is:'°
€1 — €2
€1 —o es e—oe
— The reflexive, transitive closure is:
€1 — €9 €1 — €2 €g — €3
€1 — €2 e—»e €1 — €3

We will also denote — by (—)*.
— The reflexive, transitive, and symmetric closure is:

€1 — €3

€1 = €2 e=e¢e €2 = €1

— The situation of a term reducing to two terms is
called a divergence.

10 This and the next two items are immediately associated
with primitive induction principles. Equality, however, is
only point-wise (or extensional), and no recursion princi-
ple is possible.
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Two diverging reductions, as defined above, are said
to be co-initial.

Dually, two reductions that share their end-term are
said to be co-final.

Co-initial reductions are resolvable if they compose
with co-final reductions.

A relation has the diamond property, ¢, if any diver-
gence can be resolved.

A relation, —, is confluent, Confl, if o(—).

Known Abstract Results

Diamond Tiling Lemma

(F—=2.—21 C =2 € =1 A0(—=2)) = o(—1)

Hindley-Rosen Lemma

e——e oe—»e
| |
2 2 7 9 2
[ ] ) [ ] o
1 1
Commuting Confluence Lemma
[ ] —& [ ]

|

2/\ Confl(—1) A Confl(—2) = Confl(—1 2)

o
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Nominal Sets, Equivariance Reasoning, and Variable Binding

Murdoch J. Gabbay mjg1003@cl.cam.ac.uk
Computer Laboratory, Cambridge University, UK

1 Equivariance reasoning

FM techniques are a methodology of thinking about syntax and in particular about syntax with binding.
They take their name from the original FM (Fraenkel-Mostowski) theory of sets presented in my thesis [4].
For this document we use a different way of presenting FM techniques based on the idea of a Nominal
Set, which is a set equipped with certain algebraic properties (just as a group, ring, or field, is a set
equipped with certain properties), see Definition 1.2. First we need background machinery:

Definition 1.1. Fix a countably infinite set of atoms A. Write typical elements a, b, c, ... € A. For
a,b € A write (a b) for the function A — A such that a — b and b — a and n — n for all other atoms
n # a,b. This is a bijection with inverse itself, write Py for the group generated by (a b) for all a,b € A
under functional composition o. Write typical elements 7,7’ € Py and Id € Py for the identity.

Definition 1.2. A Nominal Set is a pair (X, - ) of an underlying set X and permutation action
- (written infix) of type Py X X — X and satisfying the usual axioms, namely 7 - (7' - ) = mon’ - x and
Id - z = . The permutation action also satisfies a finiteness condition omitted here.!

The point is that finite labelled trees, and hence the standard model of syntax but also a natural
model of proofs as trees, are Nominal Sets: the permutation action is given pointwise by the action on
the labels. Thus for example natural numbers N satisfy a trivial permutation action given by 7w - n =n
always. A datatype of trees for terms of the A-calculus (using A as variable names)

AXA+AXA+AXA (1)

is also a Nominal Set with the permutation action given pointwise by the action on the atoms labelling the
tree. Furthermore we can represent a theory of a-equivalence on these terms as a subset of “well-formed”
trees in the inductively defined set

TZA+TxTH+AXTxT, (2)

namely those inductively constructed using the rules

t=a t, tz=ath (App) t{e/a} =a t'{c/a’} (Lam) (3)

= Vi
a=qa (Var) tity =q t)th Aat =, Aa't!

where in (Lam) there is a side-condition that ¢ & {a,a’} Un(t) Un(t') (thus ‘fresh’ for the conclusion).
The usefulness of this way of looking at syntax and properties of syntax as Nominal Sets begins with the
following trivial theorem:

Theorem 1.3. If a property (on trees) is defined (inductively) using predicates whose validity is
invariant under permuting atoms, then the property is invariant under permuting atoms.

Here “invariant under permuting. ..” means “given some valid instance of the property, a permutation

m uniformly applied to its arguments yields another valid instance”.

We have an example in the property of well-formedness of proof-trees of =, given in (3). 0= a is a
e

valid instance of (Var) and if we apply (b a) to this we obtain b— b which is also a valid instance of

1See [3, eq. 3], [5, eq. 4], and “finite support’ in [2, Def. 3.3].



(Var). The case of (App) is simple. A permutation applied to a valid instance of (Lam) is also a valid
instance of (Lam) because ¢ ¢ {a,a’}Un(t)Un(#) if and only if 7 - ¢ & {7 - a,7 - a’}Un(m - t)Un(r - t').2

We now have a very concrete demonstration that proofs of =, are invariant under permutation; we
permute the atoms in the proof as a tree. We can take this further. Consider proving transitivity of =,
by induction on proof-trees. The induction predicate is (in words) “given a valid proof-tree II concluding
int =, t, for all valid proof-trees II’ concluding in t’ =, t”, there exists a valid proof-tree II" concluding
in t =, t””. This property is constructed using predicates invariant under permutations (validity of
proofs of =,) and so is itself invariant under permutations. Thus from Theorem 1.3 we know if we have
the inductive hypothesis of II, we have it of 7 - I for any permutation II.

We proceed by induction on II. The case of (Lam) for t = Aas and ¢’ = Aa’s’ causes problems: we
may assume II proves s[c/a] =, s'[c/a’] and TI' proves §'[¢'/a’] =, " [/ /a”’] and we assume the inductive
predicate for II, but we do not know ¢ = ¢’ so we cannot proceed. However, we can apply a permutation
(d ¢) to 11, and (d ¢’) to I, for d chosen completely fresh. Now we have valid proofs (d ¢) - IT concluding
in s[d/a] =4 §'[d/a’] and (d ¢’) - TI' concluding in s'[d/a’] =, s”[d/a”], and also the inductive predicate
for (d ¢) - II. We can now complete the proof of transitivity.

Just these ideas of permutations have already been adopted and put to use by other authors also in
published work (see for example [6]).

2 Taking it further

There is an equivalence class of proofs concluding in Aat =, Aa’t’, one for each fresh c; we can take it as
an object in its own right. This is an instance of FM abstraction [A]X which exists for any Nominal Set
X by virtue of the permutation action, which lets us rename atoms and construct an equivalence class
in the general case (see [2, Section 5]). We can apply this to syntax as well as proofs:

Ao 2 A+ Ay x Ay + [A]A, (4)

is a datatype of A-terms up to a-equivalence. An element of [A]A,, is (concretely) an equivalence class of
pairs (a,t) for a € A a ‘bound atom’ fresh for the other atoms in the ‘body’ t € A,,.

There are various ways of taking this further; Nominal Sets form a category, the Schanuel Topos.
Because it is a topos we can construct a general theory of abstractions and equivariance reasoning within
it (this is FMCat in [5, Section 2], see also [2, p.21]). Nominal Sets are also a special case of a general
theory of FM sets, see [4] and [2]. Nominal Sets can be axiomatised in first-order logic, see [7]. A team
in Cambridge has developed FreshML, a programming language based on these principles in which we
can program using abstractions and permutations, see [1]. Finally, I am currently implementing FM
sets in Isabelle, see [4]. Further reading can be found in any of the references below, and my homepage
www.cl.cam.ac.uk/"mjg1003.
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Abstract. An extension of tree automata framework, called equational
tree automata, is presented. This theory is useful to deal with unification
modulo equational rewriting. In the manuscript, we demonstrate how
equational tree automata can be applied to several realistic unification
examples, e.g. including a security problem of network protocols.

1 Equational Tree Languages

Unification modulo equational theory is a central topic in automated reason-
ing. Tree automata are the powerful technique for handling unification modulo
rewriting [2]. On the other hand, to model some network security problems like
Diffie-Hellman key exchange algorithm, rewrite rules and equations (e.g. asso-
clativity and commutativity axioms) have to be separately dealt with in the
underlying theory, but it causes the situation where the standard tree automata
technique is useless. In our recent papers [5,7], we have proposed an extension
of tree automata, which is called equational tree automata. This framework sub-
sumes Petri nets (Example 1). In a practical example, equational tree automata
can be used to verify a security problem of Diffie-Hellman protocol (Example 2).

We start this section with basics of tree automata and the equational exten-
sion. A tree automaton (TA for short) A is defined by the 4-tuple (F, Q, Qfpn, A):
each of those components is a signature F (a finite set of function symbols with
fixed arities), a finite set Q of states (special constants with FNQ = &), a subset
Qsn of Q consisting of so-called final states and a finite set A of transition rules
in the following form:

- f(p177pn>_)t

for some f € F with arity(f) = n and py,...,p, € Q. The right-hand side ¢ is a
term consisting of f and state symbols. A function symbol f in the right-hand
side must be the same as one in the left-hand side.

Each of Fp and F¢ consists of some binary function symbols of the signature
F. The intersection of Fa and J¢ is denoted by Fac. A set of associativity axioms
f(f(z,y),2) = f(x, f(y,z)) for all f € Fu is denoted by A(Fa). Likewise, a set
of commutativity axioms f(x,y) = f(y,x) for all f € Fc is C(F¢). The union of
of A(Fac) and C(Fac) is represented by AC(Fac). If unnecessary to be explicit,

* This paper is a modified version of the authors’ UNIF2002 paper [6].



we write A, C and AC, respectively. An equational tree automaton (ETA for
short) A/€ is the combination of a TA A and a set € of equations over the same
signature F. An ETA A/ is called

— regular if the right-hand side ¢ is a single state q,
— monotone if the right-hand side ¢ is a single state ¢ or a term f(q1,...,¢n)

for every transition rule f(p1,...,pn) — t in A. Equational tree automata de-
fined in [4,5, 7] are in the above monotone case.

A term t in 7(F) is accepted by A/€ if t —7% ¢ q for some q € Q. The set
of terms accepted by A/ is denoted by L(A/E). A tree language (TL for short)
L over F is some subset of 7(F). A TL L is E-recognizable if there exists A/E
such that L = £(A/E). Similarly, L is called E-monotone (E-regular) if A/E is
monotone (regular). If L is £-recognizable with £ = &, we say L is recognizable.
Likewise, we say L is monotone (regular) if L is @-monotone (&-regular). We
say A/€ is a C-TA (A-TA, AC-TA) if £ = C (€ = A, £ = AC, respectively).

Lemma 1. FEvery C-recognizable tree language is regular.

Proof. We suppose a tree language is recognizable with a C-TA A/C, where
A= (F,Q, Qfin,A). Define B = (F, Q, Qpin,, A’) with A = {f(p1,...,pn) — q|
flq1,...,qn) — r € A such that f(p1,...,pn) ~c f(q1,.-.,¢n) and r *)Z/C q}.
Then it can be proved that the regular TA B recognizes £(.A/C). O

Lemma 2. The following language hierarchy holds if £ = A:
E-regular TL C E-monotone TL C E-recognizable TL

Howewver, the classes of reqular TL and E-recognizable TL are incomparable.

Proof. The first inclusion relation is proved in [7]. For the second inclusion, we
suppose F = FoU{f} with Fo = {f}. Here Fy denotes a set of constant symbols.
Then, a (word) language W over Fy is context-sensitive if and only if an A-
monotone TL is mazimal for W. A TL L is called maximal for a language W
if for all terms t in 7 (F), leaf(t) € W if and only if ¢ € L. Similarly, it holds
that a language W is recursively enumerable if and only if an A-recognizable TL
is maximal for W. It is known that recursively enumerable languages strictly
include context-sensitive languages. The difference of the classes of regular TL
and &-recognizable TL are proved by taking the TL L; = {f(f(a,a),a)} under
the assumption of Fy = {f}. The TL L is regular (as it is finite), but it not
recognizable with A-TA, because an A-TA which accepts f(f(a, a), a) also accepts
f(a,f(a,a)). On the other hand, we take the TL Lo = {t | [t|a = |t|p} over the
signature F = {f,a,b}, where arity(f) = 2 and a,b are constant symbols. If
Fa = {f} then L is A-regular (Lemma 8, [5]), but is not regular. O

Remark 1. We know the same hierarchy holds also for £ = AC, except
E-monotone TL ¢ E-recognizable TL.

The above relation remains as an open question.
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Fig. 1. A Petri net example: P
2 AC-Tree Automata for Unification Problems

In this section we discuss the applications of equational tree automata, in par-
ticular AC-tree automata, for unification problems. Our examples rely on the
following decidability result.

Theorem 1 (Reachable property problem). Given a ground AC-TRS R /AC
and tree languages Ly, Lo over F with Fac. If L1 and Lo are AC-recognizable
tree languages, it is decidable whether there exist some s in Ly and t in Lo such
that s =3 ;ac T, i.e. (H%/AC)[Ll] N Lo # @ is a computable question.

Proof. For a singleton Fac, the proof proceeds in the way of Lemma 4 in [5].
To extend Fac by allowing to have arbitrary many AC-symbols, we apply the
similar argument of Section 3 in [5]. O

Ezxample 1. Petri nets are known to be a special class of ground AC-TRSs. A
Petri net is a triple (P, T, W), where P is a finite set of places, T is a finite set
of transitions and W is a weight-function (P x T') U (T x P) — N. For instance,
the Petri net P illustrated in Fig. 1 has W with W (p1,tl) = 1, W(p2,tl) = 1,
W(p3,t2) = 1, W(p4,t3) = 1, W(tl,p3) = 1, W(t2,pl) = 1, W(t2,p4) = 1,
W(t3,p2) = 1, W(t3,p3) = 1. In the figure, places are denoted by circles, and
transitions are squares. The value of W determines the weight of directed arcs
between places and transitions. Then, the associated ground AC-TRS (F, R/AC)
is defined by F = {+}U{e, pl,...,p4}, Fac = {+} and R = {pl+p2 — p3, p3 —
pl+p4, p4d — p2+p3}U{e+pi — pi, pi — pi+e|1<i<4}. In this setting, a
state of a Petri net (the number of tokens on each place) is encoded by a multiset
of place symbols. The empty multiset is represented by e.

Given two sets Ly, Lo of states of P. According to Theorem 1, it is decidable
whether there exist states m; € L; and mg € Ly such that m; —% meo, provided
Ly, Ly are leaf-languages of AC-recognizable tree languages over F. The binary
relation — is the reflexive-transitive closure of one-step transition relation. This
decidability property generalizes the result of Mayr [3].



N,k(A)o N

@ k(B)o N

E(k(A)ok(B)o N, M)

Fig. 2. Diffie-Hellman key exchange algorithm

Using the above property, for instance, we can solve coverability problem,
which is a question of whether there exists mg such that m; —% m3 and my C
mg. Actually, it is verified by solving the following question, which is decidable:

Jo?. t1 =% ac t2 + zo.

Here t1,ts are terms over F such that leaf(¢;) = m; and leaf(ty) = mo.

Example 2. We consider a simple network protocol. The protocol illustrated in
Fig. 2 is called Diffie-Hellman key exchange algorithm (e.g., Section 22.1, [8]). In
the protocol, a principal A chooses a prime number N and sends to B together
with an integer k(A)o N that is generated with a random number k(A). Here we
suppose that nobody else can guess k(A) from k(A)oN. Then B returns k(B)oN
to A. By assuming o to be associative and commutative, k(A) o k(B) o N can
be used as a common secret key for A and B. It enables A to send only B a
secret message M encrypted with this key. A security problem for this protocol
is whether or not someone else can retrieve a secret message M by listening on
the channel.

In term rewriting, the axiom of encryption and decryption and the property of
keys are specified by the AC-rewrite system R = {D(x, E(z,y)) — y} and AC =
{zoy = yox, (xoy)oz = xo(yoz)}. On the other hand, a principal C wiretapping
the channel can obtain N, k(A) o N, k(B) o N and E(k(A) o k(B) o N, M).
Moreover, C' is supposed to have personal data C, k(C') and to be able to use
function symbols D, E,o. So C’s knowledge is the set L of terms constructible
from these components. Then, the security problem is verified by solving the
following unification problem:

do?. xo _>*R/AC M for some xo € L.

In this setting, (—7 / ac)[ L] is an AC-monotone tree language. One should notice
that in order to compute (H%/AC)[L] by using a modified algorithm of Kaji et

al. [2], intersection-emptiness problem for AC-monotone tree languages must be
decidable. Obviously a membership problem M € (=% ac)[ L] is decidable.

Decidability results and closure properties for equational tree languages are
summarized in Fig.3. In the figure, the check mark v' means “positive” and the
cross X is “negative”. The question mark ? means “open”. If the same result
holds in both regular and non-regular cases, it is represented by a single mark
in a large column.
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Fig. 3. Decidability results and closure properties
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Towards a Convenient Category
of Topological Domains

Alex Simpson*
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Abstract

We propose a category of topological spaces that promises to be
convenient for the purposes of domain theory as a mathematical the-
ory for modelling computation. Our notion of convenience presupposes
the usual properties of domain theory, e.g. modelling the basic type
constructors, fixed points, recursive types, etc. In addition, we seek to
model parametric polymorphism, and also to provide a flexible toolkit
for modelling computational effects as free algebras for algebraic the-
ories. Our convenient category is obtained as an application of recent
work on the remarkable closure conditions of the category of quotients
of countably-based topological spaces. Its convenience is a consequence
of a connection with realizability models.

1 Introduction

The title of this note deliberately echoes that of Steenrod’s well-known pa-
per: A Convenient Category of Topological Spaces, [46]. In his paper, Steen-
rod sets out to find a full subcategory of the category Top of all topological
spaces that is “convenient” for the purposes of algebraic topology. One as-
pect of “convenience” that is particularly highlighted by Steenrod is carte-
sian closure, a property famously not enjoyed by Top itself. He argues at
length that the category of compactly-generated Hausdorff spaces, which
is cartesian closed, does provide all the “conveniences” needed for doing
algebraic topology.

*Research supported by an EPSRC Advanced Research Fellowship and a visiting pro-
fessorship at RIMS, Kyoto University.



Domain theory was originally developed by Dana Scott to meet the need
for a mathematical theory capable of modelling a diversity of computational
and programming language phenomena, see [15] for an overview. The goal of
this note is to propose a category that is convenient for this purpose, where,
by “convenience”, we mean that the category should fulfill the general aim
as amply as possible.

Such a notion of “convenience” is deliberately vague, and thus open to
many interpretations. In Section 2, we formulate several specific demands
on a “convenient” category, each elaborating an aspect of the general idea
of “convenience”. In the remainder of the note, we then develop a notion
of domain that promises to meet all the requirements. The domains we
settle on are certain topological spaces. Thus, once the programme of re-
search outlined in this note has been completed, we expect to end up with
a “convenient” category of “topological domains”.

This note presents an early overview of ongoing research. No proofs are
given. However, we distinguish clearly between results that have already
been established and “conjectures” representing future work.

2 Requirements on a convenient category

In this section we expand upon the notion of “convenience” by placing five
explicit requirements on a convenient category. We do not argue that the
requirements we identify are the only possible ones, nor that they are essen-
tial for a category of domains to qualify as “convenient”. Indeed, traditional
domain theory has progressed a very long way without meeting all our re-
quirements. The goal of this paper is rather to extend the achievements of
traditional domain theory in new directions.

Our first requirement is based on the close connection between topol-
ogy and computation, as developed, in particular, by Smyth, see [44] for
a summary. A domain represents a “datatype” and must therefore have
an underlying set of associated “data items”. To each domain, it makes
sense to associate the set of all “observable” (an abstraction of “semidecid-
able”) properties over data items in the datatype. One can argue that the
“logic of observable properties” should be closed under finite conjunctions
and arbitrary disjunctions, i.e. that the extensions of the observable prop-
erties should form a topology on the underlying set, see [44, 48]. Thus a
domain should, at least, be a topological space. Moreover, by allowing ob-
servations to make use of maps between domains, one can derive that every
map between domains must be continuous. Furthermore, the notion of con-



tinuous function is itself an elegant mathematical abstraction of the notion
of computable function, under which the finitary aspects of computability
are modelled without recourse to any notion of algorithm. It is thus natural
to impose the following requirement.

Requirement 1 (Topological category) The category of domains should
be a full subcategory of the category Top of topological spaces and contin-
uous functions.

The argument for Requirement 1 has been conceptual. However, an
important benefit of the requirement is that domains lie in the realm of
mainstream mathematical structures. For one thing, this means that we
have a multitude of mathematical tools for manipulating domains. More
importantly, the topological structure is indispensible for viewing familiar
mathematical objects, such as the real numbers, metric spaces, etc., as em-
bedded within domains. Such embeddings are essential for domains to be
used to model computation over many forms of nondiscrete data, as in,
e.g., [10, 9].

As a second requirement, we demand that the category of domains sup-
port all the standard constructions on domains, including the ability to
model recursive definitions of both data and datatypes.

Requirement 2 (Basic structure) The category of domains should model
(at least) the usual type constructors: cartesian product, x; function space,
—; smash product, ®; strict function space, — | ; coalesced sum, @; and
lifting, (-) 1 ; see [1]. These should have the correct universal properties with
respect to the categories of “strict” and “non-strict” maps between domains.
The category should also model recursion and recursive types.

Requirement 2 is alone sufficient for modelling many forms of determinis-
tic computation. Nevertheless, even in the realm of deterministic functional
computation, recursive types are not sufficiently powerful for all applica-
tions. There are many additional forms of “type constructor” that one
might also wish to model. In this note, we consider just one such feature,
which is particularly important due to its power and its relationship with
programming practice.

Requirement 3 (Parametric Polymorphism) The category of domains
should model full second-order (parametric) polymorphism.

Here, it should, at least, be possible to incorporate parametricity using
relational parametricity in the sense of Reynolds, [38, 29]. However, in the



view of the author, it is not settled that relational parametricity is the final
story in giving a mathematical account of parametricity. It is possible that
alternative accounts of parametric polymorphism may yet emerge.

It is also vital that the category of domains should model a rich vari-
ety of programming language features and computational behaviours, going
beyond deterministic functional computation. The non-functional aspects
of real-world computation can often be encapsulated as computational ef-
fects. As Plotkin and Power have argued, many such effects are modelled
by free algebras for algebraic theories, see [36]. These include the famil-
iar powerdomains used for modelling forms of nondeterminism, as well as
many other computational monads [31]. Accordingly, we make the following
requirement, whose importance was first recognised by Plotkin.

Requirement 4 (Computational effects) The category of domains should
provide free algebras for a wide class of algebraic theories.

At this stage, we leave open the extent of the class of theories considered, but
it should include, at the very least, all finitary equational algebraic theories.

Finally, we bring in an explicit connection with computability. It might
be possible to satisfy the above requirements using topological spaces of large
cardinality which have no possible computational significance. One would
like a model in which all spaces have potential computational significance.
One strong way of ensuring this is:

Requirement 5 (Effectivity) The notion of domain should have an ef-
fective counterpart, giving rise to a natural category of computable maps
between effective domains, satisfying Requirements 2-4 above.

This requirement also has the direct benefit of establishing notions of com-
putability that apply to all the constructions implicit in Requirements 2—4.

There are several conflicts between the above requirements and tradi-
tional domain theory, which we take to be the study of full subcategories
of the category of directed-complete partial orders (dcpos) and continuous
functions. By definition, all traditional categories of domains do satisfy Re-
quirement 1. As we shall see, it is possible for them to satisfy many of the
other requirements independently, but not all requirements in combination.

In order to satisfy Requirement 5, it seems necessary to restrict to full
subcategories of w-continuous dcpos, on which notions of computability can
be defined using enumerations of the countable bases of such dcpos. The
category of w-continuous dcpos is not cartesian closed; so combining Re-
quirements 5 and 2 requires, at least, finding cartesian-closed full subcate-



gories. Such subcategories have been classified by Jung, see [1] for a survey.
There are many, and it is indeed possible to satisfy Requirements 2 and 5
in combination.

Requirement 3 is more problematic. Indeed, to the best of my knowl-
edge, no existing category of domains has been exhibited as a model of
parametric polymorphism. There do exist models of non-parametric poly-
morphism, based on dependent product operations on domains, see e.g. [8].
However, Jung has shown that there is an essential difficulity in finding
domain-theoretic models of polymorphism that are closed under the convex
powerdomain [26]. Thus there is a problem in combining Requirement 4
with (even a non-parametric version of) Requirement 3.

Requirement 4 is also in conflict with Requirements 2 and 5, as the
following example, due to Plotkin (private communication), shows. In the
category of all w-continuous dcpos, free algebras are available for any finitary
equational theory. However, no nontrivial cartesian-closed full subcategory
of w-continuous dcpos is closed under the formation of free commutative
monoids. Thus, in traditional domain theory, it is impossible to simultane-
ously satisfy Requirements 2, 4 and 5. This difficulty led Plotkin to first
pose the problem of finding a category satisfying Requirements 2, 4 and 5
in combination. His recent work with Power on computational effects [36]
has highlighted the computational importance of this problem.

The probabilistic powerdomain [40, 24] gives another example of a pos-
sible conflict between Requirements 2, 4 and 5. Although the category of all
w-continuous dcpos is closed under the probabilistic powerdomain [23], Jung
and Tix have cast doubt on whether any cartesian-closed full subcategory
remains closed under it [27]. In this case, there is no definitive negative
result. Nonetheless, the formidable technical difficulties in the way of com-
bining w-continuous dcpos, probabilistic powerdomain and function space
raise the question of whether traditional domain theory provides the right
setting for combining probabilistic computation with Requirements 2 and 5.

