
Theory and Applications of Categories, Vol. 33, No. 37, 2018, pp. 1145–1157.

LINEAR DISTRIBUTIVITY WITH NEGATION, STAR-AUTONOMY,
AND HOPF MONADS

MASAHITO HASEGAWA AND JEAN-SIMON P. LEMAY

Abstract. We show that a Hopf monad on a ∗-autonomous category lifts ∗-autonom-
ous structure to the category of algebras precisely when there is an algebra structure on
the dualizing object. Our proof is based on Pastro’s characterization of ∗-autonomous
(co)monads as linearly distributive (co)monads with negation.

1. Introduction

As observed by Moerdijk [8], for a monad on a monoidal category, to give a comonoidal
(also known as opmonoidal) structure to the monad is precisely to give a monoidal struc-
ture to the category of algebras of the monad such that the forgetful functor strictly
preserves the monoidal structure. Bruguières and Virelizier [5] later identified additional
conditions on comonoidal monads on autonomous categories (monoidal categories with
duals) such that they lift the autonomous structure to the category of algebras, and they
called such a comonoidal monad a Hopf monad. Hopf monads and their algebras can
be seen as generalizations of Hopf algebras (with invertible antipodes) and their modules.
In fact, Hopf monads in [5] are defined as comonoidal monads equipped with an antipode
given by certain natural transformations. Later, Bruguières, Lack and Virelizier [4] in-
troduced Hopf monads on arbitrary monoidal categories, by simplifying and generalizing
the notion of Hopf monads on autonomous categories. Now a Hopf monad on a monoidal
category is a comonoidal monad T such that the induced maps (called fusion operators)
T(A ⊗ TB) → TA ⊗ TTB → TA ⊗ TB and T(TA ⊗ B) → TTA ⊗ TB → TA ⊗ TB are
invertible (Definition 4.1). It has been shown that a comonoidal monad on a monoidal
closed category lifts the monoidal closed structure to the category of algebras exactly
when it is a Hopf monad [4].

On the other hand, Pastro and Street [10] considered the conditions on monoidal
comonads (the dual of comonoidal monads) on ∗-autonomous categories [1, 2] (also
known as Grothendieck-Verdier categories [3]) for lifting the ∗-autonomous struc-
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ture to the category of coalgebras, and called such monoidal comonads ∗-autonomous
comonads. By dualizing their result, one obtains the notion of a ∗-autonomous monad
on a ∗-autonomous category, which can be described as a comonoidal monad that lifts
the ∗-autonomous structure to the category of algebras of said monad.

Since a ∗-autonomous category is monoidal closed, a ∗-autonomous monad is neces-
sarily a Hopf monad (Corollary 4.5). However, (as briefly mentioned in [4]) the converse
is not true. Here is a simple counterexample:

1.1. Example. Consider real numbers R with the usual order ≤ and fix a real number
r. Then the poset (R,≤), regarded as a category, is symmetric ∗-autonomous, with the
monoidal structure given by x⊗ y = x+ y and > = 0, and the dualizing object defined as
⊥ = r. The dual monoidal structure (“par”) is therefore given by x` y = x+ y− r, while
the internal hom from x to y is y−x. Now let T : R→ R be the “ceiling function” sending
x to the least integer y such that x ≤ y. Then T, regarded as a functor, is a monad on
(R,≤). It is comonoidal with respect to (⊗,>) as T0 = 0 and T(x+ y) ≤ Tx+ Ty hold.
Moreover T is a Hopf monad since T(x+Ty) = T(Tx+y) = Tx+Ty holds. The category
(R,≤)T of the algebras of T is the integers (Z,≤), and the symmetric monoidal closed
structure on (R,≤) is lifted to (Z,≤). However, it lifts the ∗-autonomous structure only
when r carries a T-algebra structure, that is, when r is an integer.

