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The notion of linear exponential comonads on symmetric monoidal categories has been used for
modelling the exponential modality of linear logic. In this paper we introduce linear exponential
comonads on general (possibly non-symmetric) monoidal categories, and show some basic results
on them.

1 Introduction

There are two major approaches to the categorical models of the exponential modality ! of linear logic
[12]. The first is as a comonad which respects the symmetric monoidal structure (the multiplicative
conjunction) and creates commutative comonoids (for modelling weakening and contraction). Since the
pioneering work of Seely [25] and Lafont [20], this direction was extensively studied by Benton, Bier-
man, de Paiva and Hyland [6], and now there is a well-accepted notion of linear exponential comonads
[7, 17]. Another one, led by Benton [5] and independently by Barber and Plotkin [3], is as an ad-
junction between a cartesian category (modelling non-linear proofs) and symmetric monoidal category
(modelling linear proofs) which respects the cartesian structure and symmetric monoidal structure. Such
a situation is neatly captured as a symmetric monoidal adjunction between a cartesian category and a
symmetric monoidal category. These two approaches are in harmony: any linear exponential comonad
on a symmetric monoidal category gives rise to a symmetric monoidal adjunction between a cartesian
category (of coalgebras) and the symmetric monoidal category, while a symmetric monoidal adjunction
between a cartesian category and symmetric monoidal category induces a linear exponential comonad
on the symmetric monoidal category. See [24] for a compact survey of these results, and for [23] more
detaied accounts and proofs.

In this paper we consider a generalization of these categorical axiomatics for exponential modal-
ity to the non-symmetric setting, i.e., on monoidal categories which may not be symmetric. This work
is motivated by the desire that we should have a uniform way of modelling exponential modality in
symmetric/non-symmetric/braided monoidal categories (cf. the authors’ ad hoc treatment of the braided
case via braided monoidal comonads [16]), while we also hope that this work leads to a better under-
standing of modalities in non-commutative (linear) logics [1, 9, 2] in general. For the approach based on
adjunctions, the answer seems more or less obvious: replace symmetric monoidal categories by monoidal
categories, and symmetric monoidal adjunctions by monoidal adjunctions. The corresponding axiomat-
ics in terms of comonads is more difficult, as the definition of linear exponential comonads heavily
replies on the presence of symmetry. Nevertheless, we do give an appropriate notion of linear exponen-
tial comonads without symmetry, which however involves a number of non-trivial coherence axioms.
We show that our generalization enjoys a good correspondence with the axiomatics based on monoidal
adjunctions. After providing a few typical examples which motivate this research, we conclude this paper
with some issues for future research.
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2 Linear exponential comonads with symmetry

Let us recall the notion of linear exponential comonads on symmetric monoidal categories — for empha-
sizing the presence of symmetry, below we will call them symmetric linear exponential comonads.

Remark 1 We assume that the reader is familar with the notions of monoidal categories, monoidal
functors, monoidal natural transformations, monoidal comonads as well as monoidal adjunctions [11,
19]. A detailed explanation of these concepts aimed at the computer science/logic audience can be
found in [23]. Note that, in this paper, by a monoidal functor we mean a lax monoidal functor, thus a
functor F equipped with possibly non-invertible coherent arrow mI : I→ FI and natural transformation
mX ,Y : FX⊗FY → F(X⊗Y ); when they are invertible, F is said to be strong monoidal.

Definition 1 [7, 17] Let C be a symmetric monoidal category. A symmetric linear exponential comonad
on C is a symmetric monoidal comonad (! : C → C ,δX :!X →!!X ,εX :!X → X ,mX ,Y :!X⊗!Y →!(X ⊗
Y ),mI : I→!I) on C equipped with monoidal natural transformations dX :!X →!X⊗!X and eX : I→!X
such that

• (!X ,dX ,eX) forms a commutative comonoid,

• dX is a coalgebra morphism from (!X ,δX) to (!X⊗!X ,m!X ,!X ◦ (δX ⊗δX)),

• eX is a coalgebra morphisms from (!X ,δX) to (I,mI), and

• δX is a comonoid morphism from (!X ,dX ,eX) to (!!X ,d!X ,e!X)

for each X.

Theorem 1 Any symmetric monoidal adjunction X
F−→
⊥←−
U

C between a cartesian category X and a

symmetric monoidal category C gives rise to a symmetric linear exponential comonad FU on C .