In contrast, it does seem possible to satisfy all of Requirements 2-5,
using notions of domain that arise in realizability models [28]. The type
constructors and recursive types are worked out in [28, 37]. The interpreta-
tion of parametric polymorphism is being worked out in detail by Birkedal
and Rosolini [7]. An indication of how to address free algebras appeared
in [33], although the details there are for the special case of powerdomains
only. Furthermore, many realizability models have an intrinsic notion of
computability built into them, rendering Requirement 5 superfluous.

One major drawback of realizability models, however, is that the intrinsic
mathematical structure of the objects modelling types is intangible. Objects



are given as partial equivalence relations, possibly satisfying additional prop-
erties, over a partial combinatory algebra. In general, isomorphic objects
may have very different partial equivalence relations underlying them. It
is not at all straightforward to extract intrinsic properties of objects from
their external presentations as partial equivalence relations.

What we would like instead is a notion of domain given by an explicit
definition of the intrinsic mathematical structure involved. Requirement 1,
whose many other benefits we have already discussed, is a strong constraint
in this direction. It is this requirement that we take as our starting point
for deriving our convenient category of domains.

3 Quotients of countably-based spaces

Requirement 1 demands that our category of domains be a full subcate-
gory of Top. At the same time, Requirement 5 demands that an effec-
tive version of the category be available. Thus our domains must be topo-
logical spaces to which it is possible to associate a notion of effectivity.
Such a notion of effectivity is known to be available for all countably-based
(a.k.a. second-countable) topological spaces. For example, the topology of
any such space A can be “presented” using a topological pre-embedding
ma: A —— Pw,! where Pw is the powerset of w with the Scott topology.
Given two such presentations 74: A — Pw and 7g: B — Pw, a contin-
uous function f: A —— B is said to be effective if there is some computable
r: Pw — Pw (in the standard sense, see [43]) such that romq = wpo f.2
For further discussion of related notions of effectivity, see e.g. [44, §5.1].
Restricting to countably-based spaces is unnecessarily constraining. It
turns out to be possible to associate a notion of effectivity with a more
general class of space. The spaces we consider are arbitrary quotient spaces
of countably-based spaces, i.e. spaces X for which there exists a topological
quotient g: A — X, where A is countably based. We call such spaces
gcb spaces, and we write QCB for the full subcategory of Top consisting of
such spaces. Quite unexpectedly, QCB has very good categorical structure.

!Being a pre-embedding means that, for every open U C A, there exists an open V C B
such that U = 7;'(V). A pre-embedding is a topological embedding if and only if it is
an injective function.

2In general, 7 only determines f when 7 is a topological embedding, i.e. when B is Tp.
A reader who prefers effective maps to be determined by their computational component
may adapt the discussion throughout the paper by assuming all spaces to be Tp.



Theorem 3.1 The category QCB has all countable limits and colimits and
s cartesian closed.

For proofs of the theorem see [30, 41]. N.b., the countable colimits are
inherited from Top, but limits are not inherited; both finite products and
equalizers differ in QCB and Top.

Theorem 3.1 is a major reason for considering the category of all quo-
tients of countably-based spaces rather than simply restricting to countably-
based spaces themselves. The category of countably-based spaces does not
have coequalizers, and, more importantly, it is not cartesian closed.

In the remainder of this section we give two other characterizations of
qcb spaces. The first shows explicitly how qcb spaces can be provided with
an associated notion of effectivity. The second gives a more intrinsic char-
acterization of qcb spaces.

To give an account of effectivity, we introduce the following definitions,
which are motivated by the straightforward Proposition 3.4 below.

Definition 3.2 An w-representation of a topological space X is given by a
topological quotient g: A —> X, where A is a countably-based space.

Definition 3.3 An w-representation q: A —» X is said to be w-projecting
if, for every countably-based B and continuous f: B —— X, there exists a
continuous g: B —— A such that gog = f.

Proposition 3.4 Suppose that qg: A — X and r: B—Y are w-
projecting w-representations. Then, for any continuous f: X —— Y, there
exists a continuous g: A —— B making the square below commute.

A—9 . p
q T
A\ A\
f

Also, given arbitrary functions f, g making the square commute, if g is con-
tinuous then so is f.

Thus w-projecting w-representations determine the topological structure of
the represented spaces to the extent that continuous maps between X and



Y are completely determined by continuous maps between the representing
countably-based spaces A and B.

The above definitions relate to the desire of having an associated notion
of effectivity as follows. The notion of an effective map between X and
Y can be derived from the notion of effective map between A and B as
countably-based spaces. Specifically, we stipulate that a continuous function
f: X —— Y is effective if there exists an effective continuous g: A — B
making the diagram commute. The notion of effectivity thus depends upon
presentations of A and B, and also upon ¢ and r, but such dependency
is unavoidable. Effectivity is always associated with the presentation of
mathematical structure, rather than directly with the structure itself.

We have shown that a notion of effective map is available between those
spaces for which there exists an w-projecting w-representation. Such spaces
were first introduced in [30], where, using a result due to Schroder, it is
proved that they coincide with qcb spaces.

Another result of Schroder’s gives a more intrinsic characterization of
qcb spaces. Recall that the relation of sequence convergence on a topological
space X is defined by (z;) — = if, for every open U 3> z, the sequence (x;)
is eventually in U (i.e. there exists n such that, for all i > n, z; € U). A
subset W C X is said to be sequentially open if (x;) — x € W implies that
(x;) is eventually in W. Trivially, every open subset is sequentially open.
We say that X is sequential if every sequentially open subset is open. A
sequential pseudobase of a topological space X is a family B of subsets of X
satisfying: for every open U C X and convergent (z;) — = € U, there exists
B € B such that x € B C U and (z;) is eventually in B. This notion is due
to Schroder [42]. Note that a family of open sets is a sequential pseudobase
if and only if it is a base for the topology.

We can now summarise the main characterizations of qcb spaces.

Theorem 3.5 The following are equivalent for a topological space X .
1. X is a qcb space.
2. X has an w-projecting w-representation.
3. X 1is sequential and has a countable sequential pseudobase.

The implication 2 implies 1 is trivial. Lawson has given a direct proof
that 1 implies 3 [11]. Bauer gives the construction of an w-projecting
w-representation from a countable sequential pseudobase for a sequential
space [3]. Nevertheless, all the main ingredients of the theorem are, in a



slightly different context, due to Schrioder, see [42, Theorem 13] and and [41,
Theorem 3.2.4]. The latter result provides another interesting characteriza-
tion of qcb spaces using a generalization of Weihrauch’s notion of Baire space
representation [49]. This leads to an alternative (but presumably equivalent)
account of effectivity in terms of Type-2 Turing Machines.

There are many ways of understanding the cartesian-closed structure of
QCB. As in [30], the structure of QCB is preserved by an embedding
QCB —— Equ, where Equ is Scott’s category of equilogical spaces [4].3
This embedding allows one to understand limits in QCB in terms of lim-
its in Equ, which are defined using limits in Top, but with the caveat
that spaces are considered modulo an equivalence relation. Alternatively,
the cartesian-closed structure of QCB can be understood via structure-
preserving embeddings into many cartesian-closed coreflective hulls of Top.
For example, there are such embeddings into the categories of sequential
spaces [30], of (not necessarily Hausdorff) compactly-generated spaces, and
of core-compactly-generated spaces [11].

The existence of so many structure-preserving embeddings persuades the
author that QCB is an “inevitable” category, arising as a subcategory of any
of the main approaches to reconciling topological continuity and cartesian
closure.* People differ in whether they prefer to consider cartesian-closed
subcategories of Top, but lose topological limits; or to consider cartesian-
closed supercategories of Top, retaining topological limits, but going outside
the familiar world of topology. In the author’s view, these two alternatives
are not in conflict. In either case, QCB lives as a full subcategory via a
structure-preserving embedding. Moreover, all reasonable spaces lie inside
QCB. Furthermore, the existence of many categories embedding QCB
provides a range of alternative tools for understanding constructions in QCB
(e.g. one can use the sequential function space, the compactly-generated
function space, the function space in Equ, etc.).

On the other hand, in spite of so many available tools, aspects of the
cartesian closure of QCB remain hard to understand. For example, consider
the “type hierarches” over N (with the discrete topology) and R (with the
Euclidean topology) given by N, NN, NNN, ... and R, RF, RRR, .... Here, N
and RE® are examples of non-countably-based spaces that are nonetheless
qcb spaces. It is easily shown that these spaces are Hausdorff. Also, NV s
totally disconnected. As the following open questions illustrate, other basic

3Because we are not requiring qcb spaces to be Ty, the Ty condition in the definition
of equilogical space must be omitted.

*It remains to be checked that there is a structure-preserving embedding of QCB into
Hyland’s category of “filter spaces” [18]. The author strongly expects this to be the case.



properties of their topologies remain, however, tantalisingly elusive.
Question 3.6 Are the spaces NV and RR® regular?

Question 3.7 Is N zero dimensional (i.e. does it have a base of clopen
subsets)?

Question 3.7 was posed in [5], where an application of a positive answer to
the question is given.

4 Topological (pre)domains

Quotients of countably-based spaces form, apparently, the largest class of
topological spaces to which it is possible to associate a notion of effectiv-
ity. The category QCB thus addresses Requirements 1 and 5. Moreover,
Theorem 3.1 shows that the category has surprisingly rich categorical struc-
ture. Nonetheless, it does not satisfy Requirements 2-4. In this section, we
address Requirement 2, by cutting down to a full subcategory of QCB.

It is easiest to address Requirement 2 by identifying, in the first place, a
category of predomains within QCB. In traditional domain theory, predo-
mains are distinguished from domains by not being required to have least
element in the partial order. (Thus predomains are dcpos, and domains are
pointed dcpos.) This relaxation allows, for example, the category of predo-
mains to have countable coproducts. Although endomorphisms on predo-
mains need not have fixed points, the familiar cartesian-closed category of
domains, which does have a fixed-point operator, is recovered simply as the
full sucategory of those predomains that do have least element. The fixed-
point operator exists because partial orders are required to be directed com-
plete and because continuous functions (with respect to the Scott topology)
preserve directed suprema. In fact, as is well known, the weaker properties
of w-completeness and w-continuity suffice.

In traditional domain theory, the topology (the Scott topology) is derived
from the partial order. To define our notion of predomain, we also work
with order-theoretic properties, but we take the topology as primary and
the order as derived. Recall that the specialization order C on a topological
space X is defined by x C y if, for all open U C X, z € U impliesy € U. In
general C is a preorder on X. The space X is said to be Tj if C is a partial
order. We can now give a definition of topological predomain.

Definition 4.1 (Topological predomain) A topological predomain is a
topological space X satisfying the following properties:

10



1. X is a qcb space;
2. C is an w-complete partial order (in particular, X is Tp); and

3. every open U C X is inaccessible by w-lubs (i.e., for any ascending
sequence g C 1 C 2o C ..., if |_|Z x; € U then z; € U for some 7).

Apart from being phrased with respect to w-lubs rather than directed lubs,
this definition recalls the notion of monotone convergence space [14].

Definition 4.2 A topological space X is a monotone convergence space if:
the specialization order on X is a decpo (in particular, X is Tp), and every
open subset of X is Scott-open with respect to the order.

Monotone convergence spaces include: all T} spaces, all sober spaces, and
all dcpos with the Scott topology.

Proposition 4.3 A gcb space is a topological predomain if and only if it is
a monotone convergence space.

Thus, because of the restriction to qcb spaces, it makes no difference whether
topological predomains are defined using w-lubs or using directed lubs.

Next, we give a useful category-theoretic characterization of topological
predomains. We write w for the set of natural numbers under the Alexan-
droff topology on the their usual linear ordering. We write @ for w U {oo},
where co = | |, 4, with the Scott topology.

Proposition 4.4 In the category QCB the following are equivalent.
1. X is a topological predomain.

2. For all qcb spaces Z and maps f: Z X w — X, there exists a unique
g: Z xw — X such that the diagram below commutes:

ZXw
Z Xw
We write TP for the category of topological predomains and continuous
functions.

g

X
h

11



Corollary 4.5 TP is an exponential ideal of QCB.

Explicitly, this means that: (i) for topological predomains X and Y, the
product X x Y in QCB is a topological predomain; and (ii) for any qcb
space X and topological predomain Y, the function space YX in QCB is a
topological predomain. Thus, in particular, TP is cartesian closed and the
embedding TP —— QCB preserves the cartesian-closed structure. It is
also easy to see, directly from the definition of topological predomain, that
TP is closed under countable coproducts in QCB (and hence in Top). The
existence of more intricate (co)limits is a consequence of the result below.

Proposition 4.6 (Schroéder) The category of monotone convergence spaces
is a full reflective subcategory of Top, and the reflection functor cuts down
to a refection R: QCB — TP.

Corollary 4.7 TP has all countable limits and colimits.

Limits in TP are inherited from QCB, but colimits are constructed using
the reflection. So neither limits nor colimits in TP are inherited, in general,
from Top. (This is a fact of life, not a problem.)

We now briefly discuss how Requirement 2 has been met. First, another
definition is needed.

Definition 4.8 (Topological domain) A topological domain is a topolog-
ical predomain for which C has a least element.

The various type constructors listed in Requirement 2 can all be defined on
topological domains entirely in the expected way. Their universal properties
are also as expected. The important categories here are: TD, the category
of continuous functions between topological domains; and TD |, its subcat-
egory of strict maps (those preserving the least element). The category TD
is cartesian closed (it is an exponential ideal of TP), with a least-fixed-point
operator; the category TD is symmetric monoidal closed, with respect to
® and — |, and has ® as coproduct. Moreover, the inclusion of TD in
TD has a left adjoint, given by (), with the adjunction giving rise to a
model of intuitionistic linear type theory. Furthermore, TD is also char-
acterized as the Eilenberg-Moore category of the monad given by (-); on
TP.5 Finally, the standard technology for recursive domain equations, [45],

%As in ordinary domain theory, TD, is also equivalent to the Kleisli category of the
lifting monad.
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applies directly to TD |, which can be shown to be algebraically compact
in the sense of Freyd [12, 13].

We end this section by relating TP and TD to traditional categories
of domains. Firstly, note that TP contains very many topological spaces
that are not normally included in categories of predomains; for example:
n-dimensional Kuclidean space R", and also R¥; Baire space, N¥; Cantor
space 2¥; etc. Also, by Corollary 4.5, the type hierarchies N, NN,NNN, e
and R,RR RE* . are in TP.

Obviously, TP contains every dcpo whose Scott topology has a countable
base. In particular, every w-continuous dcpo is contained in TP. Actually,
it can be shown that a continuous dcpo is contained in TP if and only if
it is w-continuous. Thus the extra generality of allowing non-countably-
based spaces does not manifest itself with continuous dcpos.® As TP is
cartesian closed, it should be interesting to examine function spaces over
the notorious examples of w-algebraic dcpos that are not contained within
any of the cartesian-closed categories of w-continuous cpos, see e.g. [1]. We
have not yet performed the required calculations, but we strongly expect
that such function spaces in TP go outside the category of dcpos, i.e. that
they result in spaces whose topology is not the Scott topology.

On the other hand, well-behaved categories of dcpos do turn out to live
faithfully inside TD (and so also inside TP). Let wS be the category of
continuous functions between w-continuous Scott domains (i.e. bounded-
complete pointed w-continuous depos).”

Proposition 4.9 wS is an ezponential ideal of QCB (hence also of TP,
and of TD).

Conjecture 4.10 wS is the largest full subcategory of pointed w-continuous
dcpos that forms an exponential ideal of TD.

Being an exponential ideal is a very strong requirement. A weaker require-
ment is merely to ask for the existing cartesian-closed structure of a category
of domains to be preserved. Jung has identified the largest cartesian-closed
full subcategory, wF'S, of the category of pointed w-continuous dcpos [25].

Conjecture 4.11 The embedding wFS —— TD preserves the cartesian-
closed structure.

This is a special case of a more general result: a core-compact space is qcb if and only
if it is countably based, see [11].

"One reason for requiring Scott domains to be pointed is that the category of all
bounded-complete w-continuous dcpos is not cartesian closed.
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5 Topological predomains and realizability

Proposition 4.9 and, if true, Conjecture 4.11 show that, to a large extent,
traditional domain theory lives faithfully inside TD. The benefit of the
much richer world provided by TD (and also TP) is that Requirements 3
and 4 can also, apparently, be addressed. To appreciate this, we now give
an alternative characterization of the category TP using the techniques of
realizability semantics.

In this section, we assume the reader has some acquaintance with real-
izability models, as presented in [28]. We only consider models built over
Scott’s combinatory algebra Pw [43]. We write Asm(Pw) for the associated
category of assemblies and Mod(Pw) for its full subcategory of modest sets.
Using the terminology of [28], consider the divergence D = {(0}. As in [28,
§4], the divergence determines a lifting functor L and dominance ¥. Us-
ing the lifting functor L, we identify the notion of a complete object of
Asm(Pw), see [28, §5]. Using the dominance ¥, we define the notion of an
extensional object of Asm(Pw), see [28, §10]. Let CE(Pw) be the full sub-
category of complete extensional objects of Asm(Pw). As in [28], CE(Pw)
is in fact a full subcategory of Mod(Pw). Moreover, for very general rea-
sons, CE(Pw) is a well-behaved category of predomains in Mod(Pw); see,
for example, [32] (where extensional objects are called regular X-posets).

In fact, CE(Pw) is much more that a well-behaved category of predo-
mains. It is a complete internal full subcategory of Asm(Pw) in the sense
explained in [19, 21]. This implies many properties: CE(Pw) is a full reflec-
tive subcategory of Asm(Pw); as an internal category, CE(Pw) is cocom-
plete; CE(Pw) is a model of the polymorphic A-calculus; and, by [39, 7], this
model can be refined to yield a model of parametric polymorphism. Finally,
following the approach of Phoa and Taylor [33], it should be possible to use
the internal completeness of CE(Pw) to construct free algebras for (at least
finitary) algebraic theories. Although the details of this construction need
further work, there seems to be no fundamental obstacle to it succeeding. In
summary, the category CE(Pw) promises to satisfy Requirements 3 and 4.

At this point, the reader may be wondering what all this has to do with
topological (pre)domains. The connection is provided by the result below.

Theorem 5.1 The categories TP and CE(Pw) are equivalent.

This theorem is a consequence of properties of the embedding of QCB into
the category of countably-based equilogical spaces given in [30], using the
fact that the latter category is equivalent to Asm(Pw) [5]. Several further
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ingredients are needed in the proof, including the characterization of TP
given by Proposition 4.4.

6 Summary and further work

We have introduced a category TP of topological predomains, with a sub-
category TD of topological domains, that together promise to meet our 5
requirements for “convenience”. In the definition, Requirements 1 and 5
were explicitly taken account of by the use of qcb spaces, as in Section 3.
Requirement 2 was established directly in terms of the the topological defi-
nition of the categories TP and TD. On the other hand, our arguments for
Requirements 3 and 4 were indirect, making use of a connection with realiz-
ability models. (It should be repeated that the argument for Requirement 4
is not yet rigorous.)

As was emphasised in Section 2, one of the major benefits of working with
a category of topological spaces is that one is working with (at least to some
extent) familiar mathematical structures. We thus view it as very desirable
to establish Requirements 3 and 4 in direct topological terms. It should
not be necessary to take a detour through a realizability model in order
to understand the interpretation of polymorphic types and computational
effects.

In the case of Requirement 3, our results indicate the existence of a purely
topological model of parametric polymorphism. In fact, by constructing the
model over TD |, it should be possible to obtain a concrete model combining
parametric polymorphism, intuitionistic linear type theory and fixed points.
As has been argued by Plotkin [34, 35], such a combination of features is
immensely powerful. The existence of realizability models of this setting was
first outlined by Plotkin, and is being worked out in detail (and in much
greater generality) by Birkedal and Rosolini [7]. A syntactic model, based on
a term calculus quotiented by operational equivalence, has been presented
by Bierman, Pitts and Russo [6]. However, to the best of my knowledge, the
only existing model defined in terms of concrete mathematical structures
is due to R. Hasegawa, using his bicategorical theory of twiners [16]. Our
work demonstrates that it is also possible to obtain a purely topological
model of linear parametricity and fixed points. It is to be hoped that a
direct topological interpretation of parametric polymorphism in the model
will prove forthcoming.

For Requirement 4, the presence of arbitrary countable colimits in TD
suggests that free algebras should be available for algebraic theories that
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are, in a suitable sense, countably presented. For defining free algebras for
computational effects, countable presentations should be of similar useful-
ness to the countable enriched Lawvere theories of Plotkin and Power [36],
although the details will necessarily be different as TD is not locally count-
ably presentable.® It is plausible that, in TD, it will also be possible to
allow operations of uncountable arity, as long as the “arity” is given by a
countably-based space, possibly even an arbitrary qcb space. Precise condi-
tions on the algebraic theories should emerge when Requirement 4 is worked
out in detail.

In addition to providing the general construction needed to verify Re-
quirement 4, it will also be of interest to look at specific examples of compu-
tationally interesting effects; for example, probabilistic choice, which is tradi-
tionally modelled by the probabilistic powerdomain [40, 24]. As has already
been reported, in the context of traditional domain theory, there are (possi-
bly insurmountable) difficulties in combining the probabilistic powerdomain
with any cartesian-closed category of continuous dcpos [27]. However, it is
well established that the probabilistic powerdomain lives naturally in wider
categories of topological spaces than dcpos, see e.g. [17, 2]. Our categories
TP and TD will allow such a wider topological notion of probabilistic pow-
erdomain to be combined with the usual domain-theoretic constructions (as
summarized in Requirement 2) and also with polymorphism. At the time of
writing, we have an explicit definition of a probabilistic powerdomain in TP.
However, much remains to be done to relate it to the established definitions
for w-continuous dcpos (and wider classes of spaces). Also, we would like to
characterize the probabilistic powerdomain as a free algebra, as in [23].

Another very interesting topic for future research is to combine Require-
ments 3 and 4 in the stronger sense of extending the notion of parametric
polymorphism to incorporate parametricity for the operators associated with
computational effects.

In this note, we have used effectivity as a motivating factor in the
identification of qcb spaces and in the subsequent definition of topological
(pre)domains. However, Requirement 5 has only been dealt with in a cursory
manner. In particular, we have glossed over one important issue. The sim-
ple account of effectivity for QCB given in Section 3 is, in itself, insufficient
as an account of effectivity in TP. The problem is that an effective version
of Proposition 4.4 is required in order for domain-theoretic constructions,
such as fixed points, to exist in the category of effective maps. In order to

8t is almost certainly impossible for any locally presentable category to satisfy either
of Requirements 3 and 5.
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implement this concretely, additional effective information is needed in the
“presentation” of a topological predomain. Obtaining a palatable explicit
description of this effective structure is one possible goal for future research.
Moreover, it should also be established that all the constructions needed in
fulfilling Requirements 2—4 behave well with respect to effective maps.

There is, however, an alternative more conceptual approach to effectivity
in TP. This is, simply, to extract the notion of effectivity and its properties
as a consequence of all constructions being formalizable in the internal logic
of the realizability category Asm(Pw), or rather in its associated subcat-
egory of effective maps. This approach should, of course, be equivalent to
the external approach discussed above.

Ultimately, it will thus be beneficial to have both the topological ac-
count of TD and the alternative realizability account worked out in detail.
Moreover, the realizability account suggests other perspectives. Theorem 5.1
gives one example of a situation in which the category of complete exten-
sional objects in a realizability category turns out to have a very elegant
concrete description (as the category TP). This is consistent with the estab-
lished observation that, in many different realizability models, the complete
extensional objects form the category of predomains with the most natural
external decription, see the introduction to [32] for other examples. Never-
theless, several other categories of predomains are available in realizability
models, see [28, 32] for overviews. It would be particularly interesting to
obtain a concrete description of the category Rep(Pw) of replete objects
in Asm(Pw), as defined by Hyland and Taylor [20, 47], which is nicely
characterized as the smallest full reflective exponential ideal of Asm(Pw)
containing the object ¥. Considered as a category of topological spaces,
Rep(Pw) forms a category of predomains contained in TP. This contain-
ment is strict. For example, the space of natural numbers with the topology
of cofinite subsets is a topological predomain that is not replete. This space
is a well-known example of a T} space that is not sober. Indeed, the very def-
inition of repleteness suggests a connection between repleteness and sobriety.
In an attempt to make this connection rigorous, recall that the category of
sober topological spaces is a full reflective subcategory of Top, see e.g. [22].
The following question, which should be compared with Proposition 4.6,
seems nontrivial.

Question 6.1 Is the sober reflection of a qcb space also a qcb space?