This example shows that a Hopf monad may not necessarily lift a dualizing object
to the category of its algebras. It also suggests that a Hopf monad is ∗-autonomous (in
the dual sense of Pastro and Street) when there is an algebra structure on the dualizing
object. In this paper, we show that this is the case.

Rather than directly working with the notion of ∗-autonomous (co)monads, we follow
Pastro’s approach [9] based on linearly distributive categories [6]. Since a ∗-autonomous
category is none other than a linearly distributive category with negation [6], it
makes sense to first identify (co)monads for lifting linearly distributive structure and
then put additional conditions for lifting negation. In this way Pastro characterized ∗-
autonomous comonads as linearly distributive comonads with negation (Definition
3.2). We find Pastro’s characterization more suitable for our purpose, and use his tech-
niques in [9] in our proof of Theorem 5.8.

The rest of this paper is organized as follows. In Section 2, we recall the notion of
linearly distributive categories with negation. Section 3 gives the definition of linearly
distributive monads with negation which are the dual of Pastro’s linearly distributive
comonads with negation. In Section 4, we recall Hopf monads and their basic results. In
Section 5, we prove our main result and provide some examples.

Conventions: To simplify working in monoidal categories, we will be working with
strict monoidal categories and so we will suppress the associator and unitor isomorphisms.
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2. Linearly Distributive Categories With Negation

2.1. Definition. A linearly distributive category [6] is a septuple (X,⊗,>,`,⊥, ∂l, ∂r)
consisting of:

(i) A monoidal category (X,⊗,>)

(ii) A monoidal category (X,`,⊥)

(iii) Two natural transformations, called respectively the left and right distributors,
∂l : A⊗ (B ` C)→ (A⊗B) ` C and ∂r : (A`B)⊗ C → A` (B ⊗ C)

such that a number of coherence diagrams [6] commute.

2.2. Definition. A negation [6] on a linearly distributive category (X,⊗,>,`,⊥, ∂l, ∂r)
is a sextuple (S, S′, α, β, α′, β′) which consists of:

(i) Two contravariant functors S : Xop → X and S′ : Xop → X

(ii) Four maps (called the evaluation and coevaluation maps):

α : SA⊗ A→ ⊥ β : > → A` SA

α′ : A⊗ S′A→ ⊥ β′ : > → S′A` A

such that the four triangle identities [6] are satisfied.

There are a number of equivalent ways of defining ∗-autonomous categories [2, 3, 10, 9].
Here we shall recall one of them (as found in [9]):

2.3. Definition. A ∗-autonomous category is a monoidal category (X,⊗,>) equipped

with an adjoint equivalence S a S′ : Xop '→ X such that there is a bijection

X(A⊗B, SC) ∼= X(A, S(B ⊗ C)) (1)

natural in A, B and C.

2.4. Theorem. [6, 9] The notions of linearly distributive categories with negation and
∗-autonomous categories coincide.

Proof. For a ∗-autonomous category (X,⊗,>, S, S′), we have the dual tensor A ` B =
S′(SB ⊗ SA) ∼= S(S′B ⊗ S′A) and ⊥ = S> ∼= S′>. The relevant data ∂l, ∂r, α, β, α

′ and
β′ are routinely derived from the adjoint equivalence S ` S′ and the natural bijection
(1), making X a linearly distributive category with negation. Conversely, for a linearly
distributive category (X,⊗,>,`,⊥, ∂l, ∂r) with negation (S, S′, α, β, α′, β′), it is not hard
to show that S and S′ give an adjoint equivalence, and that the natural bijection (1) exists.
Moreover these constructions are mutually inverse.
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3. Linearly Distributive Monads with Negation

3.1. Definition. [11] Let F : Xop → X be a contravariant functor and (T, µ, η) a monad
on X with multiplication µA : TTA → TA and unit ηA : A → TA. Then a distributive
law of F over (T, µ, η) is a natural transformation λ : TFTA → FA such that the
following diagrams commute:

FTA

F(η)
''

η // TFTA

λ

��

TTFTA

µ

��

TTF(µ) // TTFTT(A)
T(λ) // TFTA

λ

��
FA TFTA

λ
// FA

(2)

This induces a contravariant functor F : (XT)op → XT defined on objects as:

F(A, TA a // A ) := (FA, TFA
TF(a) // TFTA λ // FA) (3)

and on maps as F(f) = F(f).