Proof. Follows from routine calculation. �

Theorem 2 Given a symmetric linear exponential comonad ! on a symmetric monoidal category C , its
category of Eilenberg-Moore coalgebras C ! is a cartesian category, with

(A,α : A→!A)× (B,β : B→!B) = (A⊗B,A⊗B
α⊗β−→!A⊗!B

mA,B−→!(A⊗B))
1 = (I, I mI−→!I)

Moreover, the comonadic adjunction C ! −→⊥←− C is symmetric monoidal with respect to the cartesian
products of C ! and monoidal products of C .

Proof. A detailed and accessible proof can be found in [23]. Here we shall sketch its outline. Since ! is
a symmetric monoidal comonad, the category of coalgebras C ! is symmetric monoidal with I = (I,mI)
and

(A,α)⊗ (B,β ) = (A⊗B,A⊗B
α⊗β−→!A⊗!B

mA,B−→!(A⊗B)).

Then we can show that dX and eX form a comonoid on the cofree coalgebra (!X ,δX :!X →!!X) in
C !. Moreover, they induce a comonoid on any coalgebra (A,α) via the retraction α : A →!A and
εA :!A → A. The induced comonoid structure on each coalgebra extends to natural transformations
d(A,α) : (A,α)→ (A,α)⊗ (A,α) and e(A,α) : (A,α)→ (I,mI). Finally we can appeal to the folklore
result that any symmetric monoidal category with a natural comonoid structure on every object is a
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cartesian category. The comonadic adjunction is symmetric monoidal because its left adjoint is a strong
symmetric monoidal functor [19]. �

Symmetry appears in many places in the definition of symmetric linear exponential comonads as well
as the proof of Theorem 2 (sometimes rather implicitly, for instance for making X 7→!X⊗!X a monoidal
functor). However, note that, only the symmetry of the form !X⊗!Y →!Y⊗!X is needed in the proof.
Moreover, such a symmetry !X⊗!Y →!Y⊗!X can be re-defined from other constructs:

Proposition 1 In a symmetric monoidal category with a symmetric linear exponential comonad, the
morphism

!X⊗ !Y !Y⊗ !X

!!X⊗ !!Y !(!X⊗ !Y ) !(!X⊗ !Y )⊗ !(!X⊗ !Y ) !!Y⊗ !!X
?

δX⊗δY

-
m!X ,!Y

-
d!X⊗ !Y

-
!(eX⊗id)⊗ !(id⊗eY )

6

ε!Y⊗ε!X

agrees with the symmetry !X⊗!Y →!Y⊗!X.

A proof is given in Appendix A. This observation suggests that it should be possible to define a linear
exponential comonad without assuming symmetry (i.e. on any monoidal category), by using this re-
defined “symmetry”, so that its category of coalgebras is cartesian and the induced comonadic adjunction
becomes monoidal. In the next section, we give such a definition of linear exponential comonads on
monoidal categories.

Remark 2 A proof corresponding to this re-defined “symmetry” in multiplicative linear logic would be:

!X `!X Axiom !Y `!Y Axiom

!X , !Y `!X⊗!Y R⊗

!X , !Y `!(!X⊗!Y )
Promotion

!X⊗!Y `!(!X⊗!Y )
L⊗

!Y `!Y Axiom

!X , !Y `!Y
Weakening

!X⊗!Y `!Y L⊗

!(!X⊗!Y ) `!Y Dereliction

!X `!X Axiom

!X , !Y `!X
Weakening

!X⊗!Y `!X L⊗

!(!X⊗!Y ) `!Y Dereliction

!(!X⊗!Y ), !(!X⊗!Y ) `!Y⊗!X
R⊗

!(!X⊗!Y ) `!Y⊗!X
Contraction

!X⊗!Y `!Y⊗!X Cut

It is not possible to remove the cut in this proof in the non-commutative setting, unless we assume the
exchange rule on !-formulas. Thus our choice of taking this derived “symmetry” as a basic notion,
while makes a good sense at the semantic level, does not lead to a pleasant proof system (with the
cut-elimination property) at the syntactic level.