If (and only if) the answer to this question is positive, then it holds that
the category Rep(Pw) is equivalent to the category of sober qcb spaces.
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Such an equivalence would provide a very elegant concrete description of
the category Rep(Pw). This would be interesting as, at the time of writing,
no concrete description of the category of replete objects in a realizability
model has ever been established.
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Channel Theory as a Philosophical Experiment (Abstract)
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In this short tutorial, I will introduce basic concepts of channel theory (Barwise and Seligman
1997), with an emphasis on philosophical motivations behind them. Specifically, we will see how
the theory has been designed to give a general, naturalistic theory of information and thereby that
of "representations”, where the term broadly refers to symbols, pictures, and physical models in
everyday life, as well as such abstract objects as mathematical models.
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Abstract

This note reports author’s current thoughts and observations in logic and
computer-science related to ludics.

1 Motivations.

When we work in proof theory, our basic objects are proofs and formulas. A proof
consists of a series of inference rules: In order to successfully accumulate inference rules
up to the axioms, which is supposed to the goal, we normally develop a heuristics. It
is to become a proof-search algorithm. Such algorithms are often embedded into meta-
mathematical proofs for the completeness theorems. We can name some proof-search
algorithms, for example, resolution and unification for propositional and first-order
logic, Skolem’s theorem and Herbrand’s theorem for first-order logic, and focalization
for linear logic.

We would like to investigate such proof-search algorithms in terms of conputational
relevance. We like to develop some formal system in which these algorithms themselves
are to be investigated meta-mathematically. We expect such a formal system to provide

e a more general and abstract notion extending traditional notions in logic, and
e a concretion of proof-search algorithms.

We could see A-calculus as such a formal system. Emphasized in a phrase “terms as
programs”, A-terms are not only an abstraction of mathematical functions, but also
concrete programs we know how to evaluate them. In summary, the A\-terms are both

e a more general and abstract notion of mathematical functions, and

e a concretion of programs.



We hope for a similar formal system not for mathematical functions but for proof-
search algorithms. Based on this idea we study ludics introduced by Girard ([Gi]).
Our topics are organized as follows:

e Section 2: Inference rules.

Section 3: Axioms.

Section 4: Variables.

Section 5: Proofs.

Section 6: Formulas.

Section 7: Normalization.

2 Inference rules.

We started our discussion without mentioning any particular formal system. In order to
analyze proofs further, we choose one specific formal system, namely Sequent calculus.
Sequent calculus is equipped with an axiom scheme of simple form A - A, and inference
rules: the structural rules, and the left introduction and the right introduction rules
for the logical connectives. We simply refer the right introduction rule for a logical
connective as its inference rule.

Sequent calculus is preferred because of its internal completeness, namely the cut-
elimination theorem. Thanks to the theorem, the search space for proofs becomes
much smaller. An application of the last inference rule introduces the outermost
logical connective. A bottom-up proof-search in a cut-free system boils down to find
the last rule. One step to find the last rule can be thought as a partial function which
provides an inference rule for a given ordered sequence of inference rules up to the
current point. In fact, this idea leads us to the notion of innocent functions in game
semantics ([HOJ,[FH]). We discuss their work in the last section.

In linear logic, the logical connectives &, P and V are negative, while &, ® and 3
are positive. Let us call an inference rule for a negative connective and for a positive
one by a negative rule and by positive one, respectively. The notion of the polarity
arises in the following aspects:

e The law of distributivity,
e the reversibility and determinism,

e focalization and the priority in proof-search algorithms.



The law of distributivity holds:

A (Ba(C)~(A®B)a(A®(C)
Jr(A® B(z)) ~ A® JzB(x)
AP(B&C) ~ (APB)&(APC)

Ve(APB(z)) ~ APVB(x).

In linear logic, the negative rules are deterministic and reversible: For case of &, the
inference rule is:

- AT +B,T
- A&B,T

(&)

Conversely, we can prove each premise from the conclusion. In the following, premise

F A, T is derived.

i (@)
FA&B,T + A At @ B+
AT (Cut),
For case of P, the inference rule is:
HA B, T
HAPB,T (P)

Similarly, we can prove the premise from the conclusion:

- AL A FBLY,B

FAPB,I F A B A*® B* (®)
FABT (Cut)
For case of V,
- Aly/],T
FVxA T (v)

Y

where variable y is not free in I'. We can prove the premise from the conclusion.

- Aly/z]*, Aly/a] Q)
FVrA, T 3xAt Aly/a] (&)
- Aly/z], T .

On the other hand, the positive rules are non-deterministic and irreversible.

The focalization allows us to treat a cluster of negative rules, and a cluster of
positive ones, as synthetic connectives. We give a higher priority to the negative rules
than to the positive ones. Thus we have the following proof search algorithm:



e Choose one of the formulas in the conclusion and a negative rule: Apply the
rule and decompose the formula. Notice that this is deterministic, and the other
formulas in the context remain the same.

e Continue choosing a negative rule, until it is no longer available in the conclusion.

e Choose one of the formulas in the conclusion and a positive rule: Apply the rule
and decompose the formula. Notice that this is non-deterministic, the context
may split in a non-recoverable manner (in the case of ®), or one of the sub-
formulas may be lost (in the case of @).

As for the negativity of the universal quantifier V, let us consider a provable formula

in first-order classical logic
J2Vy(P(x) — P(y)).

We build its cut-free proof in classical sequent calculus in a bottom-up way. Then we
soon realize that we need to defer our irreversible choice to avoid making a crucial
error, instead, to apply the Contraction rule. Thus we eliminate 3 in one of the two
formulas in the conclusion. Then we are left with two formulas, whose outermost
quantifiers are V and J, respectively:

= Vy(P(z) — P(y)), 32Vy(P(x) — P(y))

= 3aVy(P(x) — P(y)), 32y (P(z) — P(y))
= Javy(P(z) — P(y))

(R3)
(Cont.)

Which quantifier should we eliminate first, V or 37 Our proof-search algorithm above
tells us that we should choose a negative connective when possible, which is V, in this
case. Thus we further proceed the derivation:

- P(z) — P(z),3aVy(P(z) — P(y)) (RV)
= vy(P(z) = P(y)), 3xvy(P(z) — P(y)) (R3)
F J2Vy(P(x) — P(y)), JaVy(P(z) — P(y)) (Cont.)

F 32Vy(P(z) — P(y))

Introducing a fresh variable z in the top inference rule is very tricky; there seems no
particular reason to do this at this point. We think that this is an example of variables
used as an anonymous representative. We think that Sequent calculus does not have
a capacity to describe how to introduce a fresh variable and to use it effectively.
After this crucial step, we need to eliminate 3 in the left formula using the variable



z, which is again a little tricky:

= P(z) — P(2),Yy(P(2) — P(y))
- P(z) — P(z), JaVy(P(x) — P(y

(R3)

)
FVy(P(x) = Ply)), 3Vy(P(z) — P(y)) (](%z\?a)
- 32y (P(x) — P(y)), 3avy(P(z) — P(y)) (Cont.)

F 32Vy(P(z) — P(y))

The last step is matching so that a pair of P(z) should later be used to supply an
axiom. Matching is completed by the positive rule for 3. This is an irreversible and
non-deterministic step, leading us to the successful end of the proof. Moreover, we can
interpret this step in a game semantic manner: The initial negative rule (Opponent)
offers a function P(z), or options P(z) (in the sense that different z’s provide various
options), and the next positive rule (Player) responds to it by supplying P(z) by a
suitable variable. Here the variable z is chosen. Finally, we conclude our proof as
follows:

P(z) F P(z)
Pl). P PP
Plo) = P(2). PE) = P)

(RY)

(R3)

) M (RY)
(R3)

®)) (Cont.)

- P(x) — P(z), P(2) — P(y)
- P(z) = P(2),Vy(P(z) = P(y))
- P(z) — P(z), 3aVy(P(z) — P(y)
- Vy(P(z) — P(y)), JaVy(P(z) — P(
- 3aVy(P(z) — P(y)), Javy(P(z) —
F 32Vy(P(z) — P(y))

It will be interesting to investigate further a computational aspect of the polarity in
proof-search algorithms. In ludics, the inference rules are introduced not based on the
left or right, but based on the polarity.

e Daimon:

1

e Positive rule (one premise for each ¢ € I, A;’s pairwise disjoint and included in
A):
cEiE A
'_ 5" A (+7 57 I)

e Negative rule (one premise for each J € N, all A;’s included in A):

cFExJ ANy,
EFA (=

&N)



The basic objects in ludics are designs. Syntactically, designs are trees built from the
rules above.

3 Axioms.

We observe the following two distinctive roles, syntactical and semantical, played by
axioms normally in any proof system:

e Syntactical: To denote the terminals or initials of accumulated sequences of
inference rules, and

e Semantical: To denote concepts taken for granted, such as valid formulas, typi-
cally the identity A - A.

The first property leads us to two positive designs interpreted as terminals in ludics:

e Daimon ®ai, consisting of { itself,

T
2
.

which means convergence, while

e the partial design €2, the empty set,

—AQ’

T

which means divergence.

Besides being designs themselves, each daimon and €2 can be used, just as an axiom,
as a rule to end a tree of inference rules at top of the tree.

The daimon T and the partial design () are unique maximal and minimal designs
with respect to the observational order for the designs [Gi].(See also [C](p.15) for its
formal definition.)

Besides such an algebraic treatment, Curien emphasizes a similarity between re-
coverable errors in computer science and daimon in ludics: Errors and daimon help
us to terminate computation and to interactively explore the behavior of programs or
proofs. Moreover, computation is stream-like, or demand-driven. This view helps us to
better understand the observational order < in Girard’s notation, in such a way that
for designs D7 and Do, D1 =X D5 holds iff ®, is more likely to terminate or converge in
computation than ®; is. Furthermore, the observational order allows us to analyze a
structural difference between the two designs it orders. For example, a greater design
®, can be obtained from ®; by as follows; we replace either



e an {2 in ®; with a tree # (2, or
e a sub-tree in ®; by a f,

to obtain ®s.

However, replacing “axiom-like” objects freely by something else seems against the
second role of the axioms; namely, axioms denote something valid.

As for the gap we just mentioned, let us examine an example in semantics of
Intutionistic predicate logic, which is taken from a text by Ono ([O]).

Let (M, <,U, =) be a Kripke model satisfying the following conditions:

1. (M, <) is an ordered set,

2. U: M — P(W) is a map from M to the power set of some set W, satisfying
the two conditions;
(a) for any a € M, U(a) # () holds,
(b) for any a,b € M, a < b implies U(a) C U(b).
3. |=is a binary relation between an element a € M and a closed formula A such
that
(a) a ’: p(ﬂla“'aﬁm) — (Qla“'aﬁm) € Pl(a)a
(b) aFANB<=al=Aandaf= B,
(c) aFAVB<=al=Aoral=B,
(d)aFA—-B<=VVba<b= (blEAorbl=B)),
() a =A== Vbla<b=0b}EA),
(f) a EVzA <= VWula < b= (u € U(b) = b = Alu/z])),
(g) a=3rA <= Ju(u € U(b) N a = Alu/x]),
where I(a), for each a € M, of the interpretation of the predicate symbols I is

defined so that (1) P/@ C U(a)™ and (2) a < b implies P/(® C P®): and u
stands for the name of u.

A formula A is valid in the frame (M, <, U) iff it is true in the Kripke model (M, <
,U, =) for any valuation |=.

Let M be a set satisfying the condition that for any a € M, there exists a maximal
element a*(> a) in M. Then formula

Ve——P(x) — =V P(x)



is valid in the frame (M, <,U). Let us demonstrate how to prove the validity of this
formula. Firstly,
(1) b Ve—=P(x)
is equivalent to
(1) VevuvdIe(b<c= (ueU(c) = (c<d= (d<eAe | Plu/z])))).

And
(2) b ——VP(x)

is equivalent to
(2) VeddVeVu(b<c= (c<dA(d<e= (ueU(c) = e | Plu/z])))).

We assume condition (1) and imply condition (2). The condition (2) is of prenex
form whose quantifiers are Vc3dVeVu, and for any c instantiating the first quantifier
Ve, the second existential quantifier is ought to be instantiated by ¢*. Thanks to the
maximality of ¢*, the next V is trivially instantiated only by ¢*. Thus the condition
(2)” boils down to
(2)" Yu(u € U(c*) = ¢* | Plu/x]).

On the other hand, the condition (1)’ is of prenex form whose quantifiers are VeVuVd3e,
and the first quantifier Ve is ought to be instantiated by c¢*. Again, thanks to the
maximality of ¢*, the rest of the quantifiers are all trivially instantiated only by c*.
Therefore the condition (1)’ boils down to

(1)" Vu(u € U(c¢*) = ¢* |= Plu/x]).

Clearly (1)” and (2)” are identical, and we have shown the claim.

Notice that the role played by the maximal element ¢* reminds us the role of
daimon. It is maximal, and it stops further inquiries for instantiating quantifiers in a
non-trivial way. Moreover, instantiating a universal quantifier in (1) and an existential
quantifier in (2) syntactically corresponds to (L V) and (R 3), respectively in Sequent
calculus: The polarities of these rule are both positive, as same as the polarity of
daimon. It will be interesting to study further proof-search algorithms to check the
validity of formulas in the Kripke frame, and to investigate its computational relevance.

Finally, the second role of the axiom leads us to a design called Fax, intended as
the identity, or rather its infinite n-expansion in ludics. It plays a role of a function
mapping one formula to the other isomorphic one. Fax §axe . is the following design:

3035/*175*1
Aoy
S e
5 - 5/ (f,Pf(N))

See Faggian et als. [FFDQ)] for further discussions on Fax.
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4 Variables.

In [AC] by Amadio and Curien, it is explained that the categorical interpretation of
A-calculus in CCC can be seen as a way of compiling a language with variables into a
languages without them. The slogan there is that variables are replaced by projections.
In other words, rather than giving a symbolic reference in the form of variable, one
provides a path for accessing a certain information in the context. This is the starting
point to define an abstract machine, which provides a high-level description of data-
structures and algorithms used to efficiently reduce A-terms.

In this section, we discuss a well-known partial algorithm to check the validity of a
formula based on Skolem’s and Herbrand’s theorems. We think that the combination
of two theorems provides us a usage of variables in logic, which seems to share the same
perspective mentioned in the slogan above. As for the formulations of the theorems,
we shall again count on the text by Ono ([O]).

In first-order predicate logic, Skolem’s theorem provides us, for a given formula, a
prenex existential formula called Skolem normal form: It is valid iff so is the original
one, provided that we consider the former validity in the models for an extended
language with new constants and function symbols. A formula

VaedyIVwP(x,y, z, w)

has a Skolem normal form
Jy3zP(c,y, 2, f(y, 2)),

In the Skolem normal form, the universal quantifiers in the original formula disappear,
and the quantified variables x,w are substituted for the terms made of newly intro-
duced a O-ary constant ¢ and a binary function symbol f, respectively. The parameters
of each ¢ and f are determined by the variables existentially quantified, between the
one universally quantified at work and the another one, universally quantified on the
left, closest to the one at work.

Let £ a fixed language containing at least one constant symbols. Let Herbrand
universe, denoted by Hg, be the collection of variable-free terms of £. Herbrand
structure < Hg, J > for language £ is a structure such that for each variable-free term
t in £ is, via J, interpreted by term ¢ in Hg itself. Notice that the former ¢ is to be
interpreted is a syntactical object, while the latter ¢ in Hg is a semantical one. Thus
the notion of Herbrand structures introduces objects both syntactical and semantical.

Let A be a quantifier-free predicate formula

P(s) = (Q(s, 1) V P(1)),

where P, () are predicate symbols unary and binary, respectively, and s,¢ are terms
without variables.



Atomic predicates P(s) and Q(s,t), containing different predicate symbols P an
() respectively, are evaluated independently. In other words, each P and () refers,
just as a pointer, independently to a value in the Herbrand structure. On the other
hand, if s, t are different terms, say, containing distinct function symbols, then they are
interpreted by distinct elements in the Herbrand universe. Therefore, predicates P(s)
and P(t) are evaluated independently. In other words, each s,t refers via its function
symbols playing their role as a pointer, independently to a value in the Herbrand
structure.

The observation above reminds us the view presented earlier in this section, that
is, replacing a symbolic reference in the form of variable, one provides a path for ac-
cessing a certain information in the context. In our discussions, we replaced symbolic
references in the form of universally quantified variable by a path or a pointer played
by function symbols, thanks to the Skolem normalization, referring mutually indepen-
dently to the values in the Herbrand universe, which is the context in our setting.

The proposition below introduces a decidable algorithm to check the validity of
any quantifier-free formula A with no free variables.

Proposition 4.1 Let A be a quantifier-free formula with no free variable in £. Then
A is valid iff A is true in any Herbrand structure for £. Moreover, A is valid iff the
propositional formula w(A) is tautology; where w(A) is obtained from A by replacing
mutually distinct atomic predicates by corresponding mutually distinct propositional
variables.

5 Proofs.

A proof is built as a tree of inference rules. Normally, a proof-search algorithm provides
us how to accumulate inference rules successfully up to the axioms, which is the goal.

Faggian and Hyland describe in [FH] that designs, the basic objects in ludics, are
both:

e an abstraction of formal proofs, and
e a concretion of their semantical interpretation.

These two aspects of designs agree with our motivations presented in the first section:
That is, we are looking for:

e a more general and abstract notion of formal logic, and
e a concretion of proof-search algorithms.

Let us remember Herbrand’s theorem: The theorem allows us to check the validity of
closed existential prenex formulas by means of a partial algorithm.

10



Theorem 5.1 (Herbrand) Let 3z ---x,B be a closed existential prenex formula in
language L, where formula B contains no quantifier symbol. Then Jxg- - - x, B is valid
iff there exists a natural number m (> 1) and terms ty, -+, tiym (1 = 1,---m) of
Herbrand universe such that

B[tll/xla o 7t1n/xn] VeV B[tml/xla e 7tmn/xn]
1s true in any Herbrand structure for L.

The notions of the structures, the universe and the validity in the theorem definitely
suggest that the theorem be semantical. However, based on the theorem, we obtain a
partial algorithm to check the validity of a closed formula: There is where, we believe,
semantics and proof-search algorithms meet. A good algorithm is coupled with a good
data structure. In our view, a good data structure in the partial algorithm here is a
growing list of tuples of variable-free terms in the Herbrand universe: The list starts
as the empty set; and the list is added tuples of terms mentioned in the theorem in
the course of the partial algorithm up to the list:

xl o o o xn
tn - tin
tor -+ ton
tml e tmn

When the list arrives at this stage, the given formula Jx - - - 2, B is shown to be valid.
It will be interesting to investigate how the above data structure is maintained by the
partial algorithm, and if and how it is related to Sequential algorithms due to Berry
and Curien ([AC)).

Thus we have started with a proof as a tree of inference rules, and proposed a
“proof-search algorithms as semantics” view. In the next section, we shall discuss
another aspect of a proof, namely its syntax in Sequent calculus.

6 Formulas.

A proof in Sequent calculus is a tree of sequents; and a sequent contains formulas.
One role of formulas in a proof is to denote the location. However, a formula does not
simply denote a location, but also denote a proof description, by which we can tell,
how to merge two disjoint proofs into one, preserving its correctness. For example, a
pair of cut-formulas indicate us how to merge two disjoint proofs via normalization.
The designs are supposed to be an abstraction of formal proofs. and the role of
formulas as a proof description in fact is played by designs, which itself is the counter-
part of proofs in ludics. In other words, the conceptual distinction between proofs and

11



formulas are less clear in ludics than in the typed A-calculus, where emphasized are
“Formulas as types” and “Proofs as terms” in the Curry-Howard isomorphism.

We shall study the notion of types in ludics by means of filter models, that is, the
syntax of intersection types. (Chapter 3.3, p. 54. [AC]).

Definition 6.1 (ets, p. 55, [AC]) Let (D,e) be an applicative structure. Consider
the following operation on subsets of D:

A—-B={deD:Vec A(deec B)}.

A subset of P(D) is called an extended type structure (ets for short) if it is closed
under finite set theoretical intersections and under the operation — just defined.

An extended abstract type structure (eats for short) is given by a preorder (5, <), called
the carrier, whose elements are often called types: For the definition, refer to Definition
3.3.1 [AC]. The following lemma provides us a means to obtain an eats from an ets
defined above.

Lemma 6.2 (Lemma 3.3.7, p. 55, [AC]) An ets, ordered by inclusion is an eats.

A filter of an inf-semi-lattice S can be defined in a standard way. (See Definition 3.3.8,
p. 56, [AC], for instance.) The filter domain of an eats S is the set F(S) of filters of
S, ordered by inclusion.

Lemma 6.3 (Lemma 3.3.10, p. 56, [AC]) IfS is an eats, then F(S) is a complete
algebraic lattice.

In ludics, we have an applicative structure defined by the collection of designs de-
noted by T', equipped with binary operation Plays(®;&). As a subset of P(T"), we
take behaviors, where a behavior is a set of designs equal to its biorthogonal. As for
discussions on the behaviors, we follow [Gi].

The behaviors of the same base is closed under the set theoretical intersection.

Definition 6.4 (Inter, [Gi]) Let Gy be a family of behaviors of the same base. Then
we define [, G as the intersection of the Gy,.

The connective [ is strictly commutative and associative.

Theorem 6.5 (Theorem 14, [Gi]) Let § and A be negative and positive designs,
respectively. There there exists a unique design (§)2U, such that for any positive design
B, the following holds.

LF|AOB>=< (F)A|B >

12



In the theorem above, A ® B is the commutative tensor product only defined for
positive designs (refer to Definition 31). The binary operation —o for ets in ludics is
given by a negative behavior G — H, which is defined as G < H (Definition 34), for
two alien behaviors G positive and H negative. (As for alienation, see Definition 39.)

GoH={A0BAcG,BcH}

Proposition 6.6 (Proposition 12, [Gi]) Let behaviors G and H be positive and
negative, respectively; then

F€GoH&VAAEG = (3)Ac H).

Furthermore,
F€GoH& YA cH = (F)Ac GhH).

It will be interesting to investigate further an eats structure of the behaviors BV . We
discuss a connection between filters of the behaviors and incarnations.

Let © a fixed design in G. Then the set of designs in G included in ® is a non-
empty family: The intersection of the family, called the incarnation, also belongs to
G, due to Closure theorem (Theorem 7).

Definition 6.7 (Incarnation, [Gi]) Let G and © be a behavior and its design, re-
spectively. The incarnation | ® |g is defined as follows:

1D = {99 C D and® € G}.
The incarnation belongs to G.
Now the following proposition is immediate.
Proposition 6.8 (A filter by incarnation.) A collection xgs of behaviours
zp ={G;| D |cC D}
forms a filter.
Proof. In order to show that zg is a filter, we check the following two conditions:
e GHezp=GNH € 2y,

e GeErpand GCH=H € zp

13



The first condition is due to Theorem 9 on the intersection and incarnation: We obtain
| D |lgra=|D [c U [D [a .

The second condition is due to the contravariance easily shown from the definition of
the incarnation, i.e.,

GCH=|9|uC|?|c -
|

We conjecture that the filters F(BV) on behaviors is a complete algebraic lattice.
We note that there are maps between F(BV) and the collection T of designs,

z: T — F(BV)

defined as (D) = zp, and
D:FBV) — T

defined by
@)= 9le-

Gex

It will be interesting to further investigate these maps, a complete algebraic lattice
structure in F(BV), and its connection to one of the main results, stated in Theorem
10, of the additives in ludics:

| GEH =[G [ x |H],

where | G | is the collection of designs © in G, satisfying © =| D |g.

7 Normalization.

Faggian and Hyland investigate ludics by means of HON game semantics in [FH], which
we follow closely in this section. Here we develop syntax of designs as an abstraction
of formal proofs. In particular, we pay attention to the following three roles of the
formulas.

e A location, relative and absolute.

e An initial sequent.

e A class of proofs characterized by normalization.
We have corresponding notions in ludics, respectively:

e An address.
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e A base.
e A behavior.

An action is a pair (£, 1) of an address &, called a focus and I a finite set of natural
numbers. An action corresponds to the application of an inference rule. A base is
a sequent of addresses corresponding to the initial sequent of the derivation, or the
conclusion of the proof.

Thanks to the focalization, it suffices to consider only sequents of form = F A, =
consisting at most one element and finite A.

A design is given by a base and a tree of actions. A tree of actions can be thought
as a set of Sequent calculus branches [FH]. The precise definition is given by a set of
mutually coherent chronicles, where our intentions are

e Chronicles: A formal branch in a focalized sequent calculus derivation.

e Coherence: A condition to let a set of chronicles all belong to the same proof.

Definition 7.1 (Chronicles, [FH]) A chronicle of base = F A is a sequence of ac-
tions < Ko, K1, -+, Ky > such that:

e Alternation.
e Positive and Negative focuses.
e Destruction of focuses.

e Daimon. Daimon can only appear as the last action.

Definition 7.2 (Coherence, [FH]) The chronicles ¢1,co are coherent when

o Comparability. Fither one extends the other, or they first differ on negative
actions,

e Propagation. If ¢i,co first differ on k1, ko with distinct focuses, then all ulterior
focuses are distinct.

Definition 7.3 (Designs, [Gi])) A design D of base Z+ A is a set of chronicles of
base = = A such that:

o Arborescence. ® is closed under restriction.
e (Coherence. The chronicles of ® are pairwise coherent.

o Positivity. If ¢ € ® has no extension in D, then its last action is positive.
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o Totality. If the base is positive, then ® is non-empty.

The actions and interactions of designs correspond to moves and plays in the game
semantic setting. For the simplicity, the bases of designs ® and & are F<> and <>F,
respectively.

Definition 7.4 (Linear positions, [FH]) A sequence of actions s is a linear posi-
tion or a play, it it satisfies the following conditions:

e Alternation. Parity alternates.
e Justification. Each action is either initial or is justified by an earlier action.
e Linearity. Any address appears at most once.
e Daimon. Daimon can only appear as the last action.
The notions of chronicles and linear positions are very close.

Definition 7.5 (Plays (binary), [FH]) We define a play P denoted as Plays(®; &)
as follows:

ecP
p € Pis a P to play position and[p|’'x € D, then px € P
p € Pis an O to play position and[p|®k € €, then px € P

We note that Plays(®; €) is totally ordered by the initial segment. Thus we denote
the sup of Plays(®; &) by [© = €], which is possibly infinite.

Definition 7.6 (Dispute, Convergence, [FH]) A sequence of actions [© = €] is
called a dispute, if it is finite and terminated with a Daimon. The normalization
between designs © and & converges, if [D = €| is a dispute, and diverges, otherwise.

Definition 7.7 (Orthogonality, [FH]) A design ® is called orthogonal to &, when
the normalization between them converges. The design € is called a counter-design of

D.
A legal position is a linear position satisfying the wisibility condition (Def.7, [FH]).

Proposition 7.8 (Chronicles, Fact 2, Prop.1 [FH]) Let p be a linear position in
Plays(®; €). Then,

o for any q Cr¥ Cp, [¢q]" is a chronicle of ®, and similarly,

o for any q Cr° Cp, [q]° is a chronicle of €.
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e Moreover p is a legal position.

Due the last statement in the proposition above, any dispute is a legal position. Thus
the chronicles in ludics correspond to the linear positions in game semantics; and the
plays or disputes correspond to the legal positions.

Thus from a sequence of actions p in Plays(®; &), the chronicles of ® and €&
are obtained by view operations [, 19, respectively. Conversely, for a given finite
legal position p on the universal arena, we can extract a design and a counter-design
such that the dispute between them is p and minimal among such pairs of designs.
(Proposition 2, [FH]).

Definition 7.9 (Plays (unary), [FH]) For a given design ©, we define a unary
Plays as:

Plays(®) = U{Plays(@; ¢); &is a counter-design}
The following proposition explains Plays(®D) in terms of Plays(®; &) and .

Proposition 7.10 (Designs, Facts 3,4,5, [FH]) Let ©, € be a pair of a design and
a counter-design. Then,

e Plays(®) N Plays(€) = Plays(D; €),
e O C Plays(?),

e Plays(®) = {p : p is a legal position; and for all ¢(C r* C p) satisfies [q] €

An abstract notion characterizing Plays(®) is the notion of strategies (Def. 9, [FH]).
In particular, Plays(®) is an innocent strategy (Def. 10, [FH]).

Definition 7.11 (Views, Def. 11, [FH]) Let S be an X-strategy. We define
Views(S) = {[q]* : ¢ Er*,r € S}.
The following proposition summarizes the relationship between Views and Plays.

Proposition 7.12 (Fact 11, [FH]) Let® be a design, and S be an innocent strategy
satisfying propagation. Then,

o View(S) is a design, and

Plays(Views(S)) = S,

e Plays(®) is the smallest innocent strategy containing ©, and

Views(Plays(D)) =9D.
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As we mentioned earlier, Plays(®) is an innocent strategy. Hence, we apply construc-
tion Views to Plays(®), and we obtain

Views(Plays(®)) = {[q] : ¢ S r*,r € Plays(D)}.
The proposition above implies
Views(Plays(D)) = 9.
Due to the proposition above, we have thus obtained the following characterization of

designs in terms of plays.

Proposition 7.13 (Designs, Prop. 3, [FH])
D ={[q]:qCr*,r € Plays(D)}.

Let us remind the idea presented by Amadio and Curien (p.43, [AC]), that the meaning
of a term should be the collection of properties it satisfies in a suitable logic. In fact,
the filter models of A-calculus is based on this idea.

In this note, we have presented two characterizations of designs as collections, the
one based on chronicles, and the other based on plays. A design thought as a term in
ludics, its characterization as a collection, can be taken as a meaning defined by the
properties it satisfies in a suitable logic, in the above sense.

e Which characterization is better, the one based on chronicles, or the one on
plays.

Faggian and Hyland prefer the characterization based on plays. The plays are an
interactive notion: So are the behaviors.

e What is the relationship between the chronicles in the plays and the behaviors?

e Does the notion of chronicles correspond to the notion of types in the filter
models in some way?

These questions remind us the discussions in the previous section.
e What is the relationship between the designs and the filters of behaviors?

According to the theory of HON game semantics, the collection of innocent strategies
ordered by inclusion is a dI-domain; a consistently complete, algebraic CPO which is
coprime algebraic and satisfies axiom: Every compact element dominates only finitely
many elements. (See [AC], [HO]). It will be interesting to investigate the duality for
algebraic dcpo’s in the collection of designs.
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Xy) € a” g (xy) ¢ a.

Q.

000000 -000000000000VO000 (YxyeX(xy)eV)IODDOOOODODOOOO ala =V
00oooQ

1.2 contextO QOO QOO

Definition 1.1. 00 X,AOOO ac AO0O O xeXO0OOOO V(a), f(xa)cV@ODOOODODODOODOOO
0 S=(XA{V@:acAl, fyOOoOO (informationsystemll 0000000 X,AV@OODODODODOOOO
00 (objectd OO (attribute)d O O O (attribute value)d O O O

O0MO0aeADOO V(@) ={0,1}0000000000 contextI 00000 140 Yae Af(la,a) =1
O00001,000000 contextd contextwith 10 00O

* Kazumasa HONDA, DOI, Kyushu University 0 00000 000000000 000000



Definition 1.2. 00 ADDODOOOOOOO XO0ODODOODOO0OO0OO0OO R:p(A) - (X = X)O (ADDO XOO
0)000O0 (frame)D 0000000 ROODOOOD (S1),(S20 00000 standardl OO (S1),(S2),(S3)
000000 strongd 00 (S1),(S2),(S3P 00000 semistrongd 000000

(S1) 000 PCAOOOORP)ODOOOO

(S2) 000 PQCADDOIORP)NRQ) =RPUQ)
(S2) 000 PQCADOIOIIRP)NRQ)CRPUQD
(S3) R0)=VO

. . def
Definition1.3. 000000000000 R :p(A) » (X— X)O (x,y) € R(P) = Vae P.f(x,a) = f(y,a)
OD0D00DR((P)ODOODOO (indiscernibility relation)d 0 O O

Lemmal4. 000000000000 RO stongd OO0

def
Definition 1.5. context with 1000000000 RS : p(A) » (X — X) O (xYy) € RR(P) = (Va €
Pf(x,a)=1 < VaePf(y,a)=1)OOUDOORSP)OOD OO (association relationd 00 O

Proposition 1.6.ac APQCAOIDOUDODDOD

e (X,1p) e RS({a})) — f(x,a) =1

o (X,1p) e R(P) < Vace P(x 1a) € R({a}).

e (X,1n) e R(PUQ) = (x1a) € RS(P) A (X, 1a) € RYQ).

e (xY)eR¥((a)) = (f(x,a)=1Af(y,a=1)v(f(x,a#1A f(y,a) = 1).

* (xy) e R(P) < ((x.1a) € R*(P) A (y.1a) € R¥(P)) V (X, 1) € R*(P)™ A (Y, 1a) € R*(P)").

Lemma 1.7. contextwith 1000000000 R*SO semistrongl 00 O

Definition 1.8. contextwith 1D 0000000 PQCADDD RP)=R(PUQ) DD OOOOOOPODO
QUUIDDOOP=QIIOIOIOODO

13 0000

Definition 1.9. 00 XO(@ O)0OO ParOPar00 XOOOOOOO R: p(Par) » (X — X)OO K =
(X,Par,Ry 0 O OO0 (information frame)J 00O O
0000 RO standardistrongdsemistrond] O 0O 00 0O O 0O 0O standardistronglsemistrongl 00 00 00O

O000000000000000008SO000 (XAR)D strongd00000000000 context with
10000 XKARS O semistrong] 0000000000000 0O0DOOO semistrongd 000000
contextwith10 OO OO UOODODOD0O0O0OO0DO0O0OO0OODO0O0OOODOOOOO

Theorem 1.10 (Information representability of contexts with 1). 1, € X OO O 0O 0O 0O semistrondg] 00 O
0 K=(XPar,R1,H 00000 (Asl),(As20 00 0000RSP)=RP) DD 00O contextwith 1D 00O O
oon

(Asl) VP c Par.((x.y) e R(P) < ((x,1a) € R(P) A (V,14) € R(P)) V ((x, 1a) € R(P)~ A (Y, 14) € R(P)7))O



(As2) Yae ParVP C Par.((x, 1a) € R{a})- = (X, 1a) e R(PuU {a})7)O
O000(Asl),(As200 000 semistrongd1 0000 (X,Par,R 1, 00000 Q000000
gboboooooboobobobobooooobogo

Lemma 1.11.(X,Par,R 1) € Q**00000VPC Par,¥Yxe XOO OO
(%, 1a) € R(P) < Vace P(x,14) € R({a}).
Proof. (AR2) 0000000 O(ALR) Yae ParVYP C Par((x,1a) e R(PU{a})) = (X, 1) eR({a) 00000
o
Vae PO OO0 (x1a) € RP) = RP U (al) o= (x,14) € R(a) 000000 semistrong) (S2) 0 0 0

(%1a) eR(P) = Aacp(x 1a) € R({a)) (AL
= (% 1a) € R(Uaerl@) = R(P), (S2)

0000 1a) e RP) &= Aap(X1a) € R{a})) & Vace P(x1a) € R{{a})d O
Corollary 1.12. (X,Par,R, 1) € Q¥ 00 000VP,Qc Par,Yxe XO O OO

(% 1p) e RPUQ) = (X 1a) € R(P) A (X, 14) € R(Q).

Proof.
(% 1a) eRPUQ) = Aacpuo(X 1a) € R({a})
= Nacr(X 1a) € R({a}) A Naco(X. 1) € R({&)})
< (x,1a) € R(P) A (X,14) € R(Q).

Proof of Thm.1.100 0 A=Pard0 00 f: XxA—= {0, 1} 00000000000
def
f(x,a) =1 < (x 1a) € R({a}).

K O semistrond] (S1)D 00000 ace AUDUOR{@)00DOO0O0O00OO (1a1a) e RO OO
Yae Af(lp,@)=10000 S=(X,A{0,1}, f,1») O contextwith 10000
O00 R=R®SO0000000O0O0OO0Lemmal.1l0 fO00OProp. 160000

(%,1a) e RP) < VaeP(x 1) eR({a}) (Lemmd.1l1)

— VaePf(xa)=1 (fooo)
< VYae P(x 1a) € R5({a}) (Prop.l.6)
— (x, 1a) € RR(P). (Prop.1.6)
00000 Prop.1.6] (Asl) 00D
xy) e R (P) < ((x1a) € RES(P) A (y, 1a) € RES(P)) (Prop.1.6)

V((X, 1a) € RE(P)™ A (Y, 1a) € R?(P)7)
& ((x,1a) e R(P) A (Y, 1a) € R(P))
V((x,1a) € R(P)™ A (v, 1) € R(P)")
> (XY) € R(P). (Asl)



14 LISOO RLISO

Definition 1.13. 000000000000 A D OUOOLIS (language for information systemd)d 00 £ 00O

OBNFOOOOOO
C:= A|CC,
L NC|-LILUL|LNnL|L—- L L L

O000L£02000000000 (D0)U0 YOOUOR={xFy|FeL,xyeV}ORLISOOOOUODO
oooo
000AOOOOO0OODOOODOOOO0O0DO0O0000 Ca,LaRye000000

Definiton 1.14. 0000 K =(XPar,R 00000 M: A —»> Par0000000000000O M =
(K. AmMOKOODODODODODOODOO0OOO0O M[l: Ls->(X—=X)OOOOoOooooooao

. def |m/(P) = {(m(P)}, PeA,
m :Ca — p(Par) < {I’TY(PQ) =m(P)unm(Q), P,QeCax.

MIF] = R (F)), FeCa
M[] = R(),
M[=F] = M[F]", FeLa

MI: La—(X—X) & IMFUGl = MFJUMG], F.Ge L,

M[F NnG] = M[F]n M[G], F.Ge La,

M[F - G] = M[-FluMI[G], F,Ge La,

M[F; G] = M[FIM[G], F.Ge La.

000 M=(K,AmO000LISO FeLs0 MFl=VOOOOOOOFO MOOOOOOOOOO
000000 M A—-Par000000 (K, AmMOODODODODO0D000 FO X0000000000000
O00OMOO0OV:V—>XOMOOOOOODOOOORLISO xFye Rz 0 (V(X),v(y) e M[FlO OO0
00 vOOOOOOOOOxFyOOOOOOO (K,AYmOOOOOO0O00O0O000000000 K000
0 xFy0OOOOOOOO0OO0O0O0OO0O000000000 QO00000000000000000000Q0
0oooo0ooo0o

KO MIOxeVOOOO{VX)|v: MODODOOOO }=XOOOOOOOoOooooo

Theorem 1.15.0 000 K OOODOOOLISO FOOOOOOOODOO RLISO xFy(x#xy)OOOOOoOOoooo
oon

Definition 1.16. LISOO00D0OO00OO0 DO (0D0O D)0O00O0O0O0O[: - L0O00000000000O0O

Doii= C=0C,
Dyiii= Do| D1NDy,
D= Di1| D12 Dyo.

[P=Q = (P—-PQn({PQ—P),
[FNG] = [F]N[G].
[FoGl= (4-[FLY) UG

DOOOOOO LSOO LIS-DODO0OD0O0ODODO [P0 Lo 0000000 RLIS-DODOR, O000ODOO

goobOoo Lus-Dooooooooooon



2 000

000000000000 LS-DOO0O00D00O0O0D Q00000000 00ooooooooo.
00000000000 RLISOOOOOOOOOOOOOOO SOOOO

S={T}URU{XF;G)y,U) | x(F;G)ye R, UV}

oooMOOoooOovooooMwl: S—»Boolean OOOOOOOOOO

MW[T] = true,
M,v[e] = false
MWIXFY] = (U(X), Uy)) € M[F],
MWKXFE G, U = Viev-u (M WIXFUl A (M, V[UGH)
MWIAT] = M WIA] VM W[TT].

0000 RGefLOOODOODODOODOO

o YM,YVV.AM, W[ XFy] =true < xFyOOQOQO
o M VXYL = (U(x),W(Y)) € M[!] = (V(x),v(y)) € V = true = (M, V[ T].
o IMVIXFY, x=Fy] = (((x), V(y)) € M[F]) v (U(x), V(y)) € M[F]") = true = (M, [ T].
o IM,WX(F UG)Y] = (M, V[ XFy, XGW.
o (M V[x=(FUG)] = (M WI[X=Fy] A (M, W[ X=GY].
o (M WIX(F NG)Y] = M, WIXFY] A (M, W[ XGY.
o (M V[x=(F NG)Y] = (M, W[x=Fy, x=GY].
o (M, V[X(F — G)y] = (M, w[x=Fy, XGH].
o IM,V[x=(F - G)y] = M, WIXFY] A (M, W X=GY].
o (M V[{X(F; Gy, V)] = false= (M, w)[e].
o MVIXF;GY] = MX),uy)) € M[F;C]
= (V(x), \(y)) € M[FIM[G]
= Vzex((U(X), 2) € M[F] A (2 U(y)) € M[G])
> Ve (V(X), V() € M[F] A (W(u), V(y)) € M[G])
= Ve (M, WIXFU] A (M, V)[UGH)

= M VX(F; G)y, 0)].
00D0OvOoO0OO000O00000000

000Q*00000000000000000000PRQeCO1eVOOOOODODDODOOVOOD
v(1)=1,00000000v0 3000000000000

o (MW XPA = (V(X), V(X)) € M[P] = (V(X), V(X)) € R(P) = true = (M, v)[T].
o (M V[x=PX] = (V(X), (X)) € M[P]~ = (\(X), (X)) € R(P)~ = false = (M, v)[].



o IMWIXPY = (Vx),v(y)) € R(P)

((V(x), 1a) € R(P) A (Uy), 1a) € R(P))

V((V(X), 1a) € R(P)™ A (U(Y), 1a) € R(P)")

((v(x), v(1)) € R(P) A (V(y), V(1)) € R(P))

V((V(¥), V(1)) € R(P)™ A (U(y), U(1)) € R(P)7)

= (M, W XPL] A MW YPL]) vV (M, W Xx=PL] A M, W[ y=P1])
= (M WIXPL] v M WIy=P1]) A (M V[Xx=P1] v (M, »)[yP1])

= M, W[ XPL, y=P1] A (M, V)[ x=P1,yP1].
o (M, W[ x=PY] = (M, W[ x=P1, y=P1] A (M, W[ xP1, yP1].

o IM,W[xPQL] = M, W[XP1] A (M, W[ xQ1].
o IM,W[x=PQ1] = (M, [ x=P1, x=Q1].

oooooo MyvOOOOOOOoooooooooooooooo M,vwoOOoOOoOoOoOoDOoOoODOoOOoOODOO
gooood

Theorem2.1.F,Ge £,PQeC, AT €S, xyeVOODODDOIODOODOOO0OOOOO0O000O00O0OO
[xFyl >[T] 000000 xFy0OOOOOO

o [A.T] =[A] v Ir]. o [X(F; Gyl = [<x(F; G)y, )] .

o [xiyl =[Tl. o [(X(F;G)y. V)] = [£].

o [xFy,x=Fy] =[T]. o [X(F;G)y,U)] = Viev-u([xFul A [uGy)
e [X(FUG)y] =[xFy, xGy. o [xP =[T].

o [Xx=(FUQG)Y] = [x=Fy] A [x=GV]. o [x=PX] =[£].

o [X(FNG)y] =[xFy] A [XGM. e [xPy] = [xPL,y-P1] A [x=P1,yP1].

o [Xx=(F NG)y] = [x=Fy, x-GVy]. o [x=Py] = [x=P1,y=P1] A [xP1,yP1].

o [X(F — G)Y] = [x=Fy, xGY. o [xPQL] = [xP1] A [xQ1].

o [x=(F — G)y] =[xFy] A [x-GY]. e [x-PQ1] = [x=P1, x=Q1].

Proof. (0)000000O0O0O0D0O0O0O0O0O0O0O0OOOOO

[xFy] > [T] 00000000000000 MvODOO (MW[XFY] > MW[T] =true 000000
000000000true0000000000 (MW[XFY]l =true0000000000000000000
MyvOO00 (MW[XFy] =true 00000000 xFyDOOOOOODODOOO0O00O0O0O0O0O[XFY] >[T]
000 xFyoDOooooo O

OO0 2100000 RLIS-DOOODOOOOOOOOOO

e FOGepDOODOOO
[XF oGyl =[x -[F;") vIGDYI = [x(; -[F]; Dy, X[G]Y]
> Vaev([X'a, X[G]y] A [a(=[F];!)y, X[Gly])
= Vaevla(=[FI;)y. X(G]y]
> Vapev([a-=[F]b, X[G]y] A [bly, X[G]y])

= \/a,be"vl[a_'[F]ba X[G]y]l
DDDD(VDDDDDDDDDDD[&—'[F]D,X[G])/]I oooooon (|(V|2D)[|D|:|[|
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e FNGeD, 0DOUOO[XFNGIY] = [XFIvl A [XGIV].
e FNGeD, 0OO0OO[x-[FNGly] = [x-[Fly, x=[G]y].
e P=QepDy 00000
[X[P=Qly] =[x((P—PQn(PQ— P)y]
= [x(P - PQy] A [X(PQ— Py]
= [x=Py, xPQY A [x=PQy, xPy]
[x=Py, xPQY A [x=PQy, xPy]
[x=P1,y=P1, xPQy A [xP1,yP1, xPQy]
A[x=PQL, y-PQ1, xPy] A [xPQL yPQL, xPy]

[x=P1,y-P1,yQ1] A [xP1,yP1,y-Q1]
AIXPLy-P1,yQ1] A [x-P1,yP1, xQ1]
AIXPL, y-P1, xQ1,yQ1] A [x-P1,yP1, xQ1,yQ1].
e P=>QeDy0OODDO
[x-[P=Qly]l =[x~((P—PQn(PQ— P)y]
= [x=(P - PQy, x=(PQ — P)y]
[xPy. x=(PQ — P)y] A [x-PQy. x~(PQ — P)y]
[xPy, xPQY A [xPy, x=Py]
A[X=PQy, xPQY A [x=PQy, x=Py]
[xPy, xPQY A [x=PQy, x-PY]

[xP1,y=P1,y=Q1] A [x=P1,yP1, x-Q1]
Al X=P1,y-P1, x-Q1, y-Q1] A [X=P1, y=P1, xQ1, yQ1]
A[xP1,yP1].

0000 [T].[XPLY-QL---(PQeA)00DDDDDODODODONOOOOODONDOO

00000000 RLIS-DOO0 YO00000O0O0O0O00000000O0O0O0O0000000 LIS-DO FO
0000000000000000000

00000000000000

Theorem 2.2 (Completeness)RLIS-DO xFyO [xFy] > [T] 0000 O00M,, vo)[xFy] =false0 000
00 Mo, voOOGQOQOQOQO

Proof. X = V,1p = LPar = AO0O0OV = idy,m=idy 0000V OIOOOOOO0QSOIO0000
K=(XParROOOOOOOOO0 M=(K,mO (MVOHXFY] = Aig M1 0000000000
0jel0nnnM,v)l] =false0 00000 MOOOOO RODOODD (M,Vo[xFy] = falseD
000000000000 R OOOODOO0O0O0O00

00000000070 xPLY-QL---(PQe A DDDDDDOD000N0 xPLODDO0O0O000
(1) ¢R(PHODOOY-QLOOODDODND (y,1)eR(fQNDOD0ODD Ry O (M, vo)[I'j] = false O
0000000000000 RO Q0000000000000 00 (Asl),(As2),semistrong 0 000
0000000000007, 00 xPLOy-QLOO00000 AODOODOO -0000000000 1
000 RLISOODO0O000O0O0OOOOOOO0O00000O0O00O0OOOO00O O



coooo
Definition2.3. 00 SOO00O0O0 T#Vl'eS,VF,Ge L,YPQeC,Vx,ye Voo O

O00000000000000000D00000D00000 P 0000000000000 000000
00 (.e.GBA---=ABC,-)0

(0on)

xFy,I' xGy, T’ x=Fy, x=Gy,T xFy, xGy, T’ x-Fy,I' x-Gy,I'
x(FNG)y,T Q) x-(FNG)y,T (=) x(FUG)y,T ) x~(F UG)y,T (V)
x=Fy, xGy, T’ xFy,I' x=Gy,T T 4 T

xX(F - G)y,I' = x=(F - GQ)y,T’ (=) xly, I () xFy, x=Fy,T’ (FND)

XFu I, (X(F; G)y, {u}) uGy,T,(x(F;G)y, {u}) r

Gy, T )

G)uev

X(F;G)y, I
xFuT, (x(F;G)y,IU U {u}) uG_y, I, (x(F;G)y,U U {u}) () uev-U
X(F; Gy, Uy, T (if U=YV)
xPTxl" (ref) x—dgx,l" (-ref)
xP1, z;i? r (ifX;F;l’ :E/)Pl,l" (as1) xﬂPi;ﬁyl’:’l}, F(if x;i )S’l,l“ (~asl)
LB e AT g

SO0 000000000000000000000 10000000000000000000000O
0000000000000 000000 PeAOD xeV-{1})000 xP1OO x-P1lO0TOeO0O0O00OOOO
goboobbooboobbooboon

Theorem?24(Q00000). VOOODODOUODODODOODODOO G)00D0DO0 YO vY-UDOODOODOOuOO
cobobobooobooooooooooOoocOoOoObocOobOOoOoOobOoOooobooOoOon

00000 21000 22000 $¥00000000O00O0O0O0O0OOOOOO

Theorem25Q0000000000O). 000 RLIS-DO xFyO $25000000000O0OO0ODO0OO0OO
000000 000000000 TOOOOOD xFyo Q00000000000 000O0O0OOO xFyoDO
000000000 Q*d¥OUooooooooo

00000000 00o0o0DoDo0oo0oo0 YO 3000oDUOUODODoOODOOoODOODO0O0DOoDOoOooDODoOoOOooOoOOoO
0000000000000000000000000000000 Armstrong0 00 (DOOOOOOO
PRQ=QOP=Q)>(PS=Q90(P=Qn(Q=9)>(P=S)0o000oooovo 3000000
00000000000 DOOO0O0OO0 YO 30ODUOODODODOODO0DOO0O0O0O0O0OO0O0OO0O0OOODOOODOOO

good

[1] W.MacCaull, A Proof System for Dependencies for Information Relations, Fundamenta Informaticae, 42,
ppl-27, 2000



Demonic orders and quasi-totality in Dedekind categories

Yasuo Kawahara (Ji]Jit HERE)
Department of Informatics, Kyushu University
(FUM R AT DEEREHAFSERT)

Hitomi Okuma (K ON& Z2)
Department of Informatics, Kyushu University

QUMK 27 LI ERVER)

Abstract

This paper presents a proof of the associativity of demonic composition of relations in
Dedekind categories and shows that the demonic composition is monotonic with respect to
two demonic orderings on relations, which are defined by quasi-total relations, respectively.