3 Linear exponential comonads without symmetry

Definition 2 A linear exponential comonad on a monoidal category C is a monoidal comonad
(!,δ ,ε,m,mI) on C equipped with a monoidal natural transformation eX :!X→ I and a natural transfor-
mation dX :!X →!X⊗ !X such that, with σX ,Y = (ε!Y ⊗ ε!X) ◦ (!(eX ⊗ id)⊗ !(id⊗ eY )) ◦ d!X⊗ !Y ◦m!X ,!Y ◦
(δX ⊗δY ) :!X⊗!Y →!Y⊗!X,
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(1) the following diagram commutes:

!X⊗ !X⊗ !Y⊗ !Y⊗ !Z⊗ !Z !X⊗ !Y⊗ !X⊗ !Y⊗ !Z⊗ !Z !(X⊗Y )⊗ !(X⊗Y )⊗ !Z⊗ !Z

!X⊗ !X⊗ !Y⊗ !Z⊗ !Y⊗ !Z !(X⊗Y )⊗ !Z⊗ !(X⊗Y )⊗ !Z

!X⊗ !X⊗ !(Y ⊗Z)⊗ !(Y ⊗Z) !X⊗ !(Y ⊗Z)⊗ !X⊗ !(Y ⊗Z) !(X⊗Y ⊗Z)⊗ !(X⊗Y ⊗Z)

?

id⊗σ⊗id

-id⊗σ⊗id -m⊗m⊗id

?

id⊗σ⊗id

?

id⊗m⊗m

?

m⊗m

-
id⊗σ⊗id

-
m⊗m

(2) m!Y,!X ◦σ!X ,!Y =!σX ,Y ◦m!X ,!Y ,

(3) σ
−1
X ,Y = σY,X ,

(4) the following diagram commutes:

!X⊗ !Y⊗ !Z !!X⊗ !!Y⊗ !Z !(!X⊗ !Y )⊗ !Z !Z⊗ !(!X⊗ !Y )

!X⊗ !Z⊗ !Y !Z⊗ !X⊗ !Y
?

id⊗σY,Z

-δX⊗δY⊗id -
m!X ,!Y⊗id

-
σ!X⊗ !Y,Z

?

id⊗ε!X⊗ !Y

-
σX ,Z⊗id

(5) the following diagrams commute,

!X⊗ !Y !X⊗ !X⊗ !Y⊗ !Y !X⊗ !Y⊗ !X⊗ !Y I

!(X⊗Y ) !(X⊗Y )⊗ !(X⊗Y ) !I !I⊗ !I
?

m

-d⊗d -id⊗σ⊗id

?

m⊗m

?

mI

H
HHH

HHHHj

mI⊗mI

-
d

-
d

(6) (!X ,eX ,dX) is a comonoid in C ,

(7) eX and dX are coalgebra morphisms, and

(8) δX is a comonoid morphism.

Remark 3 In this definition, the conditions (1)-(5) involve σ . Other conditions are independent of σ ,
and are actually the same as the conditions for the symmetric linear exponential comonads.

Theorem 3 Any monoidal adjunction X
F−→
⊥←−
U

C between a cartesian category X and a monoidal

category C gives rise to a linear exponential comonad FU on C .

Proof: Follows from routine calculation. �
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Theorem 4 Given a linear exponential comonad ! on a monoidal category C , its category of coalgebras
C ! is cartesian. The comonadic adjunction between C ! and C is monoidal.

Proof: The proof is analogous to the symmetric case, with some extra care on the use of σ instead of
symmetry. (In fact, our conditions on linear exponential comonads are chosen so that the proof can
mimick the symmetric case.) The condition (1) implies that the functor ∆X =!X⊗ !X is monoidal with
I mI⊗mI−→ !I⊗ !I = ∆(I) and

∆X⊗∆Y =!X⊗ !X⊗ !Y⊗ !Y id⊗σ⊗id−→ !X⊗ !Y⊗ !X⊗ !Y m⊗m−→!(X⊗Y )⊗ !(X⊗Y ) = ∆(X⊗Y ).