1 Introduction

Relation algebras [8] are suitable for describing semantics of relational programming [4]. In particular
demonic composition [2, 9, 1, 5, 10] and demonic orderings will be useful for designing nondetermin-
istic programs [3, 10, 11]. For concrete relations R and S, the demonic composition R ® S relates
elements = with elements y exactly if x is related with y by the usual relational composition RS and
the image of x under R may not lie outside the domain of S (which should never be confused with
the categorical concept of source of morphism):

(z,y) EROS < [Vz:(x,2) € R= z € dom(S)] A (z,y) € RS.

In this paper the demonic composition in Dedekind categories [6, 7] will be defined (without using
complement operator). The proofs of associative law of demonic compositions are given earlier in
[2, 9, 1, 5], here we give a proof using properties of Dedekind compositions. Moreover we study two
demonic orderings of relations originally introduced by Desharnais et al. [5] and Xu et al. [10] and
show several fundamental properties of them in Dedekind categories. In Section 2, we first review
the definition of Dedekind categories. Then we introduce the demonic composition in a Dedekind
category, and show some of its properties. In Section 3, we define quasi-totality of relations and
give the definition of two refinement orderings, and provide existence conditions of the supremum
and values of supremum and infimum of a set of relations with respect to both refinement orderings,
respectively. Finally we prove the monotonicity of the demonic composition on these orderings.

2 Demonic Compositions

We will generalize demonic compositions into Dedekind categories and give a proof of associativity
of the demonic compositions using properties of Dedekind compositions.

We first review the definition of a Dedekind category, a kind of relation category (following Olivier
and Serrato, 1980) which is our general framework.

Throughout this paper, a morphism « from an object A into an object B in a Dedekind category
(which will be defined below) will be called a relation, and denoted by a half arrow o : A — B. The



composite of a relation a : A — B followed by a relation g : B — C will be written as a8 : A — C.
We denote the identity relation on an object A by id 4. The composition operator will bind stronger
than all other binary operators.

Definition 2.1 A Dedekind category D is a category satisfying the following:

D1. [Complete Heyting Algebra] For all pairs of objects X and Y the hom-set D(X,Y") consisting of
all relations of X into Y is a complete Heyting algebra with the least relation Oxy and the greatest
relation V xy. Its algebraic structure will be denoted by

D(Xa Y) = (D(Xa Y), Ea L|, Ha OXYa VXY)~

That is, (a) C is a partial order on D(X,Y), (b) Va € D(X,Y) = 0xy T a T Vxy, (c¢) Uxeaan C o
iffay Caforalld € A, (d) a C Myepay iff & C ay forall A € A, and (e) afM(Uxeaan) = Urea(allay).
D2. [Converse] There is given a converse operation * : D(X,Y) — D(Y, X). That is, for all relations
a, o X —-Y,B:Y — Z, the following laws hold:

(a) (aB)t = ptat, (b) (a¥)f =, (c) If a C o/, then of C o*.

D3. [Dedekind Formula] For all relations « : X — Y, 8:Y — Z and v : X — Z the Dedekind
formula a3 M~ C a(3M afy) holds.

D4. [Residue] For all relations 8 : ¥ — Z and v : X — Z the residue (or division, weakest
precondition) v +  : X — Y is a relation such that o C ~ if and ounly if « C v + g for all
morphisms a: X — Y. O

If all relations in a Dedekind category have complements, then the Dedekind category is called a
Schréder category. It is well known that in a Schroder category the Dedekind formula is equivalent
to an equivalence

afCy & oy " CH & 7y FCa”
which is called Schréder rule. A relation f : X — Y such that f*f C idy (univalent) and idx C ff*
(total) is called a function and may be introduced as f : X — Y. A Dedekind category D is called
uniform if VxyVyz = Vxz holds for all objects X, Y and Z in D.

Before we define the demonic composition of relations in a Dedekind category, we consider the
Dedekind composition o © 3 defined by afy C §iff v C o © 3 for relations v : X — Z. It is easy to
see that a © 8 = (8% + )™

The demonic composition in a Dedekind category D is defined by
a®fB=aBN (a6 BVzz)

for relations « : X — Y and B : Y — Z. In Schroder categories it is clear that the demonic
composition o ® 3 can be rewritten to

a®f=afN(a(BVzz)" )"

The proofs of associativity of demonic composition using properties relate to complement were given
in [2, 5]. Desharnais et al. [5] also give a proof of associativity by embedding a demonic semilattice
in a relation algebra.

Proposition 2.2 Let o : X — Y and 0 : Y — Z be relations in a Dedekind category D. If « is
univalent or 3 is total, then a ©® B = af. In particular, idx ©®© a = a @ idx = «.

Proof. First note that a ® 8 = a3 iff a8 T a © BV 4z iff afaf T V7. When « is univalent,
alaB T BT BV zy. Next assume 3 is total. Then Vyz C 86!Vy 4z C 8V 4z, and so afaf T SV 4.
Consequently the last claim is clear from the fact that idx is univalent and total. O

The domain relation dom o : X — X and the range (codomain) relation ran  : ¥ — Y of
a: X — Y are defined by dom o = aef Midx and ran a = afa Midy, respectively.

We have the following properties relate to the domain and range relations.



Proposition 2.3 Leta: X — Y, 3:Y — Z and v : X — Z be relations in a Dedekind category

D. Then the following hold:

(a) a(ran o) = a and (dom a)a = .

(b) ranyC ran < vC Vxyf and dom v C dom a < v C aVyyz.

(c) a® B = (dom v)af where y =a© (fVzz).
)

(d) If w C idx and VxzVzx = Vxx, then u C dom ~ iff ran (ua) C dom 8 where v = a ©
(BVzz).

Proof. (a) It is clear from

afrana) C « {ran a Cidy }
= oaNaidy
C a(afanidy) { Dedekind formula }
= «afran a).

(b) Assume that ran v C ran 8. Then

y(rany) {(a) }

~(ran 3) { assumption }

V83 {ran g =ppnid; C B8 }
VxyB. {8 CVxy }

Conversely assume that v C Vxy (. Then

gl

InRInRimE|

rany = AfyNidy { definition of range }
C +VxyfBNidy { assumption }
= (Y"Vxy Nidzp*)BMidz { Dedekind Formula }
C B*BNidg
= ran 3. { definition of range }
(c) Set v = @ © BV zz. First we show that v = (dom v)Vxz. We have
7 = (dom )y {(a)}
C (dom y)Vxz {7YCVxz}
= (y7/¥Midx)Vxz { definition of domain }
E Vzz {¥*VxzCVyzz}
= { Proposition A.3(e) }

Hence v = (dom v)Vxz. Thus a ® 8 = af M~ = af M (dom v)Vxz = (dom v)aS by Proposition
Al(a).
(d) Assume v Cidx and VxzVzx = Vxx, and set v = a« © fVzz. Then

uC dom~y < dom u L dom vy {u=domu}
& uCAVzx =a80Vzx { (b) and Proposition A.3(e):VxzVzx =Vxx }
& ofuC BVzx
& ua T Vxgft { conversion }
& ran (ua) Cran B8 =dom 8 { (b) }

O

Backhouse and van der Woude [1] and Xu et al. [10] also gave the definition of demonic composi-

tion. The device used by them to restrict the domain of a relational composition is not intersection,

but, instead, composition with a so-called ‘monotype’, that is, a relation below identity relation.

The equivalence of their definition to our definition of demonic composition is clear from (c¢) and

(d) of the last proposition. In [1] there is a proof of associative law for demonic composition using
properties of monotype.

Before we see associativity of the demonic compositions we have to show the following lemma.



Lemma 2.4 Leta: X — Y, B:Y — Z and v : Z — W be relations in a uniform Dedekind
category D. Then the following hold:

(a) ao (BOY)Vww = (¢S ByVww) N (aB S Vww).
(b) a(Boy) M (afOvVww) =apyM (af ©vVww).
a®(Boy)=afyM (o (BVww N(BOTYVww))).
(a®B)y=aByN(as pVaw).
() (x®B)orVww = (26 BVzw) = (afOVww).
() («eB)oy=afyN(ac (BVzw N (BSYVww))).
Proof. (a) It follows from

ao (5 O] ’)’)VWW
ao (ByN(BovyVww))Vww

C

)
()
(d)
)

- as (ByVww N (BevVww)) { Propositions A.3(e) and A.1(b) }
= (@0 yWVww)N(as (B8vVww)) { Proposition A.3(c) }
= (aepyVww)N(afSyVww). { Proposition A.3(d) }

(b) It follows from
a(BOY) N (aBOYVww)

= ayn(BeryVww)) N(ee (BevVww)) { Proposition A.3(d) }
= afyN(as (BoyVww)) { Proposition A.3(f) }
= afyn(afeyVww). { Proposition A.3(d) }

(c) It is a direct corollary of (a) and (b):

a®(BoY) a(Boy)N(ao (BOY)Vww)

a(BOy)N(ao ByVww) N (aBoyVww) {(a)}
afyN(ae fyVww) N (aB ©yVww) {(b)}
afyN(ao fyVww) M (ae (BvVww)) { Proposition A.3(d) }
08111 (0 & (37w 1 (367w ). { Proposition A.3(c) }

(d) It follows from

(a0 © B)y (aBT (O BV 22))y

(af N (@& BVzz)Vzz)y { Proposition A.3(e) }

abyN(a© pVzz)Vzw  { Proposition A.1(b) }
}

aByN (a6 BVzw). { Proposition A.3(e)

(e) It is immediate from

(a®p)erVww

(@B (a6 BVzz)) ©vVww

(af M (@6 BVz2z)Vzz) ©yVww  { Proposition A.3(e) }
(@©pVzz)Vzw = (aBSvVww) { Proposition A.3(h) }
(a©fVzw) = (afSYVww). { Proposition A.3(e) }

(f) It is a corollary of (d) and (e):
(@@ p)Oy
= (a@p)yn(eopf)orVww)
= apyN(aepVzw)N((@spfVzw) = (afSVww))  {(d), (e) }
= afyN(as Vzw) N (aBSYVww) { Proposition A.2(c) }
= afyN(ae (BVzw N(BSyVww))). { Propositions A.3(d) and A.3(c) }

Now we show the associative law of the demonic compositions.
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Theorem 2.5 Let o : X — Y, 0:Y — Z and v : Z — W be relations in a uniform Dedekind
category D. Then the associative law a ® (8 ® ) = (e ® B) ©® v of the demonic compositions holds.

Proof. By Lemmas 2.4(c) and (f) it suffices to see an equality SV zw M (8 S vVww) = SyVww M
(B ©~vVww). Applying Proposition A.3(f) one can see that

BV zw N (BSYVww)
= B(Vzw NyVww) N (BEeyVww) { Proposition A.3(f) }
BYVww M(BEYVww).

(Il
Example 2.6 Take the following homogeneous relations «, ¢’ and 8 on a set X = {1, 2} represented

by Boolean matrices:
(10 ;11 (10
a—(o()),a—(oo)andﬁ—(oo).

Then a CE o/, but a ® B Z o ® § since
) and

a@ﬁZQB:((l) 8><(1)
, 11 10 00
O‘QBZ(O 0)®(0 0)2(0 0)'

3 Demonic Orderings

o O
SN—
Il
7 N\
O =
o O

As we see in Example 2.6 the demonic composition is not monotonic with respect to the ordering C
on relations. For ensuring the existence of the fixed points of a recursively defined program, we need
other orderings among relations on which the demonic composition is monotonic. There are two
refinement orderings which are introduced by Xu et al. [10] and Desharnais et al. [5], respectively.
In this section we define these refinement orderings in Dedekind categories, and show some of their
properties, and finally prove the monotonicity of the demonic composition on these two refinement
orderings.

We first recall that each hom-set D(X,Y’) has relative pseudo-complement, that is, for any two
relations « and [ in D there is a relation a = ( such that a M~y C g iff v C a = 3 for all relations

Y.

Define ot = aVyy = « for every relation o : X — Y in a Dedekind category D. A relation o
is called quasi-total if o™ = . We can easily see that all total relations are quasi-total as follows: If
« is total, then Vxy = idxVxy C actVxy C aVyy. Hence at = aVyy = a=Vxy = a = a.
All quasi-total relations are total in uniform Schréder categories. To prove this claim it is enough
to show that aVyx = Vxx for each quasi-total relation o, because of the fact that idx C aaf
iff aVyx = Vxx. If a is quasi-total then aVyy = Oxy C aVyy = a = a C aVyy and so
aVyy = 0xy = (aVyy = 0xy) M aVyy = 0xy. In boolean lattices (or equivalently, in Schroder
categories) 6 = Oxy = ¢~ for each relation § : X — Y, and so aVyy = (aVyy)™ ™ = (aVyy =
OXY) = OXY — OXY = OXY = ny. Therefore OéVyx = CkVyvaX = nyvyx = VXX by the
uniformity.

Proposition 3.1 Let a: X — Y be a relation in a Dedekind category D.
(a) a Cat and o™ =at. (Bvery o™ is quasi-total.)

(b) aVyy = « iff at = Vxy. In particular O}Y =Vxy and (aVyy)t =Vxy.



Proof. (a) It is trivial that « C a™. Also a™ = atVyy = (aVyy = a) = (a*Vyy MNaVyy) =
a=aVyy = a = a’ by Proposition A.2(d).

(b) Assume aVyy = a. Then a™ = a = a = Vxy. Conversely assume aVyy = a = Vxy. Then
aVyy = aVyy MVxy = aVyy Ma™ = a by Proposition A.2(c). Hence a = aVyy. O

In a Dedekind category D two demonic refinement orderings < and = of relations o,/ : X — Y
are respectively defined in [10] and [5] as follows:

a<a Y acoCat { Xu et al. [10] }
& o NaVyy =a
& at=aVyy = o
/ ‘ig / / + 4
a2 aVyy Co'Vyy A o Tat  { Desharnais et al. [5] }
We can obtain straightforwardly from the above definitions that a < o’ implies o < «/'.

Proposition 3.2 Let a: X — Y and o’ : X — Y be relations in a Dedekind category D. Then the
following hold:

(a) If aVyy = «, then a < ' iff « C &'. In particular Oxy < « and Oxy =< .
(b) If aVyy = a, then a 2 ' iff « C o'Vyy. In particular aVyy =< a.

(c) a<a’ and a 2 at.
(d

(e) If aVyy J&'Vyy and a X &, then o' C a.

)
)
) acdta < a.

)

Proof. (a) Assume aVyy = a. Then the assertion is trivial since a™ = V xy by Proposition 3.1(b).
(b) Tt is trivial from the definition.

(c) By Proposition 3.1(a) we have o C o™ C a™ which means a < o, and so a < a™.

(d) Tt follows from aafaVyy C aVyy and a C acfa C (aafa)t by Proposition 3.1(a).

(e) Assume that aVyy 3 o/Vyy and a < o’. Then we have o/ = o/Vyy Mo’ C aVyy Na® =«
by Proposition A.2(c). O

Next we see the demonic refinement orderings are orderings on the hom-set D(X,Y).

Proposition 3.3 Relations < and < on the hom-set D(X,Y) are orderings.

Proof. (Reflexive law) a < o and @ < « follows from a fact « C o C ot by Proposition 3.1(a).
(Transitive law) Assume that o < o/ and o/ < o, that is, a C o/ C ot and o’ C o C o'T. Hence
aC o C o and

o C oVyy=d { o' C o/t }
C oVyy = (aVyy =a) {dCat}
= (o/VyyNaVyy)=a { Proposition A.2(d) }
= aVyy = a. {aCd}
= ot

Similarly o < o/ and o/ < " imply o < o”.
(Anti-symmetric law) Assume that a < o’ and o < «. First note that aVyy = o/Vyy. Then using
Proposition 3.2(e) we have a C o’ and o C «. Hence o = /. Anti-symmetry of < is trivial. O

Example 3.4 Consider the following relations on a set X = {1, 2} represented by matrices:

1 1 10 .
a<0 O)avxxanda'(o 1)1dX.

Then a X o' (aVxx EVxx =a'Vxx and o/ E Vxx = a™), but a £ o/ because o IZ o'.



Lemma 3.5 Let o, : X — Y be relations in a Dedekind category D. If o' is univalent and o C o/,
then o C ot and consequently o < o/ and o = o

Proof. Assume o’fa’ € idy and a C «'. Then

o MaVyy L aafa’ { Dedekind Formula }
C ad®d {aCd}
C a. {a*a/ Cidy }
Hence o/ C a™. O

By the above lemma if « is quasi-total and o’ is univalent, then o E o implies o = o’.

The following proposition characterizes maximal elements in the demonic orderings:

Proposition 3.6 (a) A relation a : X — Y is mazimal in (D(X,Y), <) iff it is quasi-total (o =
a™).

(b) Suppose a relational axiom'of choice. Then a relation o : X — Y is mazimal in (D(X,Y), <)
iff « = at and ofa Cidy.

Proof. (a) Assume that « = a® and @ < /. Then a C o/ and o’/ C at = a. Hence a = o’ and so «
is maximal. Conversely assume that « is maximal in (D(X,Y), <). Then a = a™ follows from the
maximality of « since oo < o by Proposition 3.2(c).

(b) Let o = ot and afa C idy. Assume a < o/. Then o/ C ot = a and so o/ < a by Lemma
3.5. Hence o = o’ by the anti-symmetric law of <, which proves the maximality of a. Conversely
assume that « is maximal in (D(X,Y), <). Since @ < at by Proposition 3.2(c) the maximality of
a leads o = a™. Now by the relational axiom* of choice there exists a univalent relation f: X — Y
such that f C « and fVyy = aVyy. Then a < f since aVyy = fVyy and f C o = a™. Again
by the maximality of o we have o = f, which proves that « is univalent. O

Theorem 3.7 Let A be a nonempty subset of D(X,Y).
(a) The supremum of the set A in (D(X,Y), <) exists if and inly if
Uacaa & ﬂaerﬁ.
When this condition is satisfied, the supremum is
sup< A = Ugeaa.
(b) The infimum of A in (D(X,Y), <) always exists, that is,
inf<cA=U{ag | ap C Macaa and Ugca o T aa'}.
In particular, inf< A = Myeaa when Ugeaa C (Maeaa)™.

Proof. (a) Set g = Upeac. We prove the existence condition and the value of the supremum. Let
o’ be any relation. Then

VaoeA:a<do
& { definition }
YVacA: o' MaVyy = a Aoy C MNeeaat
=2 { =: o' NayVyy = UaeA(O/ 1 OéVyy) = Qo
«: Because o C ap C o' and o/ MaVyy = o MagVyy M
aVyy =apMaVyy C at aVyy = a. }
o' MagVyy = ag Aag C |_|ae,404+
& { definition }
ap <o/ ANag E Maeaa™.

LA relational axiom of choice: for every relation o : X — Y there exists a univalent relation f : X — Y such that
f E a and vKy = Ochy.



(b) Denote by Ag the set of all lower bounds ag of A, that is Ay = {ap|ap C MacaaAUgcaa C af },
and set ., = Ug,ea,0. Obviously Ag is a nonempty set, since a zero relation Oxy is a lower bound
of A. Let o’ be any relation, then we obtain

VaoeA: o <a
& { definition }
Vo€ A:aMao'Vyy = o
=4 { =: a,MNaVyy CEala'Vyy =o' Ma'Vyy E a, Na'Vyy
since o’ € Ag. }
o, Mo’ Vyy = o
& { definition }
o < ay,

where the second < follows from o’ C «a, C a and the next computation

a C |TCYO’EAOO{(—)F
= Magea,(@Vyy = ap)
C Magedo(@Vyy = a.) { Proposition A.2(g): oo C . }
= (Uageao,@oVyy) = a. { Proposition A.2(e) }
= a*VYy = Oy
C a'Vyy=aot { Proposition A.2(g): o/ Ca. C o/t }
= ot { Proposition A.2(d) }

We next see the supremum and the infimum of a chain with respect to < found in [10].

Proposition 3.8 Every chain A in (D(X,Y),<) has the supremum sup< A = Uscaa and the infi-
mum inf< A =Myecaa.

Proof. (i) By the virtue of the last theorem it suffices to see that every chain A in (D(X,Y), <)
satisfies Lgeaa C Maeaa™’. The inequality is equivalent to a fact that o/ E at for all o/,a € A.
But A is a chain, so o < o or o < . In the case of o < ¢ it is trivial that o/ C at. Also in the
case of &/ < a we have o C a C a™.

(ii) It suffices to show that Myeqc is a lower bound of A, that is, Ugeaa T (Maeaa)™, which is
equivalent to o/ M (Maeaa)Vyy C a for all o/, € A. But A is a chain in (D(X,Y), <), so a < o/
or @' < . In the case of a < o we have o/ M (Maeaa)Vyy C o MaVyy = a. Also in the case of
o/ < a it is trivial that o/ M (Mpeaa)Vyy C o' C a. a

We now see the supremum and the infimum with respect to < found in [5].

Proposition 3.9 Let A be a nonempty subset of D(X,Y).
(a) The supremum of the set A in (D(X,Y), =) exists if and only if

UaeadVyy C (Maeaa™)Vyy.
When this condition is satisfied, the supremum is

sup< A = (UaeaaVyy) N (Maeaa™).

(b) The infimum of A in (D(X,Y), =) always exists, that is,

infjA = (UaeAa) M (ﬂaeAavYY)v



Proof. (a) Set ag = (UpeaaVyy) M (Macaa™). Noting that when the condition UyecaaVyy C
(Macaa™)Vyy holds
)

a2 Vyy = (UacaaVyy) M (Macaa™)Vyy = UacaaVyy

and so g can be rewritten to
_ +
g = agVyy M (Macaa™),

we prove the existence condition and the value of supremum of A. Let o’ be any relation. We have

VaoeA:a=<d
& { definition }

UaeaadVyy C o/Vyy Ad’ E Macaa™ AlgeaadVyy E (Macaa™)Vyy
YEN {=:d NayVyy C (Macaa™) MagVyy =ap }

aVyy Ca&'Vyy A C af AlgeaaVyy C (Macaa®)Vyy
& { definition }

ag 2 & ANlaeaaVyy E (Maeaa™)Vyy,

where the second <« follows from

o' MaVyy

ag MaVyy {a'Caf}

(OéoVyy = Oé()) MaVyy

ap N aVyy { Proposition A.2(f): aVyy C agVyy }
&%)

ot

)

1M

I

which implies o/ C aVyy = at = a™ for each o € A by Proposition A.2(d).
(b) Set ag = (I_IaeAa) I (l_laeAOéVYY)- Then agVyy = ﬂaeAaVyy and so ag = (UaeAa) NagVyy.
So we have the following equivalences for any given relation o’

Vaoc A:ad X«

& VaeA:ad'Vyy CaVyy AaC o/t { definition }
& o'Vyy CEagVyy Algeaa C o/t { definition }
& oVyy EaVyy Aag E o'F { = a0 CElseaaCa* }
< o < a, { definition }

where the third < is shown as follows. Consider the following computation
(Uacaa) Ma'Vyy E (Uaca) MagVyy = ag E o'?,

which implies Uyeaa E o' by Proposition A.2(d). O

Lemma 3.10 Let a: X — Y and 3: X — Z be relations. Then a ® = aBM (a™ © BV zz).

Proof.
a®B = aff(asfVzz)
aﬁﬂ(aVnyIoﬁ)@BVZZ {OéZ(XVyyl_lOz+ }
(
(

= afn(aVyz = (et ©8Vzz)) { Proposition A.3(h) }
= afN(at6pVzz) { Proposition A.2(f) }

O
In the following discussion, a map which is monotonic with respect to < or =< is called <-

monotonic or <-monotonic, respectively. The next proposition shows that the demonic composition
® is <-monotonic and =<-monotonic.