The condition (2) is for making ! “symmetric monoidal” with respect to σ . The conditions (3) and (4)
imply that σ behaves like a symmetry. The condition (5) implies that d is a monoidal natural transforma-
tion from ! to ∆ defined as above. The condition (6), together with the fact that the (co-)commutativity
σX ,X ◦dX = dX is derivable from other axioms, says that (!X ,dX ,eX) is a “commutative” comonoid. Then
we are able to mimick the proof for the case with symmetry. First, we can show that C ! is symmetric
monoidal — σ extends to a symmetry on C !. Second, we have that dX and eX from a comonoid on
the cofree coalgebra on X , which naturally extends to all coalgebras. Thus C ! is a symmetric monoidal
category with a natural comonoid structure on all objects. �

A symmetric linear exponential comonad can be characterized as a symmetric monoidal comonad
such that the induced symmetric monoidal structure on the category of coalgebras is cartesian [22]. As a
corollary to the theorems above, this characterization extends to the non-symmetric case, just by dropping
all “symmetric”:

Theorem 5 A monoidal comonad is a linear exponential comonad if and only if the induced monoidal
structure on the category of coalgebras is cartesian.

The following results, which are standard in the symmetric case, easily follow from the theorems
above.

Proposition 2 In a monoidal category C with a linear exponential comonad ! and finite products, there
is a natural isomorphism !X⊗!Y ∼=!(X×Y ) as well as an isomorphism I ∼=!1 making ! a strong monoidal
functor from (C ,×,1) to (C ,⊗, I).

Proposition 3 Suppose that C is a monoidal (left or right) closed category with a linear exponential

comonad !. Then there exists a cartesian closed category X and a monoidal adjunction X
F−→
⊥←−
U

C

such that ! agrees with the induced comonad FU. In addition, if C has finite products, the co-Kleisli
category C! is cartesian closed, and the co-Kleisli adjunction is monoidal.

Note that, in a monoidal bi-closed category (with X ⊗ ( ) a X ( ( ) and ( )⊗ X a ( )

(X) with a
linear exponential comonad !, !X( Y may not be isomorphic to Y (!X , but they are isomorphic in the
co-Kleisli category.

4 Examples

Obviously, symmetric linear exponential comonads are instances of our linear exponential comonads:

Proposition 4 A linear exponential comonad on a symmetric monoidal category is a symmetric linear
exponential comonad if and only if σ (given in Definition 2) agrees with the symmetry.
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Here is a simple example of a non-symmetric monoidal bi-closed category with a linear exponential
comonad.
Example 1 Let M = (M, ·,e) be a (non-commutative) monoid and consider the slice category Set/M.
Thus an object of Set/M is a set A equipped with an M-valued map ‖ ‖A : A→M (often the subscript
will be omitted), and a morphism f : (A,‖ ‖A)→ (B,‖ ‖B) in Set/M is a map f : A→ B such that
‖ f (a)‖= ‖a‖ holds for any a ∈ A. Set/M is monoidal bi-closed with

I = {∗} with ‖∗‖= e
A⊗B = A×B with ‖(a,b)‖= ‖a‖ · ‖b‖

B (A = {(x, f ) | x ∈M, f : A→ B s.t. ‖ f (a)‖= x · ‖a‖ for a ∈ A} with ‖(x, f )‖= x
A( B = {(x, f ) | x ∈M, f : A→ B s.t. ‖ f (a)‖= ‖a‖ · x for a ∈ A} with ‖(x, f )‖= x

There is a linear exponential comonad ! on Set/M given by !A = {a ∈ A | ‖a‖= e} with ‖a‖= e, whose
category of coalgebras is equivalent to Set.

Presheaves are a rich source of examples:
Example 2 Let F : X → C be a strong monoidal functor from a cartesian category X to a monoidal
category C . The left Kan extension along Fop : X op→ C op gives a monoidal adjunction

SetX
op

LanFop( )−→
⊥←−

( )◦Fop
SetC

op

between the cartesian closed category SetX
op

and the monoidal bi-closed category SetC
op

(with the
monoidal structure on SetC

op
given by Day’s tensor product [10]). From this we obtain a linear exponen-

tial comonad ! on SetC
op

where !G = LanFop(G◦Fop) =
∫ X∈X

C ( ,FX)×G(FX) for G : C op→ Set.

Remark 4 The two examples above can be extended to more involved ones using categorical glueing
(given by comma categories, or more generally change-of-base of monoidal closed bi-fibrations along
monoidal functors). Such glueing constructions are known for the symmetric cases [14, 13, 17], and can
be generalized to the non-symmetric cases without much difficulty.

We conclude this section with an example with non-symmetric braiding [18] taken from our previous
work [16].