Proposition 3.11 Let a,§: X — Y and B:Y — Z be relations. Then the following hold:



(a) Ifa<d and <, thena® B <d 0 F.
(b) Ifa=<a and B< ', thena® B =<a OF.
Proof. (a) Assume that « C o/ C ot and 3 C 3’ C 3%. Then

afn(at™©pVzz) { Lemma 3.10 }
o' ©BVzz) {aCd Cat, BEF }
adopf.

a®pf

[

and

(@8N (a®B)Vzz

C B NaVyzN(at©pVzyz)
{ (@@ p)Vzz=0apVzzN(aT©pVzz) EaVyzMN(at©BVzz) }
C at™fnatoepVzz)NaVyz { o Cat}
C o™ (f/MpVzz)NaVyy { Dedekind formula and Proposition A.3(a) }
C affNaVyz {BNpVzzEBby B EFT}
= (atNaVyy)s { Proposition A.1(b) }
= af.

Hence (o/ ©@ )N (a®B)VzzEla®Bandsod ©F C (a®B)".

(b) Assume that aVyy C o/Vyy, 8Vzz C #Vzz, o/ € ot and 8/ C BT. First note that
at 6 BVzz C o ©'Vzz by the assumptions o C o™, fVzz C 'Vzz and Proposition A.3(i).
Then

(@©B)Vzz
afVzzMN(at6BVzz) { Lemma 3.10, Proposition A.1(b) and A.3(e) }

C afVzzMN (o' ©F'Vzz)

C o'VyzN(/©3Vyzz)  { assumption }

C af'VzzN (o ©8Vzz) { Dedekind formula and Proposition A.3(a) }

C (& ©p)Vzz.
We have to see o/ © 8/ C (a® )T, but this claim can be shown by the same argument of the second
part in the proof for (a). O
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A Basic Properties of Relations

In this section we list a few basic properties of relations.

Proposition A.1 Leta: X — Y, 0:Y — Z, n: X — W andu : X — X be relations in a
Dedekind category D. Then the following hold:

(a) IfuCidx then uVxy Ma = ua.
(b) (aMnVwy)B=afMNnVwz.
O

Proposition A.2 Let o, (3,7 : X — Y be relations in a Dedekind category D. Then the following
hold:

(a) BEa=p.

(b)) a=a=Vxy and Vxy = a = .
(c
(d

N(a = B) =ang. In particular aVyy Ma™ = a.
a= (8=7)=(anp)=~. In particular aVyy = o™ =a™.
(aud)=pB=(a=p)N( = p).
f) Ifa C B, thenan(B=7)=al"7.

)
) o
)
(e)
(f)
(¢) Ifadd and BEF, thena= FC o = fF.

(I

Proposition A.3 Leta, o : X =Y, 3,8 :Y - Z,6:Z =W and £ : X — W be relations in a
Dedekind category D. Then the following hold:

(a) of(@e ) C 5.

(b) («eB)d Eae (B9).

(c) ac(BNp)=(acpf)N(ac ).

(d) (aB)ed=ac(B69).

e) If VwzVzw = Vww, then (a« © fVzz)Vzw = a © Vzw.

)
)
)
()
) anpinacf =afnaof.
)
)
)

f
(g (€VWX |_lid-X) Ca= EVWY = Q.
(h) (EVwy Na)SB=EVwz = (a0 p).

(i) Ifada and BE S, thena©BC o’ 6 0.
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A study on an immune network dynamical system model

Satoko Itaya
ATR Adaptive Communication Research Laboratories Dept. 2

81. Introduction
Recently, there has been considerable interest in the development of autonomous
networks in various fields. Autonomy in information devices in personal and home network
and the research related to ad hoc networks are especially active areas. Immune systems
seem to be good examples of autonomous network systems that do not have central
management. | have been interested in whether dynamical models of immune systems may
give us an understanding of this aspect of immune systems. At this research meeting, |
report about the characteristics of immunity seen in some dynamical network models.
First, | give an about the outline of immunity in 82, and then explain the dynamical model
in 83. In 84, | describe the relation between the formation process of the network and its

structure. A summary and guidelines for the future are mentioned at the end.

§2. Immune system

We humans have two immune systems in our body. One is natural immunity, the other is
adaptive immunity. All animals have natural immunity. In this system, phagocytes,
complements and cytokines work together. Natural immunity has low recognition and fast
action (on the order of minutes or hours). But, it does not change with age or experience of
transmission, and it has no memory. Only vertebrate animals also have adaptive immunity.
In this system, lymphocytes, antibodies, and cytokines work together. It has high recognition
and slow action (on the order of days).

Next, | will explain about the solid structure in the antibody which is the leading part of this

research. The typical shape of immunoglobulin is like the letter Y (Fig.1).

V region
\\/ \//
Cregion
(a) Immunoglobulin (b) Idiotype

Fig. 1 The basic structure of (a) immunoglobulin, (b) Idiotype



The upper part of the Y is called the “various region” because the arrangement of the gene
often causes mutation and rich changes. In contrast, the part at the bottom of the Y is called
the “constant region” (Fig. 1 (a)). We call the three-dimensional structure of the V region,
which is characteristic of each immunoglobulin, an idiotype (Fig.1 (b)).

There are two kinds of immunoglobulin. One is the membrane-bound immunoglobulin. It
uses B-cell antigen receptors. B-cells connect antigens with this receptor. And they have the
same structure of antibodies, which they can produce. Generally, B-cells cannot produce

only through this action. It is a trigger for the setup of antibody generation in B-cells.

(b)

Fig.2 (a)B-cell and membrane-bound immunoglobulin and (b) anitibodies

The other kind is secreted immunoglobulin. Generally, this is called an antibody. Antibodies
have several roles in the immune system. First, antibodies neutralize antigens. And
antibodies make it easier to reject invading antigens. For example, the C regions of
antibodies excite phagocytes, and the antibodies and antigens make a cross-link structure.
They become big lumps, and so they are easily found by other immunocytes.

When B-cells are activated, they produce antibodies. There are some roots that exist for
B-cell activation. One is the T-cell-independent response. Two typical materials make this
type of reaction.

Material objects, which cause cell division, immediately activate B-cells, which cannot
recognize the antigen. This is not remembered.

The antigens that have the structure repeated with the same antigenic determinants can
cross-link the receptors of B-cells to recognize the antigen. This reaction is also not
remembered.

Another is the T-cell-dependent response.

First, the macrophage preys on an antigen. It expresses the protein of the antigen that
resolved it in its cell surface, and gives the antigen presentation. The changed phagocyte is
recognized by a helper T-cell, and the helper T-cell influences the maturity of the B-cell by
using the chemical substance of interleukin. This interleukin is the cause of fever and
inflammation. The activated B-cell matures with splitting. Some parts of the split B-cell
maintain memory cells, and the other parts become plasma cells. Plasma cells can produce

antibodies, and memory cells can change to plasma cells quickly. As a response proceeds,



its suspension is influenced to the B-cell with the use of interleukin by a suppressor T-cell,
and the response is settled.

In 1974, Jerne advocated the theory of the idiotype immune network (ref.1). His theory is

as follows.
Generally, an inactive immune system is activated with the invasion of antigens. However,
we want to keep minimum number of active immune system members. For this reason,
when there is no invasion of antigens, a minimum number of members are activated with the
personal protein and the cell. For example, an antibody molecule is formed inside the body
due to an unintentional mutation. The new antibody formed at random must be a foreign
substance for the antibody that has existed inside the body from the first. Because of that,
we can easily imagine that an antibody to react with the antibody is newly formed. In this
way, one antibody responds to another antibody as an internal image of external antigens
and we keep a minimum number of active immune system members. This is his theory, the
network theory. This theory is partly right and it is experimentally well known that the
antibodies of the neogenesis mouse have antibody-antibody interaction. But because the
experimental study is very difficult to conduct on adult animals, and because other immune
cells, T-cells, etc., and some classes of interleukins have been discovered, the network
theory has received less attention.

In 1988, Varela et al. proposed a dynamical system model in which both B-cells and
antibodies are taken into account (ref. 2). He introduced the effects of T-cells and interleukin
as functions of the B-cell. Here, | introduce some models of theoretical immunology and
recent fields of application.

In 1989, Bagley et. al. defined the 3-dimensional structure of antigens, and investigated the
topology of the network (ref. 3). In 1990, Parisi investigated the capacity of memory with the
simple spin-glass idiotype network model (ref. 4). In 1993, De Boer et. al. considered the
structure of the cross-link of MIgs, and advocated the B-model (ref. 5). In B-models, B-cells
proliferate according to a phenomenological log bell-shaped function. In addition, there is

the activated preparation of antigen generation model, the vaccinated model, and so on

83. Model

In this study, we use Varela’s model.

One of the reasons is that there are two equations, for both antibodies and B-cells. And the
effects of interleukins and T-cells are described as a function of the maturation and

proliferation of B-cells. This model is described by the following two equations (equation 1).



o,

o =-Ks,; f, - K, f, + K;Mat(s ;)b
&b 1)
d_t':- K,b + K Prol(s,)b +K,

i=1,...,N  f, ;concentration of antibodies, b, ;concentration of B-cells
Mat(s ;) ; function of maturation of B-cells, Prol(s ) ; function of proliferation of B-cells,
K., ; the rate of death by antibody-antibody interaction, K, ; the rate of natural death of
antibodies, K3 ; the rate of antigens generated by B-cells, K,; the rate of natural death of

B-cells, Kj;the rate of increase of B-cells, Kg; the rate of supply of B-cells from bone marrow

First, there is the equation of the concentration of antibodies. In this equation, the first term
is death by antibody-antibody interaction, the second term is the natural death of antibodies,
and the third term is antigen generated by B-cells. Second, there is the equation of the
concentration of B-cells. In this equation, the first term is the death of B-cells, the second
term is the increase of B-cells division, and the third term is supply of B-cells from bone
marrow. This pair of equations describes the behavior of the i th clone. If there are two
clones, the concentrations of two clones change in the anti-phase. For example, B-cell 1 can
generate free antibody-1. There are many B-cell-1s and produced free antibody-1s. We call
the whole group “CLONE”".

The constituents of the network, the free antibodies and B-cells, interact with each other

through idiotypes. Between two different idiotypes i and j, there may occur an affinity, which

is represented by the connectivity m;. We set m, = 1if there is an affinity between i and j,

and m, = 0if there is none. In some cases, m, =1 is experimentally measurable. The
sensitivity of the network for the i th idiotype is defined as
o N
si=a,mf; @

The probability of the maturation and proliferation of B-cells is assumed to depend on their
sensitivity S . An antibody is formed only from a B cell (plasma cell) that has matured. It is
well known that both of these functions have dual thresholds depending on affinity.

In order to understand the effect of the maturation and proliferation functions, we change
these functions. Even though the function was changed, we found that typical behaviors
were maintained (ref. 6). Because of these results, we modify the model by choosing simpler

functions (Fig. 3).



15 1
My o) Prol{e)

Fig. 3 The mature and proliferation functions used in this study

Here, we introduce a threshold above which antibodies can recognize antibodies and
antigens. This is because recognition is not possible if the concentration of antigens inside
the body isn't comparatively high. In this case, there are some non-symmetric limit cycles
depending on the value of the threshold. We call this condition the differentiating state.

Next, we set the elements of a connectivity matrix depending on the concentration of

antibodies. If i does not equal j, when f]- > f,, antibody j is recognized by other antibodies,
and m; =1.Andwhen f, < f, antibody jis not recognized, and m; = 0. Here, because

we assume they don't have self connectivity, if i equals j, m; = 0.

Next, we studied response to the external perturbation in a small network. In a small
network of this model, non-symmetric limit cycles exist. In a 3-clone network, each clone has
an S-state or L-state condition and there is a differentiating state with two L-state and one
S-state clones.

The S-state has a short time over the threshold, and the L-state has a long time over the
threshold. Now, clones can respond to an antigen only when their antibody concentration is
over the threshold. In view of this, the S-state is unsuitable and the L-state is suitable for
reacting with antigens. It can also be said that the short-term memory of the network is

suitable when the clone is L-State (ref. 6).



VANVAN

(a)Caset (b)Case2

Fig. 4 Antigen invasion

We considered two cases of antigen invasion in a 3-clone system (Fig. 4). In case 1, we
consider that external antigens similar to antibodies f,invade the 3-clone closed network.
In case 2, we consider that external antigens interact only with clone-1. In both cases, we

introduce the antigen equation as follows.

dA
a =" A(t)A+ K? 3

A is the concentration and K. is the increase rate of antigens. And in this equation, S ,

is defined respectively in case 1 (4) and case 2 (5).

S A(D) =my, (1) (1) +m(t) fo (1) (@)
S A(t) = Q( fl(t) - gl,o) fl(t) (5)

In both case 1 and case 2, when the reproduction rate of antigens becomes high, it shifts to
a more proper attractor arrangement, and the antigens are caught.

We also study antigen invasion in a 4-clone system in 3 cases, (a) the case where a clone
that can respond with antigens is L-State, (b) the case where a clone that cannot respond
with antigens is L-State, and (c) the case where the system is chaotic. In this figure, we
compared the average time of antigen moderation.

The relaxation time Ta for case (a) is the shortest, and Tb for case (b) is the longest.
Relaxation time Tc for case (c) is between Ta and Tb. These results suggest that a chaotic
state is more effective than the differentiating states for preparing for various types of
antigens.



Fig.5 (a) The clone that can respond with antigen A is L-state, (b) the clone that

can NOT respond with antigen A is L-state, (c) the system is chaotic

We have written in detail about these results in ref. 6.

84. Formation process and network structure

Before considering a large network, it is an important problem to consider whether a
network is truly one network or whether it can be divided into sub-networks. If the network
can be divided into sub-networks, the study of the smaller networks is very important. As for
this model, the condition that the concentration of each clone's antibody and the B cell
oscillates is called "activation".

We analyze the activated conditions of a large network for the case in which each clone
interacts with all other clones or only a few other clones in the network (ref. 7). When each
clone interacted with all clones in the network, we did not find any activated clone in the
network. Furthermore, when each clone interacted with only a few other clones, we found
that many clones are activated in the network. Therefore, in this model, each clone must
have only a few other connections to activate the network.

We also studied the effect of threshold as a localized mechanism of immune response (ref.
8). The roles of the threshold in units are as follows. When it is attacked by antibodies, a
network with a threshold doesn't break easily from a network without a threshold. By
introducing a threshold, the independence of each clone is increased, the collapse of the
network is made more difficult, and the size of the parameter areas where the system
functions as a network increases.

To check the role of the threshold in the network, we connect three basic units loosely (Fig.
3).
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Fig. 6 Connection of 3-clone units

There is no threshold in each basic unit. We set the threshold between each unit, to ku=0
or ku=50. We examined the way that of fluctuation spreads when unit 1 was disturbed. In
both cases, the disturbance does not spread significantly to unit 3. Further, we have found
that the disturbance in unit 2 is reduced considerably for ku=50, while it is still large for ku=0.

As a result, the threshold prevents the spread of local fluctuation through the whole network
(Fig. 4).

s o gpetin

B B U v 15 K7 02 04 06 08 1 12 14 16 1B 2

(1)ku=0 (2)ku=50

Fig. 7 K7 dependence of the magnitude of fluctuation s in clones 2 and 8 relative to

that in clone O

As for the actual reaction of immunity, it is very important that antibody molecules cross-link
for phagocyte prey antigens. In real immune systems as well, it is feasible that a
concentration threshold exists in some way.
Next, | will explain the relation between the generation process and the structure of the

network.
What kind of difference is there in the structure of the network through the different formation
processes? How does the network divide into sub-networks? | want to know what kind of
difference occurs in the structure of the network through the different formation processes.

In the network in which we introduced a threshold, we can measure the time over the
threshold. These times are characteristic depending on the condition of each clone. For
example, when we investigate the running average of this time, if the clone is L-state, the
time T, is about 45, if the clone is S-state, the time TS is about 22. If the clone has a limit



cycle, this time is about constant. So, | investigate the running average of the time over the
threshold.

First, | define the values of connectivity keeping the characters of a small network. When |
connect ten 3-clone systems loosely, each clone wanders about around the S-state and the
L-state. At that time, the group that has many connections is the motive power in the
network. | also found that responses to the invasion of antigens to each unit have
characteristics in common with the small network case. The sub-network structure and the
threshold are also important for preventing the spread of a local fluctuation throughout the
whole network. | think that if a large network can be divided into small sub-networks, the
study of the small networks is important. For this reason, | study what type of mechanism |
can introduce into this model to make a sub-network structure.

First, | define the values of connection at random. If the number of nodes in the network is
small enough, there are some cases where networks have sub-networks. However, when
the network size becomes large enough, there are no sub-networks.

So, | introduce a newer phenomenon. This is the phenomenon of affinity maturation (ref. 9).
Because of the substitution of amino-acid due to mutation, the affinity of the antibody
changes. B cells cause mutation frequently in the process of the immune response. There is
a possibility that the new antibody has more or less sensitivity than the parent antibody. The
state of activation of these B-cells changes corresponding to the concentration of the
antigens. When the network has a high concentration of antigens, both sensitive and
insensitive antigens are activated. Also, when the network has a low concentration of
antigens, only sensitive antibodies are activated. Therefore, as the immunity reaction
proceeds, the affinity of the antigens is sensitive. | imitate this phenomenon, and change the
value of the connectivity corresponding to the amount of time it is over the threshold.
| define values of connectivity constantly at random in a 30-clone system, and change them
in accordance with a condition. Here, | change the values of connectivity depending on the
number of times over the threshold. Then, some limit cycles appear, but there are no
sub-networks.

Next, | will introduce the mutation mechanism in the model.

B-cells cause mutation frequently in the process of the immune response. So we introduce
meta-dynamics - not the whole network generated at once, but the growth of the network by
mutation (Fig. 5). A clone exceeding a threshold affects the mutation of other B-cells.
However, the new kind of clone generated due to the mutation does not always have a good
response to the antibodies that led to that mutation. The initial condition of the network is
two different 3-clone systems. Here, 1, 2, 3, 4 or 5 clones become new members of the

network in every unit time. The occurrence probability of how many clones come to the



network is 20% each. Various network structures are seen depending on the generation

rules.

Initial network condition
0 3

1, 2, 3 ,4 or 5 clones become new members of the
network in every unit time. (Occurrence probability is
20% each.)

Fig. 8 Initial network condition and mechanism of mutation model

As one case, | define the value of connectivity between the new members generated due to
mutation and the existing member, which caused the mutation. These values are decided at
random in accordance with the following ratios: the proportion of 0.0 is 20%, 0.02 is 20%
and 1.0 is 50%. The values of connectivity between new members are decided at random in
accordance with the following ratios: the proportion of 0.0 is 30%, 0.02 is 30% and 1.0 is
40%
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Fig.9 One case of a network configuration of a mutation model

When a network grows gradually by a mechanism that imitates mutation, we can show that
some sub-networks are generated. Possibly, the mutation mechanism may be the cause of
the sub-network structure being made.

10



85. Summary

First, at least in a small network, it is found that the idiotype network model proposed by F.
J. Varela can appropriately work for external perturbation.

Second, in the case of some clones connected at random, if the number of clones in the
network is large, we cannot see any sub-networks, because the system behavior is chaotic.
In the case of some clones connected at random, if the values of connectivity are changed
in accordance with some assumptions, some limit cycle states may appear.

Fourth, a network has various structures which are dependent on the formation process.

Also possibly, a mutation-like generation mechanism creates the sub-network structure.

In this study, some characteristics of the immune network model have been revealed. In

the future | want to examine applications to other fields.
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Many formulations of proof nets and sequent calculi for Classical Linear
Logic (CLL) [7, 8] take it for granted that a type A is identical to its double
negation A++. On the other hand, since Seely [13], it has been assumed that
x-autonomous categories [1, 2] are the appropriate semantic models of (the
multiplicative fragment of) CLL. However, in general, in a s-autonomous
category an object A is only canonically isomorphic to its double involution
A**. For instance, in the category of finite dimensional vector spaces and
linear maps, a vector space V is only isomorphic to its double dual V**.
This raises the questions whether x-autonomous categories do not, after all,
provide an accurate semantic model for these proof nets and whether there
could be semantically non-identical proofs (or morphisms), which must be
identified in any system which assumes a type is identical to its double
negation. Whether this can happen is not completely obvious even when
one examines purely syntactic descriptions of proofs with the isomorphism
between A and A present such as [11, 9] or the alternative proof net
systems of [4] which are faithful to the categorical semantics.

Fortunately, there is no such semantic gap: in this talk we provide a
coherence theorem on the double involution on *-autonomous categories,
which tells us that there is no difference between the up-to-identity approach
and the up-to-isomorphism approach, as far as this double-negation problem
is concerned.

Theorem. Any free x-autonomous category is strictly equivalent
to a free x-autonomous category in which the double-involution
(=)** is the identity functor and the canonical isomorphism A ~
A** s an identity arrow for all A.

This remains true under the presence of linear exponential comonads and
finite products (the semantic counterpart of exponentials and additives re-
spectively). Our proof is fairly short and simple, and we suspect that this

*Joint work with J.R.B. Cockett and R.A.G. Seely [5]




is folklore among specialists (at least everyone would expect such a result),
though we are not aware of an explicit treatment of this issue in the litera-
ture.

This result should be compared with the classical coherence theorem for
monoidal categories, as found e.g. in [12, 10]. In fact, we follow the proof
strategy by Joyal and Street in [10]. We first show a weaker form of coherence
theorem which turns a *-autonomous category into an equivalent one with
“strict involution” (where A** is identical to A), for which we make use of
(a simplified version of) a construction of Cockett and Seely [6]. We then
strengthen it to a form of “all diagrams commute” result by some additional
arguments on the structure-preserving functors. In this way, this work also
demonstrates the applicability of the Joyal-Street argument (which actually
can be seen an instance of a general flexibility result on free algebras of
2-monads developped by Blackwell, Kelly and Power [3]) to other sorts of
coherence problems.
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Exponential Free Typed B6hm Theorem

Satoshi Matsuoka 0 0 0 O
National Institute of Advanced Industrial Science and Technology
gooooogooon

In [DP01], Dosen and Petric called Statman’s “Typical Ambiguity theorem” [Sta83]
typed Bohm theorem. Moreover, they gave a new proof of the theorem based on
set-theoretical models of typed lambda calculus. In this paper, we give the linear
version of the typed Bohm theorem: given two closed intuitionistic implicational
proof nets that have different cut-frgelong normal forms, we can have a context
that separates the two proof nets in a clear way.

Such a context is the composition of the following contexts and type instantiations:

1. contexts that decrease the orders of proof nets

2. type instantiation operators
In these operators additive connectives may occur.

3. choice contexts
These contexts can pick up obviously different proof nets by exploiting the
information of given different two proof nets with an order less than fourth
order.

4. The final type instantiation and context
You can choose any type and any two proof nets with the type.
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Abstract

The Kaloujnine-Krasner theorem is an immediate consequence of an easy theo-
rem for the 2-category of groupoids and a 2-categorical variation of the Yoneda
lemma.

1 Introduction

We give a new proof of the Kaloujnine-Krasner theorem in group theory [6].
This theorem asserts that every group extension embeds into a wreath product.
Indeed we give a proof of the generalized theorem for twisted wreath product
by Neumann [4].

The purpose of this note is to show that the pure group-theoretic Kaloujnine-
Krasner theorem naturally arises as a consequence of a general fact for groupoids
and a fundamental tool of general category theory, the Yoneda lemma. In
particular, the use of the Yoneda lemma elucidates the reason wreath product
naturally arises.

Given two groups N and G, an extension of N by G is a group F satisfying the
short exact sequence

1— N — F — G — 1.

In other words, an extension F' is a group having N as a normal subgroup
and satisfying F//N = G. The Kaloujnine-Krasner theorem asserts that every
extension of NV by G embeds into the standard wreath product NV Wr G.

The standard wreath product is defined as semidirect product N¢ x G where
N€ is simply cartesian product of m copies of N where m is the order of G.
An element of N Wr G is a pair of an element g and an m-tuple (ng)rce of
elements of N. This is best illustrated in the form of matrices. Regarding G
acting on the set G of m elements with regular action, each element g € G yields
an m X m permutation matrix. Then the pair (g, (ns)) may be regarded as a
matrix where the non-zero entry in each column of the permutation matrix is
replaced with the corresponding element np,.



Example: (i) Let S, be the symmetric group of all permutations over two
letters, and let C,, be the cyclic group of order n. Direct product C, x Ss is
an extension of C,, by Sa, generated by two element z and y satisfying three
relations 22 = 1, y™ = 1 and zyz = y. The group C, X S; embeds into C,, Wr S,

as
acn—>01 |_)y0
10 y 0 y

where, in the last matrix, we abuse y also as the generator of C,. It is easy to
see that these matrices fulfill the three relations above.

(i) The dihedral group D, is defined as the semidirect product Cp x Sa.
Namely it is generated by two elements z and y subject to relations z? = 1,
y™ =1, and zyz = y . The group D>, embeds into C,, Wr S, as

z 0 1 - (Y 0
10 y 0 y!
These matrices fulfill the defining three relations of the dihedral group.