Example 3 Let G be a group with the unit element e. A crossed G-set is a set X equipped with a group
action · : G×X → X and a map | | : X → G such that, for any g ∈ G and x ∈ X, |g · x|= g|x|g−1 holds.
Now let XRel(G) be the category whose objects are crossed G-sets, and a morphism from (X , ·, | |) to
(Y, ·, | |) is a binary relation r : X → Y such that (x,y) ∈ r implies (g · x,g · y) ∈ r as well as |x| = |y|.
The composition and identity are just those of binary relations. XRel(G) is monoidal, with (X , ·, | |)⊗
(Y, ·, | |) = (X×Y,(g,(x,y)) 7→ (g · x,g · y),(x,y) 7→ |x||y|). This monoidal structure is not symmetric but
braided: the braiding on (X , ·, | |) and (Y, ·, | |) is given by

{((x,y),(|x| · y,x) | x ∈ X ,y ∈ Y} : (X , ·, | |)⊗ (Y, ·, | |)→ (Y, ·, | |)⊗ (X , ·, | |).

(In fact, XRel(G) forms a ribbon category [26, 27], thus allows interpretation of tangles [16].) There is
a linear exponential comonad on XRel(G) which sends (X , ·, | |) to the finite multiset of {x ∈ X | |x| =
e}/∼ (where x∼ y if g · x = y for some g ∈ G) with trivial action g ·u = u and valuation |u|= e.

Note that linear exponential comonads on braided monoidal categories in [16] are the linear exponential
comonads in this paper such that σ agrees with the braiding, thus the situation is exactly the parallel of
the symmetric case.
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5 Conclusion and future work

We have given the notion of linear exponential comonads on arbitrary monoidal categories, and shown
that it has a good correspondence to the axiomatics based on monoidal adjunctions. There are a number
of immediate issues which are left as the future work:

Simpler axiomatization Unfortunately, our definition of linear exponential comonads involve a num-
ber of coherence axioms which are rather hard to be used in practice. We do expect that some of the
axioms are actually redundant, and some (conceptually or technically) simpler axiomatization can be
found. As an easy direction, it would be interesting to consider the case with finite products (addi-
tive products) which would allow some substantially simpler axiomatics where the key isomorphism
σX ,Y :!X⊗!Y →!Y⊗!X can be simply given by !X⊗!Y ∼=!(X×Y )∼=!(Y ×X)∼=!Y⊗!X .

Proof systems and term calculi The absence of symmetry causes a number of troubles at the level of
syntax, i.e., on proof systems or term calculi (linear lambda calculi). From the proof theoretical point
of view, the nasty issue on cut-elimination must be remedied by introducing Exchange rules for !-types,
whose precise formulation can be of some interest. As a direction closer to the categorical models, it
would be nice if we have a (equationally) sound and complete term calculus for monoidal bi-closed
categories with a linear exponential comonad, like the DILL calculus [3] for the symmetric case. The
case of (non-symmetric) ∗-autonomous categories [4, 8] with a linear exponential comonad should be
also interesting, as there can be a term calculus just with linear/non-linear implications and the falsity
type as type constructs [15].

Issues on (2- or bi-)categories of models While linear exponential comonads and monoidal adjunc-
tions are closely related, the (2- or bi-)categories of these structures are not (bi-)equivalent. We believe
that the situation is the same as the symmetric case [21, 24], but the precise details (the correct formula-
tion of morphisms in particular) are yet to be examined.

Non-monoidal exponential modality The exponential modality of the non-commutative propositional
linear logic in [9] does not satisfy the monoidality !X⊗!Y →!(X ⊗Y ) (hence promotion is not valid in
general); some justification for not allowing promotion/monoidality is given in ibid. Clearly our linear
exponential comonads are not appropriate for modelling such a non-monoidal case, while we do not
know a suitable categorical axiomatics for the non-monoidal exponential modality.

Acknowledgements

I thank Shin-ya Katsumata for helpful discussions, and Kazushige Terui for his advice on non-commutative
linear logic and cut-elimination. This research is partly supported by the Grant-in-Aid for Scientific Re-
search (C) 15K00013.

References

[1] V.M. Abrusci (1991): Phase semantics and sequent calculus for pure non-commutative linear propositional
logic. Journal of Symbolic Logic 56(4), pp. 1403–1452, doi:10.2307/2275485.

http://dx.doi.org/10.2307/2275485


M. Hasegawa 61

[2] V.M. Abrusci & P. Ruet (1999): Non-commutative logic I. Annals of Pure and Applied Logic 101(1), pp.
29–64, doi:10.1016/S0168-0072(99)00014-7.

[3] A. Barber & G.D. Plotkin (1997): Dual intuitionistic linear logic. Unpublished draft. An early version
appeared as a technical report ECS-LFCS-96-347, LFCS, University of Edinburgh.

[4] M. Barr (1995): Nonsymmetric ∗-autonomous categories. Theoretical Computer Science 139(1-2), pp. 115–
130, doi:10.1016/0304-3975(94)00089-2.

[5] N. Benton (1995): A mixed linear non-linear logic: proofs, terms and models. In: Computer Science
Logic (CSL’94), Selected Papers, Lecture Notes in Computer Science 933, Springer-Verlag, pp. 121–135,
doi:10.1007/BFb0022251.

[6] N. Benton, G.M. Bierman, V. de Paiva & M. Hyland (1993): Linear lambda-calculus and categorical models
revisited. In: Computer Science Logic (CSL’92), Selected Papers, Lecture Notes in Computer Science 702,
Springer-Verlag, pp. 61–84, doi:10.1007/3-540-56992-8.

[7] G.M. Bierman (1995): What is a categorical model of intuitionistic linear logic? In: Proceedings of the 2nd
International Conference on Typed Lambda Calculus and Applications, Lecture Notes in Computer Science
902, Springer-Verlag, pp. 78–93, doi:10.1007/BFb0014046.

[8] M. Boyarchenko & V. Drinfeld (2013): A duality formalism in the spirit of Grothendieck and Verdier. Quan-
tum Topology 4(4), pp. 447–489, doi:10.4171/QT/45.

[9] C. Brown & D. Gurr (1995): Relations and non-commutative linear logic. Journal of Pure and Applied
Algebra 105(2), pp. 117–136, doi:10.1016/0022-4049(94)00147-2.

[10] B.J. Day (1970): On closed categories of functors. In: Midwest Category Seminar Reports IV, Lecture Notes
in Mathematics 137, Springer-Verlag, pp. 1–38, doi:10.1007/BFb0060438.

[11] S. Eilenberg & G.M. Kelly (1966): Closed categories. In: Proceedings of the Conference on Categorical
Algebra (La Jolla 1965), Springer-Verlag, pp. 421–562, doi:10.1007/978-3-642-99902-4.

[12] J.-Y. Girard (1987): Linear logic. Theoretical Computer Science 50, pp. 1–102, doi:10.1016/0304-
3975(87)90045-4.

[13] M. Hasegawa (1999): Categorical glueing and logical predicates for models of linear logic. Available at
http://www.kurims.kyoto-u.ac.jp/~hassei/papers/full.pdf. Preprint RIMS-1223, RIMS, Ky-
oto University.

[14] M. Hasegawa (1999): Logical predicates for intuitionistic linear type theories. In: Proceedings of the 4th
International Conference on Typed Lambda Calculus and Applications, Lecture Notes in Computer Science
1581, Springer-Verlag, pp. 198–213, doi:10.1007/3-540-48959-2.

[15] M. Hasegawa (2005): Classical linear logic of implications. Mathematical Structures in Computer Science
15(2), pp. 323–342, doi:10.1017/S0960129504004621.

[16] M. Hasegawa (2012): A quantum double construction in Rel. Mathematical Structures in Computer Science
22(4), pp. 618–650, doi:10.1017/S0960129511000703.

[17] J.M.E. Hyland & A. Schalk (2003): Glueing and orthogonality for models of linear logic. Theoretical
Computer Science 294(1-2), pp. 183–231, doi:10.1016/S0304-3975(01)00241-9.

[18] A. Joyal & R. Street (1993): Braided tensor categories. Advances in Mathematics 88, pp. 20–78,
doi:10.1006/aima.1993.1055.

[19] G.M. Kelly (1974): Doctrinal adjunction. In: Proceedings Sydney Category Theory Seminar 1972/1973,
Lecture Notes in Mathematics 420, Springer-Verlag, pp. 257–280, doi:10.1007/BFb0063105.