We assume knowledge of category theory and bicategory theory. The standard
literature is [3, 1]. With respect to the terminology for bicategories, we use
pseudo-functors, quasi-natural transformation, and modifications. These are
weak ones. For example, pseudo-functor preserves composition up to invertible
2-cells satisfying due coherence conditions.

2 Groupoids and the Yoneda lemma

A groupoid is a small category where all morphisms are invertible. Every group
is regarded as a groupoid such that there is only one object: the elements of
the group become the morphisms on the single object. Given a groupoid G, we
write G(z,y) the homset of all morphisms z —Z+ y in G.

A groupoid homomorphism is simply a functor between groupoids. A natu-
ral isomorphism (also called homotopy) between homomorphisms is defined as
the usual natural transformation in category theory. Since all morphisms in
groupoids are invertible, a natural transformation automatically turns out to
be an isomorphism.

We let Gpoid denote the 2-category of groupoids, groupoid homomorphisms,
and natural isomorphisms. Every 2-cell is invertible. Namely Hom(4, B) is
a groupoid. In general, we call a 2-category where all 2-cells are invertible a
groupoid-enriched category.

We will encounter several other groupoid-enriched categories in this paper:



Example: Let G be a groupoid.

(i) The groupoid enriched-category Gpoid® is defined. Its objects are all
pseudo-functors from G into Gpoid. Its 1-cells are quasi-natural transforma-
tions, and its 2-cells are modifications.

(ii) The slice groupoid-enriched category Gpoid/G is defined. The objects are
all pairs (4, f? of a groupoid A and a groupoid homomorphism 4 £+ G. The
1-cells (4, f) "% (B, g) are such that A %5 B is a groupoid homomorphism
and gk £ f is a natural isomorphism:

. B
NE
G .

The 2-cells (k,u) = (k',p') are such that v is a natural isomorphism between
k and k' rendering the diagram

A

NS
f

of natural isomorphisms commutative.

The following definition plays an important role throughout the rest of the
paper.

2.1 Definition
Let £ be an object of Gpoid® where G is a groupoid.

The Grothendieck construction [ cc t() is the groupoid defined as follows: Its
objects are the pairs (z,a) of all objects z € G and all objects a € t(z); Its
morphisms (z, a) (o:2) (z',a') are such that z %+ z' is a morphism in G and
g-a - a' a morphism in t(z'), where g - a denotes t(g)(a).

Remark: The Grothendieck construction [, . t(z) turns out to be a bicolimit
of the pseudo-functor G —t+ Gpoid for groupoid G.

The following lemma gives a simple computational rule for the Grothendieck
construction. The first one is an analogy of representing double integral by
iteration of ordinary integral. The second is of Fubini’s theorem.

2.2 Lemma
(i) Let A be a groupoid. Moreover, let A -t Gpoid and [,_, t(z) > Gpoid
be pseudo-functors. Then equivalence of groupoids



/ u@a) = [ [ uea
(@a)ef, _, te) zed Jact(z)

holds.

(ii) Let A and B be groupoids, and let A x B %> Gpoid be a pseudo-functor.
Then equivalence of groupoids

Jerhrienr = [ [ e

(Proof) (i) is straightforward (or follows from a general fact for bicolimits).
(ii) is derived from (i) by taking as ¢ the constant functor to B and remarking
AxB=[ _,B=BxA [

holds.

The Yoneda lemma is one of the most fundamental machinery in ordinary cate-
gory theory [3]. The following lemma is an extension of the lemma to groupoid-
enriched categories (the lemma for general bicategories is found in [5]). In the
statement, /G denotes the slice category (indeed groupoid) where the objects
are all pairs (z, f) of an object z and a morphism z <~ z in G, and the mor-
phisms (z, f) —Z+ (2', f') is a morphism z %5 2' in G satisfying gf = f'. In a
dual way, G/z is defined.

2.3 Lemma
Let G be a groupoid and let G —t+ Gpoid be a pseudo-functor.

The following equivalences of groupoids hold:

~

im; r)ee/ct(z) = t(z) = colim(, )cq/q t(2)-

Moreover these equivalences are quasi-natural in x.

The leftmost groupoid in this lemma denotes a bilimit of the pseudo-functor
t preceded by obvious projection z/G — G. Likewise the rightmost is a
bicolimit. The proof of the lemma is parallel to the one for ordinary categories.

Remark: The lemma remains to hold for general groupoid-enriched category
C and a pseudo-functor C —t+ Gpoid. In this paper, we use only the special
form above.

We can write the equivalences of the lemma in terms of hom-groupoid and the
Grothendieck construction:



Homgoac (G(z,-), ) = t(z) = / HAIG(2).

In the rightmost, concatenation is cartesian product of groupoid t(z) with set
(i-e., discrete groupoid) G(z, z).

The following simple fact is the first vehicle for verification of the Kaloujnine-
Krasner theorem.

2.4 Theorem
Let G be a groupoid.

Then biequivalence GpoidG = Gpoid/G between groupoid-enriched categories
holds.

(Proof) A 2-functor Gpoid® £+ Gpoid/G is simply the Grothendieck con-
struction. Namely F' carries each object ¢ € GpoidG to fzeG t(z) with an ob-
vious projection to G. Also a 2-functor in the reverse direction Gpoid/G -
Gpoid® involves the construction. Given an object (4,p) of Gpoid/G, the

object U(A, p) is defined as the strict (pseudo-)functor [, ., G(p(z),-).
Let us prove UF = id (an identity functor). We have

UF(t) = G(z,-).

/(z,a) [cat®

By Lem. 2.2, it is equivalent to [, _. act(z) G(z,-), that is, [ _,t(2)G(z,-). By

the Yoneda lemma, the last is equivalent to ¢t. Next we prove FU = id. We

have
roan = [ [ G2,
zeG JzcA
which is equivalent to [, _, [,.; G(p(z),2) by Fubini. The internal integral is

equivalent to a trivial groupoid 1 by the Yoneda lemma, noticing G(p(z), z) =
G(z,p(z)) (or by a simple direct argument). Hence FU(4,p) = A. [

Remark: The construction FU(A,p) in the proof above gives an fibration [2]
(also called opfibration in the literature) equivalent to the original 4 -2+ G.

This theorem looks straightforward, but it conceals a deep consequence. Let us
consider the special case where G is a group. Given another group N, we want
to characterize all groups F' satisfying the short exact sequence

1N — F — G — 1.



In other words, F' is a group having (a copy of) N as a normal subgroup and
satisfying F/N 2 G. By the theorem, we can associate an object of Gpoid®
given as t = [, G(pz,-) where F -2, @G is the canonical surjection. For a
unique object z € G, the groupoid ¢(z) is equivalent to the group N. Conversely,
if ¢(2) is a group, the associated Grothendieck construction [, _ ¢(z) is obviously
a group endowed with a surjection onto G. Therefore the problem to characterize
all group extensions F' amounts to the problem to give all pseudo-functors ¢ €

Gpoid€ such that ¢(z) = N.

This observation yields the traditional theory of Schreier’s factor sets in group
theory [6]. This theory tells us that all group extensions are obtained from the
following data: a family of automorphisms g - (-) on N for g € G, and a family
of elements @, of N for g,h € G, all these satisfying the equalities:

gh-z = @on(g-h-2)g,;
Pgh,kPgh = ‘f’g,hk(g : ‘ﬁh,k)

where g,h,k € G and z € N. The second equality is exactly the coherence con-
dition for pseudo-functors. The first simply says that @, 5 is a natural isomor-
phism. (For a general pseudo-functor, we have also structural 2-cells involving
identities. In this case, however, we do not need them, for they are determined
from the condition of @.) For the reader’s convenience, we record the construc-
tion of group F from a factor set. The underlying set is N x G. Multiplication
is given as (z,9) - (y,h) = (z(g - y)gb;}b,gh). The unit is (@ e, e) where e is the
unit of G.

Two different factor sets may yield isomorphic groups. Quasi-natural equiva-
lence between pseudo-functors yields the condition for that. Two factors sets

(-,¢) and (-',9) give isomorphic groups if there is a family of elements z, € N
for g € G, subject to the equalities:

9’z = z(g-2)z;"

Yo = ZghPgnzy (g 2zn)

where z € N and g,h € G. Again the second equality is exactly the coherence
condition for quasi-natural transformations.

3 Twisted wreath product and the Kaloujnine-Krasner
theorem

Let G be a group acting on a set Y from right. For a group NV, the general wreath
product is defined as semidirect product N¥ x G [6]. Here G acts on cartesian
product NY from left as permutation of components. Namely, for a function
Y % N and g € G, we define the function g -6 by equality (g-6)(y) = 8(y - g)
foryeY.



The group NY is equivalent to the hom-groupoid Homgpoia(Y, N), where ¥
is regarded as a discrete groupoid and N as a groupoid with a single object.
Therefore the general wreath product can be written [, _, Homgpeia(¢(2), V)
where G°°? 23 Gpoid is the functor carrying the unique object z € G to the
discrete groupoid Y and morphisms of G to the corresponding right actions on
Y.

Our proof of the Kaloujnine-Krasner theorem involves standard wreath product
as well as twisted wreath product [6].

3.1 Definition

Let N and G be a group. Let us assume for (ii), in addition, that H is a
subgroup of G endowed with a left action on N (note that H acts also on G by
left multiplication).

(i) The standard wreath product N Wr G is defined as the semidirect product
N€ x G where N€ is the group of all functions on G into N with pointwise
multiplication and the left action of G on N€ is induced by the regular
right action of G on G itself.

(ii) The twisted wreath product N Wrg G is defined similarly to the standard
wreath product, except that the first component is restricted to those func-
tions G — N commuting with left actions of H.

The standard wreath product N WrG is a special case of general wreath product
NY x G where Y is equal to G. Furthermore, the standard wreath product is a
special case of the twisted wreath product N Wryg G where H is the unit group.

From the observation above for general wreath product, the standard wreath
product N Wr G can be written [, . Homgpeia(¢(z), N) where the functor
G°? £, Gpoid carries the unique object z € G to the set (i.e., discrete
groupoid) of elements of G, and the morphisms of G to the right multiplication
by the corresponding elements.

We want to give a similar characterization for twisted wreath product. Let
us consider the groupoid-enriched category Gpoid”. Then ¢ in the previous
paragraph, in fact, yields a functor into Gpoid?, where the left action of H on
¢(z) = G is given by left multiplication. Moreover, we can consider the given
action H — Aut(N) as the (strict) functor ¢ € Gpoid? carrying the unique
object of H to N. We show that [, _. Homgga7 (¢(2),t) is equivalent to the
twisted wreath product G Wrgy V.

3.2 Lemma
Let H be a subgroup of a group G, and let N be a group endowed with a left
action H — Aut N, regarded as a functor H —t+ Gpoid. Moreover, let GP? £



Gpoid? be the functor carrying the unique object z € G to the set G with left
action of H given by multiplication.

Then the hom-groupoid Homg a7 (¢(2),t) is equivalent to a group. The el-
ements of the group are the functions 0 on G into N commuting with the left
action of H, that is, satisfying 0(hg) = h - 0(g). Multiplication is pointwise.

(Proof) First we verify that the hom-groupoid is equivalent to a group. It
suffices to show every quasi-natural transformation ¢(z) - t is isomorphic to a
strict (quasi-)natural transformation ¢(z) 2+ t (strictness means all structural
2-cells are identities), since such a strict one is unique for N has only one object.

Quasi-naturality of » amounts to giving a family of elements 14 (g) in group t(z)
for h € H and g € G, rendering the diagram
vk (kg)

¥ —— %
th(g)\4 %Vk(g)
*

commutative for h,k € H and g € G, where * denotes the unique object of
group t(z), and h - (-) denotes ¢t(h)(-). Modification v —&+ & amounts to giving
a family of 6(g) € t(z) for g € G, rendering

vh(9)
¥ —— %
O(hg)\‘ Ao(g)
*

commutative for h € H and g € G, noticing that 7;,(g) is identity by assumption
of strictness of 7.

Let X be a right transversal of H in G, that is, the set of chosen representatives
from the right cosets of H in G. We fix X once and for all. For each g € G,
there is a unique g7 € X such that Hg = Hg". We note also (hg)™ = g” for
h € H. Now let us define 6(g) by vp,(g”) where hy = g(g7)~! is an element
of H. Then it is easy to see that the triangle diagram of quasi-naturality of
v implies that of modification. This ends the proof that every quasi-natural
transformation is isomorphic to the strict .

Furthermore, if v = ¥, each modification # —&+ # should satisfy 8(hg) = h - 8(g)
as immediately seen from the diagram above for modification. O

Remark: Let us suppose that the functor ¢ is defined on G. Then a consequence
of this lemma (indeed equivalent to it) is that every quasi-natural transformation
p(z) % tin Gpoid” extends to Gpoid®. Namely every v defined on subgroup
H extends to full domain G. This is proved by defining ¢(2) 2 ¢in Gpoid®
with equality v{(g') = (g-0(g")) ' 0(gg’) for all g,¢' € G.



From this lemma, we conclude that the twisted wreath product N Wry G is
equivalent to [, Homgyeiam (¢(2),1).

We verify an extension of the Kaloujnine-Krasner theorem to twisted wreath
product. We start with the following general lemma without a proof.

3.3 Lemma
Let C £5 D be a pseudo-functor between bicategories.

If we are given a family of objects G(X) € D satisfying F(X) = G(X) for all
objects X € C, then G gives rise to a pseudo-functor, and F' and G turn out to
be quasi-naturally equivalent.

3.4 Theorem

Let F be a group extension of N by G. Let us assume that F' splits on a subgroup
H < G, that is, there is an injective group homomorphism H —%5 F yielding an
identity on H by composing the canonical projection F — G.

Under these conditions, F' embeds into the twisted wreath product N Wryg G
where the left action of H on N is given by h-n = o(h)na(h) .

(Proof) By Thm. 2.4, the canonical projection F -2+ G corresponds to the

functor t = [, . G(p(z),-) in Gpoid®. We can construct a quasi-natural trans-

formation v in GpoidG such that
vy : t(Z) — HomGpoidH ((p(Z), t)

where G°P £ Gpoid” is defined as in Lem. 3.2. This construction is given
as a slight modification of the Yoneda lemma. Indeed, if H = G then v is
nothing but the equivalence appearing in the Yoneda lemma, observing that
o is the Yoneda embedding: ¢(z) = G(z,-). For general subgroup H < G,
there is still a quasi-natural transformation v. Each v, is faithful as a groupoid
homomorphism.

We note that t(z) = [,.»G(p(2),2) is equivalent to the group N. So, from
the preceding lemma, ¢ is quasi-naturally equivalent to a pseudo-functor t' €
Gpoid? satisfying that t'(z) = N. Hence, without loss of generality, we can
replace t in the codomain of v, by t' satisfying t'(z) = N. Now, returning to
the world of Gpoid/G by the Grothendieck construction using Thm. 2.4, we
have a groupoid homomorphism F —¢ [ _ . Homggiax (¢(2),t'). It is easy to
prove that e is faithful.

This appears the end of the proof: [,_. Homgggqx (¢(2),t') looks equivalent
to the twisted wreath product N Wrg G. This is not true, however, since ¢’ has
no assurance to be a strict functor. The definition of twisted wreath product
requires that H act on N in an ordinary sense, that is, the corresponding pseudo-
functor t' € Gpoid? to be strict. By analysis of ¢ = t', the automorphism



t'(h) : N — N carries n to h"n(h7)~! where h” is a chosen element in p~1(h).
Hence, if there is a splitting on H, we can choose h” in a functorial way (that
is (hk)™ = h"k"), yielding the strictness of t'. [

3.5 Corollary
Let F be a group extension of N by G.

Then F embeds into the standard wreath product N Wr G.

(Proof) Set H = {1}. We note that the last paragraph in the proof of the the-
orem turns out to be unnecessary, since t' becomes a strict functor trivially. []

The direct proof of the theorem is found in [6]. See also [7]. We emphasize that
the proof above uses only simple general facts in the theory of groupoids and
bicategories. Moreover the use of (a slight modification of) the Yoneda lemma
in the proof suggests, someways, why the wreath product arises as the target of
the embedding.
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1 Introduction

The purpose of this paper is mostly expository. We first review the axiomatic frame-
work recently proposed by Abramsky, Haghverdi and Scott [1] for Girard’s Geometry
of Interaction [3] in terms of traced symmetric monoidal categories. We then work
out in some detail how the new proposal captures Girard’s original formulation.

The Geometry of Interaction is introduced by Girard as the mathematical model
of the dynamics of cut-elimination. It is formulated in terms of operator algebra,
and the cut-elimination is represented by a single execution formula. This is very
much interesting, but the intuitive meaning of this mathematical model does not
seem to be perfectly clear.

Abramsky and Jagadeesan [2] proposed their own formulation of Geometry of
Interaction, which is very much similar to their game semantics of linear logic. The
machinery is fairly simple and clear, but the precise relationship to the original
formulation is not fully explicated.

The axiomatic framework of Geometry of Interaction proposed by Abramsky,
Haghverdi and Scott is supposed to fill the gap between the two formulations. In
any case it gives us a very clear and intuitive picture. The framework is based
on a traced symmetric monoidal category, and it yields a certain compact closed
category as a model of linear combinatory algebra, covering as much as Girard’s
original formulation works.

The precise relationship of this framework to the original Geometry of Interaction
is, however, only claimed in Abramsky, Haghverdi and Scott [1] and sketched in
Haghverdi [4]. It may be obvious to them, but we find it helpful to work it out in
some detail. This is what we intend to do in the present paper.



2 The axiomatic framework

2.1 Traced symmetric monoidal categories

A traced symmetric monoidal category C is a symmetric monoidal category en-
hanced with the trace operations Tr% y(f) from C(X ® U,Y ® U) to C(X,Y’), rep-
resented by the diagrams:

X > ; Yi B X } ; Y,
U ) U

7 U<—) _DU

Tr)UQY( f) must satisfy the following conditions. To simplify the presentation we
assume that C is a strict monoidal category.

L Tr&y (g =Tr%y (flg@ 1y)) for f: X ®@U =Y ®U and g: X' — X:




4. Trky(f) = [ and Tr%??zv(g) = Triy (Trxeuyeu(9) for f: X — Y, where
X I=XandY®I=Y,andg: XURXKV =Y U V:

X )

a

|
Yl 5 Y 4
-—__—-=-—-Z — - _ I I

U |

Uy,

Y

For traced symmetric monoidal categories C and D, a monoidal functor (F, ¢, ¢r)
from C to D is called traced if it is symmetric and it satisfies

Trg)U(,Fy@{/}U(Ff)CbX,U) = F(Tr%y(f))

for f: X®@U-Y®U.



2.2 The Geometry of Interaction construction

Given a traced symmetric monoidal category C, we construct a compact closed
category G(C), which gives a basic framework for the Geometry of Interaction.

The objects of G(C) are the pairs (AT, A7) of objects of C. Morphisms f from
(AT, A7) to (B*, B™) are the morphisms f: AT ® B~ — A~ ® BT of C:

At N A~
_ f +)
B~ ) | By

The identity for an object (A%, A7) is given as the canonical morphism o+ 4- :
AT ® A~ — A~ ® At for symmetry in C. Sometimes it is helpful to add extra
subscripts to distinguish occurrences of objects. We then write o4+ 4- : A ® Ay —
A7 ® AJ to indicate that it is a morphism from (A], A7) to (45, A45).

The composition gf : (AT, A7) — (C*,C7) of morphisms f : (AT, A7) —
(Bt,B7)and g: (B*T,B7) — (C*,C7) in G(C) is defined as

Trfiggj,f;@m (ﬁ(f ® g)a)

in C, where o = (14+ ® 1p- ® 0¢- p+)(la+ @ 0c- p- @ 1p+) and = (14- @ L+ ®
op+ g-)(1a- ® op+ o+ @ 1p-)(14- ® 1g+ ® 0p- ¢+ ), represented by the diagram:

Since the coherence of the symmetric monoidal category allows us to permute the
tensor products in C through the canonical morphisms in any order, we can make
the use of permutations implicit and depict the above diagram more intuitively:

+ J—
AT ) ; A
B~ BT
Bt B~
) g Cy




G(C) is equipped with the tensorial structure. The tensor product of (A™, A7)
and (B*, B7) is given by (AT ® BT, A~ ® B7), i.e. by taking the tensor products
in C pointwise. The unit is the pair (I, ) of the unit / in C.

The tensor product of f®g: (AT ®@CT,B-® D7) - (A~ ®@C~,BT® D") of
f: (AT A7) = (B",B7)and ¢g: (CT,C7) — (D", D7) is given by

f@g=(14 ®oprc- @1p+)(f ®9)(1a+ ®0c+ - @ 1p-)

in C, i.e. by taking the tensor product of f and g in C and composing it with the
appropriate permutations, represented by the diagram:

AT } A‘)
c+ f OC
s> —— Xg,
D~ i g D)+

G(C) has the structure of a compact closed category as well. The left adjoint
(AT, A7)* of (AT, A7) is given by (A7, AT), i.e. by exchanging the two components.
Then the unit n : (I,I) — (AT, A7) ® (AT, A7)* should be a morphism from the
unit object (I,7) to (At®A~, A~ ®A™), which is in turn a morphism from A~ ® A"
to At ® A” in C. In fact we can simply take 04— 4+ in C as the unit 7:

A- AR
Sr— 2
a > a4y

The counit ¢ : (AT, A7)* ® (AT, A7) — (I,I) can be similarly given by o4- 4+ :
A" AT - AT ® A" in C.

2.3 The Gol Situation

To yield a model of intuitionistic linear logic, the traced symmetric monoidal cate-
gory C needs to have an extra structure, which is summarized as a Gol Situation.

Let us recall that A is a retract of B when there exists morphisms f: A — B
and g : B — A such that gf = 14. In such a case we call (f,g) a retraction and
write f : A< B : g. The Gol Situation is a triple (C,T,U), where C is a traced
symmetric monoidal category, T' is a traced symmetric monoidal functor on C with
the following retractions as monoidal natural transformations:

1. e: TT < T : ¢ (Comultiplication),

2. d:1d<T :d (Dereliction),



3. c:T®T<T : (Contraction),

4. w: K;<T : w' (Weakening), where K; is the constant I functor;
and U is a reflexive object in C with the retractions:

1. j: U®U<U : k,

2.1:1<U :m,

3. u:TU<U :v.

The functor T is intended to induce the exponential operator ! of linear logic in
G(C), as suggested by the names of the retractions.

For any categories C,D and functors F,G : C — D, we say that a family of
morphisms my : FA — GA is a pointwise natural transformation from F' to G if
the naturality condition holds only for morphisms f: I — A, i.e. the diagram

FA ™ GA

A

FI 5 QI

commutes for any such f.

Given a Gol Situation (C,T,U), the compact closed category G(C) becomes a
weakly linear category, in the sense that the standard maps for the exponential are
only pointwise natural.

This is, however, sufficient to obtain a model of intuitionistic linear logic, since
we only consider the morphisms from (1, I) to (U,U). In fact G(C)((I, 1), (U,U)) is
a linear combinatory algebra, i.e., the algebraic model of intuitionistic linear logic.

The construction of linear combinatory algebra from the Gol Situation is fully
worked out in Abramsky, Haghverdi and Scot [1], and we do not give its detail here.
In the present paper we are more interested in how this setting fits Girard’s original
formulation of Geometry of Interaction.

At this moment we only note that a morphism f : (I,I) — (U,U) in G(C) is
nothing but the morphism f : U — U in C, assuming that C is a strict monoidal
category. In this case it is more perspicuous to distinguish the two occurrences of
Uin (U,U) as (UT,U7), and write f: U~ — U™ for f in C:

e ArS




2.4 The category Plnj

A typical example of a traced symmetric monoidal category with a Gol Situation is
the category of sets and partial injective functions. This category is equipped with
the tensorial structure defined by the disjoint unions of sets and functions.

Given the disjoint union AW B = {(0,z) | x € Ay U{(1,y) | y € B} of sets A
and B, we have the injections t; : A — AW B and (1, : B — AW B defined by

Lliflf'—)(o,l'), L2:y'_>(17y)
and the quasi (partial) projections m : AW B — A and my : AW B — B defined by
7T1:(07x)'_>xa WQ:(lvy)'_)y'

They can be naturally extended to the n-ary injections ¢ : A1 — A;W---W A, and
quasi projections 7' : Ay wW--- W A, — A;. Note that they are all partial injective
functions and hence morphisms of PInj.

If partial injective functions f; : A — B (i € I) have mutually disjoint domains
{z | Jy fi(z) = y} and mutually disjoint codomains {y | Iz f;(z) = y}, they can be
summed up simply by taking the union (J,.; fi. We write Y. fi for U, fi.

By means of ¢} and 7" any partial function f: Ay w-- WA, - A W---WA,

can be decomposed as
f= 2 2t

ie{l,...m} je{l,...n}

where f;; = 7" fi}. Furthermore the trace of f: A& U — B @ U is given by

Trg,B(f) = faa+ Z Jusfou fau

new

where faa = fi1, fav = fi2, fus = fo1, fou = fa.

3 Girard’s formulation

3.1 The preliminary setting

Girard’s original Geometry of Interaction is formulated in terms of operator algebra.
The canonical example is the Banach space B(H) of bounded operators on H, where
H is the Hilbert space ¢? of square summable infinite sequences of complex numbers.

It turns out that the full internal structure of B(H) is not really necessary.
For this reason we only state some of the basic definitions. The infinite sequence
z = (%;)iew of complex numbers is square summable if Z?io z;Z; converges. In that



case the square root of this value is denoted ||z||. The bounded operator u on H is a
linear transformation on H such that sup{||u(z)|| | ||z|| = 1} is finite.

For ¢ = (x;) and y = (y;), the scalar product (x,y) is defined as > z;7;, and
we have the adjoint operation u — u* on B(H) such that (ux,y) = (x,u*y). A
bounded operator u is

unitary if uu* = uw*u = 1, where 1 is the identity operator,

hermitian if u = u*,

e a projector if u is hermitian and u? = u,

e a symmetry if v is hermitian and unitary,

e a partial isometry if uu* and u*u are projectors.

Any projector defines a closed subspace H' = {ux | € H} of H. Conversely
given any closed subspace H' of H, the unique decomposition @ = &’ + x” of x € H
into ' in H' and «” in its orthogonal complement H” gives a projector @ — '

A partial isometry u can be regarded then as a scalar product preserving map
(isometry) from the subspace {u*ux | @ € H} onto the subspace {vu*z | € H}.
Clearly uu*ua belongs to the latter, and it is onto since uu*x = u((u*u)(u*x)). The
scalar product is preserved since

(vuux, uu*uy) = (UWux, vruutuy) = (urux, uruy)

holds.

3.2 The partial isometries p and ¢

What is really necessary from B(H) is the existence of partial isometries p and g,
which are used to internalize the direct sum H ¢ H within H. In fact it suffices to
have any p and ¢ such that

(1) p*¢=q¢'p=0,
(2) p'p=q'q=1.

As a matter of fact (2) implies that p and ¢ are partial isometries.

The concrete examples of p and ¢ can be given by introducing the canonical base
(b") of /2. Each " = (b7,) is an infinite sequence of 0 and 1 such that &, = 1 iff
n=m:




Clearly any z = (z,) is expressed as the infinitary linear combination z = z,b".
Then p is given by pz = 3 2,b°" and its adjoint p* by p*z = 3 20,b™:

0 1 n
20 21 | o Zn | Tt
*
p¢ Tp
20 zZ1 | o Znl |
o 1 2 3 2n 2n+1

Similarly gz = > 2,6 and ¢*z = 29,4.10™

0 1 n

20 21 | s Zn | Tt

20 Z1| o Zn| T

o 1 2 3 2n 2n+1

Note that p may be regarded as an isometry from H = {p*pz | z € H} onto
> znbay | 2, € C} = {pp*z | z € H}, hence a bijection between them. Similarly ¢
may be regarded as a bijection between H and {>_ z,bo, 41 | 2, € C}.

In those examples of p and ¢ the equation

(1) pp* +qq" =1
holds, which is stronger than (1). From (1) we have
pa=p" (" +qq")g=ppp*q+peq" ¢ =p"q¢+p"q

and p*q = 0 holds. ¢*p = 0 similarly follows from (1’).

3.3 Internalizing the direct sum

The direct sum H& H' of the Hilbert spaces H and H' can simply given as the vector
space of formal expressions x @ «’ for & € H and «’ € H', where the vector addition
and the scalar multiplication are defined pointwise, and

(xox yoy) = (z,y)+ (' y).

The direct sum f & g of morphisms f and g is defined similarly as
(fegxey) =fzdgy.

9



We take « @ (y @ z) to be identical to (x & y) @ z, simply denoted x & y @ =z,
and make the canonical isomorphisms for associativity identity maps. Recall that
direct sum is just another name of biproduct in the category of vector spaces.

For H = ¢2, the direct sum H @ H has the base consisting of b* © 0 and 0 ¢ b".
Then the mapping

bn @ 0 — b2n’
{ 0 D bn — b2n+1

induces the isomorphism j : H& H — H. For ¢ = (z,) and y = (y,)

jEey)=j@e0+00y) =Y z.b" +> y,b™""" =pz+qy,

and for z = (z,)

= (3 b 4 Y b )
= (X b) @0+08 (3 20id”)

=pz® ¢z

Hence we can regard px + qy € H as the internal representation of * & y € H & H,
and any z € H can be regarded as such.

Given j we have the isomorphisms 1y @ j: H @ He H — H ¢ H and this is
enough to establish the existence of isomorphism 5" : H* — H for n > 3.

Under the general setting j : © & y — px + qy does not necessarily give an
isomorphism but constitutes a retraction with k : z — p*z @ ¢*z. This follows
immediately from the conditions (1) and (2) for p and ¢. It can be generalized to
the retraction j” : H" <H : k™ as well.

3.4 Matrix representation of operators

H" is a biproduct, and we have the projections m; : H* — H (1 < ¢ < n) given by
Dby T

and the injections ¢; : HH — H" (1 < i < n) given by

ith

This additive structure allows the decomposition of a map f : H* — H™ into the
maps (fi;) (1 <i<mand1<j<n)by

fij = 7Tz'fl/j H — H

10



in such a way that
flxr®--dx,) = Zflzwz@@z.fmzmz
i=1 i=1

Writing the direct sum (x; @ -+ @ @,,) as a column vector, we can rewrite the
above formula as the familiar equation

Z?:l fliicz‘ f11 s fln Ty

fml fmn Ly

2?21 Jmi®i

of matrix computation, i.e. the map f : H" — H™ can be expressed as the matrix

Jiu 0 S
fml T fmn
and this is represented graphically as:
1 H—) H} 1
CH
R
: >
H_ P H

For f: H* — H™ and ¢ : H* — H", the direct sum f @ ¢ is then represented
by the matrix

fll fln 0 0

fml fmn 0 0
O - 0 gun - g
0 . 0 Jm'1 * Gmin

and the diagram for f & g is obtained by stacking the diagrams for f and g.
Since we have the retraction (possibly i§omorphism) J" H* <H : k™, any map
f:H" — H™ can be regarded as the map f = j™ fk™ : H — H as depicted below.

f

Hn —>Hm



We call f the internalized version of f. Note that f can be recovered from f by
f — k™ f ™. Hence we can officially stay inside the endomorphisms on H, while
working informally on maps from H" to H™.

Similarly any map f : H"*2 — H"*2 (n > 0) can be regarded as the map

Jfk if n =0,

from H™*! to H**!'. Note that

i=0 9, k=<p:>

q

and (1gr @ 7)f(1gn @ k) can be written as

1 - 00 0 fll fln (65 Ne%) 1 0 0
: R m . mn : : 0 1 0
0 L. 1 0 0 f /1 f : ﬁl 52 0 0 .
0 -+ 0pgq Qo Qo Y12 P
which is equal to the matrix:
fin e fin ap* + aog”
fml tee fmn ﬁlp* + ﬁZq*
pay +qBy o pag +qBy pyp* 4+ pyqt + qoip* + qoaq”

We write ® for the operation f — (1gr ®j)f(lg @ k) or f — jfk, and ¢ will be
called contraction of matrices (f;;). Note that any two rows (columns) of a matrix
can be exchanged by the left (right) action of the isomorphism:

1

1

Hence we can contract any two rows and columns of a matrix by moving them last,
contracting them and moving them back.

12



3.5 The interpretation of proofs

For now we concentrate on the multiplicative fragment of classical linear logic with-
out exponentials.

We consider a proof together with all the cut formulas within it. A proof
of a sequent - Aj,..., A, with cut formulas Bji,...B,, is said to be of type F
[Bi,...,Bn]A, ..., A,. It is interpreted by an (2m + n,2m + n) matrix of the el-
ements of B(H), which is officially transposed to an element of B(H) through the
retraction.

The interpretation of an axiom F A, A is the permutation o:

()

Given a proof of type - [A] ', A, B with the interpretation II, a proof of type
F [A] T, A% B obtained from it by the *@ rule is interpreted just by ®II, where & is
the contraction of the last two rows and columns of a matrix.

Given proofs of type F [A] ', A and of type - [A'] TV, A’ with interpretations II
and IT’

O/

« /
II = E 5 ' = Z .
ﬁ ey ﬁ/ Ce f-}/
respectively, a proof of type F [A; Al T')T", A ® A’ obtained from them by the ®
rule is interpreted by

B o] 0 - [7]

0
0 - B | 0 z

=

where the matrix to be contracted is obtained by moving the last row and column
of IT right before the last row and column of II" in IT & IT'.

Similarly given proofs of type - [©] A, T and of type I [©'] AL, A with interpre-
tations IT and IT" as below

a - B o oo
IT=|: D ; Ir'= | : 3

~

13



a proof of type F [A4,0,0] I'; A obtained from them by the cut rule is interpreted
by the matrix:

gl 0

/6/

- [ -
e

e]e B
1
-)

0 >

Note that we move the last rows and columns of IT and IT to the first two rows and
columns in IT & IT" and we do not apply the contraction ® here.

3.6 The execution formula

The interpretation IT of a proof of type - [By, ..., By A1, ... A, is an (2m—+n, 2m+
n) matrix. From this we can obtain a proof of type - A, ..., A, by cut elimination.
This process is expressed by the execution formula:

EX(H7 Um,n) = ([2m+n - Ufn,n)H<IZm+n - O'm,nH)71<12m+n - Ufn,n)
where Io,4,, is the unit matrix and o,,,, is given by

Omm =0 D+ Daod0,
—_———

m times
or
01 00
10 00
. . T . O
Gmn =100 - 01
0 0

14



Acting from the left o7, ,, is the map

T )
) ITq
Lom—1 Lom
—
Tom Lom—1
Tom+1 0
m2m+n 0
and Io,, 1, — 02, is nothing but
T 0
Lom 0
H
Lom+1 Lom+1
w2m+n w2m+n

Recall that if the infinite series I + X + X2+ --- converges for a matrix X, it is
equal to the matrix (I —X)~!. In our case the matrix o,, ,II is shown to be nilpotent,
i.e. (Omnll)" = O0gy1p for some i. This in fact corresponds to the normalization of
a proof. Hence the infinite series I + o,,, , 11 + (Um’nH)2 + - - converges and

H(IQm-i-n - Um,nH)_l =1+ Ham,nH + Hgm,anm,nH +
holds.

3.7 Exponentials

The exponentials ! and 7 are handled by internalizing the tensor product H @ H,
which is defined as the space of all linear combinations of x ® y (x € H and y € H)
with complex coefficients, quotiented by the equivalence relations:

zo @ ty)=zez +rzoy, (zty o=z tyor
M)z =zx (M) =\Nxox).

The tensor product u ® v of bounded operators u : H — H and v : H' — H’ is
defined as the completion of

(uRv)(r®yY)=ur®vy.

15



In particular the tensor product H ® H, where H = 2, has the canonical base
(¢™). Each €™ is an infinite double sequence of 0 and 1 such that ¢™(m/,n’) =1
iff m = m’ and n = n’. We then have the isomorphism 3 : H — H®H induced from
the bijection between N and N x N.

We write (m,n) for the number corresponding to an ordered pair (m,n) by the
bijection between N and N x N. The internalized version of the associativity map
between H @ (H ® H) and (H ® H) ® H is then obtained as the map ¢ : H — H
induced by the bijection

(m, (n, p)) = ((m,n),p).
t* is the inverse t~! of t.

We also consider the bounded operators p and ¢ on H which are induced from

the maps

n— (0,n), n— (1,n)
respectively. They are different from p and ¢ previously defined, but they satisfy
the conditions

L p*q¢=qp=0,
2.p'p=qq=1
Hence they can be used to obtain the retraction j : Hé H<H : £ by
j:xdy— pr+qy, k:z—p'z&¢z.

Note however that j and k are not isomorphisms anymore.

When a proof of the type - [A] 7T, I A is obtained from a proof of the type
F [A] 7T, A by an application of the promotion rule, the matrix changes in the
following way.

a - 0 tl@at" - t(1®0)
Do = : :
f}/ e (5 (1®V)t* tee 1®(5
For the dereliction rule from F [A] T, A to F [A] T, 7 A, we use:
a DY ﬁ a DY ﬁp*
Do = o
v 6 py -+ pop*

where p and ¢ are the new p and ¢ we just defined. For the weakening from  [A] T’
to - [A] T, 7 A, we use:

a - 0
(a ) ‘ .
. = o
: ' 0 --- 0

16



For the contraction rule from - [A] T, 7A, 7 AtoF [A] T', 7 A, we change the matrix

....... a1 Q9
/
0 71 2
/
T 01 09

to the matrix:

rin@Peol)+ (el

/ / )
(p a) + (g 1)8, (g D)o (p* @ 1) + (¢ @ 1)d(¢* @ 1)

4 Working out the relationship

4.1 The category Hilb,

In this section we work out how the axiomatic framework captures Girard’s original
formulation, following Haghverdi’s sketch in [4]. The category we are working with
is not the category of Hilbert spaces but its subcategory Hilby defined by M. Barr.

The key observation is that there exists a monoidal contravariant functor, called
¢2, from the category PInj to the category of Hilbert spaces. A set X is mapped
to the space of those complex valued functions a on X which are square summable
in the sense that Yy |a(x)|? is finite. A quasi injective function f : X — Y is
mapped to the function which sends a € 2(Y) to

af(z) if f(x) is defined

0 otherwise.

The category Hilb, is defined as the image of /2.

It is known that #(X X V) & (2°X ® (*Y and (X WY) = (?°X & (*Y where
?X @ %Y and £2X @ (Y are a tensor product and a direct sum, respectively, in the
category of Hilbert spaces. In Hilb, they are both tensor products, but 2X @ (?Y
is no longer a direct sum.

The trace in Hilb, can simply defined from the trace in PInj as below.

Tl o (C() = T8y ()

17



4.2 The basic structure

A proof of - [Cy,...,Cp] Ay, ..., A, is interpreted by a (2m + n,2m + n) matrix,
understood as an operator from H?"*" to H*™*", which can be further internalized
as an operator on H.

In particular the interpretation of an axiom F A, A*, which is o, is nothing but
the canonical morphism for symmetry in Hilby as we expected. The linear logic
tensor and par are both interpreted as the direct sum in the category of Hilbert
spaces.

4.3 Cut as composition in G(Hilb,)

Cut in a sequent calculus corresponds to composition in a category. Consider proofs
II and I’ of sequents - A,I' and = A+, A, respectively. In our setting they are
interpreted as the morphisms IT : (I,1) — (AT, A7) & (I'",T") and II' : (I,]) —
(A=, AT) @ (AT, A7) in G(Hilby). Since we are in a compact closed category, we
can obtain the desired morphism by the composition with the counit

5 (AT A7) ® (A7, AT) — (1,1)
in the following way:
(L,D) ™5 (Ar, A7) e (TN ) e (A7, AN @ (AT, A7) —
(DF,T7) @ (AT, A7) & (AT, A7) @ (A7, A1) =25 (I, T7) & (AT, A7),

This morphism is depicted by the diagram:

I A-
11
A_ A+
Hl
At

which can be simplified to the following.

18



Hl

Although we adopt the convention to take the trace at the right component U
of the products X & U and Y & U, the permutation allows us to formulate the trace
at the left component U of U @& X and U @Y as well. Using the latter convention
we can represent the morphism I1

(I,1) 5 (AF, AD) @ (AT, AN @@ (A, A7) e (A, A)e (T, T7) "2 (0 1)

m

by the following diagram:

1111 <
[112 <
1121 >
1122 >

where I, II15, 157 and Ils, are obtained as the submatrices of the matrix Il as
below:

fll f12m f12m+1 f12m+n
- fom1  fomom fomom+1 0 fomoman _ (1‘[11 1‘[12)
foms11 0 fomsiom| [fomtizmer 0 fomtiomen o1 Tz
f2m+n1 tte f2m+n 2m f2m+n 2m—+1 f2m+n 2m—+n

19



I is the morphism which corresponds to the proof IT of the type F [A1, . ..

Writing
6\‘ =0 @ e EB o
~——
m times

Ommn =0 S 1n7

we can express I by the formula

= Iy + Z [y (011h1)" 0112

n=0

= Ilys + 19101115 + oy (01111 )01l1o + oy (01141 ) (01111 )0 TTi0 + - - -

— Tr?&ﬁ—‘+®Am (8m7nH),

where 7, ,I1 is the matrix:

5 = olly; ol
e Iy II5o

Furthermore by way of the projection

X
Tom+1
Tom .
o —
Tom+1
. Lom+n
x2m+n
and the injection
0
Tom+1 )
/ O
o —
Tom+1
Lom+n .
Lom+n

we have

QEx(T, 0 ) = olld + alloy, ,I1a + alloy, ,Iloy, 1o’ + - - -
- H22 + H216H12 + H21 (8H11)3H12 + [P
=1L
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4.4 Exponentials from a Gol Situation

The exponential operator ! is modelled by the functor
X—H® X, f — 1H (24 f

where H ® X is the tensor product in Hilbert spaces.
We then need to check that the Gol Situation holds with with T'=H ® Id and
U = H. The retractions for a reflexive object U become

1. j-HeH<H: k,
2. 1:IT<H:m,
3. u: HH<«H : v.

in the present situation.
We have already seen that p and ¢ give us the retraction j : Hé H<H : k£ by

j:xdy— pr+qy, k:z—p'z&dz.

Recall however that there are many possibilities to choose specific p and ¢, and j
and k may or may not become isomorphisms depending on the choice.
The additive unit object I is obtained as ¢*(0)), which is indeed the singleton

{0}. Clearly
[:0~0, m:x+—0

give us the required retraction [ : [ <H : m.

For u : H®H <H : v we have already seen the existence of an isomorphism
B:H — H®H. Hence v = 8 and u = 3! suffice.

The retractions for the functor T are

1. e: TT T : ¢ (Comultiplication),
2. d:1d<T :d (Dereliction),

3. c:T@T«aT : (Contraction),
4. w: Kr<T : w' (Weakening)

where T: X — H® X, f—1® f.
The retraction e : TT «T : € is obtained as follows.
e HoHoX) -5 HoHoX S HeX, ¢=c

where a is a canonical associativity map.
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When X = H we the following diagram commutes:

HeHoH) —— HeH)oH 2% HoH

o] o |

H® H HeH H o H
d -l
H _*, H — m

Hence ¢ is in fact the internal version of e. Similarly ¢* is the internal version of €.

For the retraction d : Id <7 : d' consider the Hilbert space [ = {a | a : 1 — C}.
Clearly T = ¢*(1) and the isomorphism X x 1 2 1 x X = X in PInj induces the
isomorphisms 2(X)®1 2 I *(X) = (*(X) in Hilby. We have the partial injection

X —— 1xx 929 Ny x
and this induces our d’. Similarly

NxXx 070 oy L x

induces d. For X = N the internal versions of d and d’ coincide with our new p and
p* respectively, since the following diagrams commute:

H—%% HeoH HeH Y- Hm

H ] H

H—'— H H Y- m
The retraction ¢ : T @ T < T : ¢ is obtained through the isomorphism
(P(X) @ (V) @ 2(Z) = ((X) ® (2)) ® (C(Y) ® *(Z))
in Hilb, induced from the isomorphism (X WY) x Z = (X x Z) W (Y x Z) in Plnj.
The map c is

HeX)eHeX) — HoeH)eX 225 HeX,

and ¢ is
HeX 225 HoH) oX — HoX)e (Ho X).
We then have
c(ze2z)oyow) =) (zd0)®z+ (00 y)®w)
=prRz+qyw
=(pel)(z®z)+ (@ 1)(y®w)
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and

dxzey) =0pzoy) @ (zoy)
=p'ol)(zey) ® (1) (zey).

The retraction w : ;<1 : w' is obtained by
w:0— 0, wx®y— 0.
Those retraction maps give the promotion, dereliction, contraction and weaken-
ing maps in G(Hilb,).

The promotion map ! (A", A7) — I'I(AT, A7) is the one depicted by the dia-
gram:

A+ . LA™
» >

e e’
NA- NA+

The interpretation of a proof obtained by an application of the promotion rule is
given by the composition with this morphism, and the result can be depicted as
follows:

. | B~
'

Since the internalized versions of e and ¢ are ¢t and t*, respectively, this in fact gives

the matrix:
tloa)ts - t(1®P)

Q1N - 1®0
The dereliction map ! (AT, A7) — (AT, A7) is:

1A+ N 1A=
ld -

—> d P > d —>

A= A+

and the composition with this map yields:
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= - =
IA+ |d,| d 1A=

The internalized versions of d and d' are p and p*, respectively. Hence we have the

matrix:
a PR /Bp*

*

py - pop
The contraction map ! (AT, A7) — (AT, A7) @ (AT, A7) is:

1A~ !A+;
14+ | ¢ PP > C

>
> !A_)
and the composition gives:
=" =t
— R
TAT < > AT
—> /| e
L L

Since we are writing the direct sum « @ y as a column vector, ¢ : x Dy — (p®
e+ (g Dy and ¢ : & — (p* ® 1)x @ (¢* ® 1)x are represented by the matrices:

. o prel
c=(p®l ¢1), c—(q*®1)

Hence the proof obtained by an application of the contraction rule is represented by
the following matrix as we expected:

(p@lay+(@@1)p --- (

The weakening map ! (A", A7) — (I, 1) is:

24



= =+
e —— 7 —
TAT |w l |w,|!A—

whose matrix is

since w and w’ are the constant zero operators.

5 Discussion on the naturality

It has been shown in [1] that the promotion, dereliction, contraction and weakening
maps in G(C) become natural transformations iff the corresponding retraction maps
are isomorphisms. The argument can be easily generalized and we now state and
prove its generalized version.

Let (S, ¢, ¢r) and (T,%,1;) be monoidal functors on C. Suppose that we have
a family of retractions h : SA<TA : b/ which is a monoidal natural transformation
from S to T'. Consider a family of morphisms in G(C) which have the form:

TA+ - TA-
| 7

— S Ny e

SA~ SA*

Such a family of morphisms becomes a natural transformation in G(C) iff hh' = 174
for all objects A in C.

We give a proof as a sequence of diagrams. When we precompose such a mor-
phism to another morphism S'f we obtain the morphism represented by the diagram
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TA*

SB~
—>

¢ ¢!

Sf

where ¢ : SAT® SB™ — S(AT ® B7) is the isomorphism provided by the monoidal
functor S. This diagram can be simplified to:

TAT TA-
h' - h
SB~ SB*

Similarly when we postcompose the morphism to 7' f we obtain:

TA* TAC
i y T | i ——>
B~ B

where ¢ : TAT @ TB~ — T(A"* ® B™) is the isomorphism provided by T.

The naturality is the claim that the diagrams (1) and (2) always represent the
same morphism. To see when it holds, we first insert A'h, which is an identity since
(h,h') is a retraction, in the diagram (1) as follows:

TAT TA~
h' : h
—> W' o s - 7 1> h >
R g P A g T o B e )
SB~ SB*
The naturality of A then allows us to transform it to the below:
TAT TA~
h' : h
—> W 7 T 7 1> b >
L= f e ,
SB~ SB*

Since h and A’ are monoidal natural transformations, we can then make the diagram
(1) in the following form:

TAT
S>>

SB~

TA-
ST

Tf

e

Y

(3)

SB*
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If hh! = 17 4- the diagram (3) immediately becomes the same as the diagram (2)
and the naturality holds. For the other direction let f = 1,455. Then (2) becomes
the map 174 ® 1gp and (3) becomes hh' ® 1gp. If the naturality holds we have
174 ® 1gg = hh' ® 1gp for any objects A and B in C. In particular we can choose
I = B. Then SB = I and the naturality of the isomorphisms A4 : A® [ — A makes
the following diagrams commute.

-1 -1

TA®T &M T4 TA®T T4 T4
lTA®1[l J/ITA hh/®1[l J/hh/
TARI —— TA TAQI —— TA

>\TA >\TA

Hence 174 ® 17 = hh' ® 17 implies 104 = hR/.

The naturality of the promotion, dereliction, contraction and weakening maps is
necessary to make the Geometry of Interaction interpretation sound for the full cut-
elimination. In Girard’s original formulation, the soundness for the cases involving
exponentials is obtained only when the context formulas are empty. This is due to
the fact that the maps for exponentials are only pointwise natural in G(Hilby).

The result stated in this section, however, tells us that we should not expect
more than the pointwise naturality in this setting. We can make the retractions for
contraction and promotion isomorphic, but the retractions for dereliction and weak-
ening should not be isomorphic. As shown in [4] and [1], the pointwise naturality
suffices to construct a linear combinatory algebra, which is good for the analysis of
computation. If the purpose of the Geometry of Interaction is the analysis of the
cut-elimination or the analysis of classical logic, however, the situation is not quite
satisfactory.

The machinery of the Geometry of Interaction, either in its original formulation
or the axiomatic framework, is very much symmetric. It seems however that the
exponential rules, in particular dereliction and weakening, require us to re-introduce
asymmetry in one way or another.
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