[20] Y. Lafont (1988): The linear abstract machine. Theoretical Computer Science 59(1-2), pp. 157–180,
doi:10.1016/0304-3975(88)90100-4.

[21] M.E. Maietti, P. Mannegia, V. de Paiva & E. Ritter (2005): Relating categorical models for intuitionistic
linear logic. Applied Categorical Structures 13(1), pp. 1–36, doi:10.1007/s10485-004-3134-z.

[22] P. Maneggia (2004): Models of Linear Polymorphism. Ph.D. thesis, University of Birmingham.

http://dx.doi.org/10.1016/S0168-0072(99)00014-7
http://dx.doi.org/10.1016/0304-3975(94)00089-2
http://dx.doi.org/10.1007/BFb0022251
http://dx.doi.org/10.1007/3-540-56992-8
http://dx.doi.org/10.1007/BFb0014046
http://dx.doi.org/10.4171/QT/45
http://dx.doi.org/10.1016/0022-4049(94)00147-2
http://dx.doi.org/10.1007/BFb0060438
http://dx.doi.org/10.1007/978-3-642-99902-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://www.kurims.kyoto-u.ac.jp/~hassei/papers/full.pdf
http://dx.doi.org/10.1007/3-540-48959-2
http://dx.doi.org/10.1017/S0960129504004621
http://dx.doi.org/10.1017/S0960129511000703
http://dx.doi.org/10.1016/S0304-3975(01)00241-9
http://dx.doi.org/10.1006/aima.1993.1055
http://dx.doi.org/10.1007/BFb0063105
http://dx.doi.org/10.1016/0304-3975(88)90100-4
http://dx.doi.org/10.1007/s10485-004-3134-z


62 Linear Exponential Comonads without Symmetry

[23] P.-A. Melliès (2009): Categorical semantics of linear logic, pp. 1–196. Panoramas et Synthèses 27, Société
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A Proof of Proposition 1

Let c be the symmetry. The following commutative diagram shows that

c!Y,!X ◦ (εY ⊗ εX)◦ (!(eX ⊗ id)⊗!(id⊗ eY ))◦d!X⊗!Y ◦m!X ,!Y ◦ (δX ⊗δY ) = id!X⊗!Y

holds.

!X⊗!Y !X⊗!Y

!!X⊗!!Y !X⊗!X⊗!Y⊗!Y !Y⊗!X

!!X⊗!!X⊗!!Y⊗!!Y !X⊗!Y⊗!X⊗!Y !X⊗!Y⊗!X⊗!Y

!!X⊗!!Y⊗!!X⊗!!Y !X⊗!Y⊗!X⊗!Y

!(!X⊗!Y )⊗!(!X⊗!Y )

!(!X⊗!Y ) !(!X⊗!Y )⊗!(!X⊗!Y ) !!Y⊗!!X

?

δ⊗δ

XXXXXXXXXXXXXXXz

d⊗d

-id

?

m

HHH
HHHHj

d⊗d

(a) ���
�����

δ⊗δ⊗δ⊗δ

?

id⊗c⊗id

��
���

���
���

���
�:

id⊗e⊗e⊗id(b) 6
c

HHH
HHHHj

id⊗c⊗id

(c)

(f)

?

δ⊗δ⊗δ⊗δ

-id

(d)

(e)

�
�
�
�
�
�
�
���

id⊗e⊗e⊗id

?

m⊗m

��
�
��

��*

ε⊗ε⊗ε⊗ε

(g)

�
�
�
�
�
�
�
���

e⊗id⊗e

(i)

�
�
�
�
�
�
�
���

ε⊗ε

(j)

��
���

���
���

���:

d

-
d

6
c

�
�
�
�
�
�
�
���

ε⊗ε

-
!(e⊗id)⊗!(id⊗e)

(h)

6

ε⊗ε

(a) δ is a comonoid morphism
(b) co-unit law of the comonoid
(c), (d), (i) naturality of c
(e) co-unit law of the comonad
(f) d is a coalgebra morphism
(g) monoidality of ε

(h) commutativity of the comonoid
(j) naturality of ε

From this, we have

(εY ⊗ εX)◦ (!(eX ⊗ id)⊗!(id⊗ eY ))◦d!X⊗!Y ◦m!X ,!Y ◦ (δX ⊗δY ) = c−1
!Y,!X = c!X ,!Y . �
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