3.2. Definition. A linearly distributive monad with negation on a linearly dis-
tributive category (X,⊗,>,`,⊥, ∂l, ∂r) with negation (S, S′, α, β, α′, β′) is a nonuple
(T, µ, η,m2,m1, n2, n1, ν, ν

′) consisting of:

(i) A comonoidal monad (T, µ, η,m2,m1) on (X,⊗,>) with comonoidality structure
m2A,B : T(A⊗B)→ TA⊗ TB and m1 : T> → >

(ii) A comonoidal monad (T, µ, η, n2, n1) on (X,`,⊥) with comonoidality structure
n2A,B : T(A`B)→ TA` TB and n1 : T⊥ → ⊥

(iii) A distributive law ν of S over (T, µ, η)

(iv) A distributive law ν ′ of S′ over (T, µ, η)

such that (the dual of) the coherence diagrams from Pastro’s paper [9] commute. As
noted by Pastro, these coherence conditions are equivalent to requiring that ∂l, ∂r, α, β,
α′, β′ are all T-algebra morphisms (whenever their parameters are T-algebras).

3.3. Theorem. [9] The category of algebras of a linearly distributive monad with negation
is a linearly distributive category with negation and the forgetful functor strictly preserves
the structure.

As mentioned in the introduction, we find the dual notion of Pastro’s linearly distribu-
tive comonad with negation [9] to be more suitable for proving our main result (Theorem
5.8), rather than Pastro and Street’s notion of a ∗-autonomous comonad [10]. Of course,
however, these two notions coincide and the proofs of Section 5 could be done with either.

3.4. Theorem. [9] The notions of linearly distributive monads with negation and ∗-
autonomous monads coincide.
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4. Hopf Monads

4.1. Definition. Let (T, µ, η,m2,m1) be a comonoidal monad on a monoidal category
(X,⊗,>). The left and right fusion operators [4] are respectively the two natural
transformations hl : T(A⊗ TB)→ TA⊗ TB and hr : T(TA⊗B)→ TA⊗ TB defined as
follows:

hl := T(A⊗ TB)
m2 // TA⊗ TTB

1⊗µ // TA⊗ TB (4)

hr := T(TA⊗B)
m2 // TTA⊗ TB

µ⊗1 // TA⊗ TB (5)

A Hopf monad [4] is a comonoidal monad whose fusion operators are natural isomor-
phisms.

4.2. Lemma. The following diagrams commute:

A⊗ TB
η⊗1 //

η
''

TA⊗ TB

h−1
l
��

TTA⊗ TB
µ⊗1 //

h−1
l
��

TA⊗ TB

h−1
l
��

T(A⊗ TB) T(TA⊗ TB)
T(h−1

l )

// TT(A⊗ TB) µ
// T(A⊗ TB)

(6)

TA⊗B 1⊗η //

η
''

TA⊗ TB

h−1
r

��

TA⊗ TTB
1⊗µ //

h−1
r

��

TA⊗ TB

h−1
r

��
T(TA⊗B) T(TA⊗ TB)

T(h−1
r )

// TT(TA⊗B) µ
// T(TA⊗B)

(7)

T(A⊗B)
m2 //

T(1⊗η) ))

TA⊗ TB

h−1
l

��

TA⊗ TTB
h−1
l //

1⊗µ
��

T(A⊗ TTB)

T(1⊗µ)

��
T(A⊗ TB) TA⊗ TB

h−1
l

// T(A⊗ TB)

(8)

T(A⊗B)
m2 //

T(η⊗1) ))

TA⊗ TB

h−1
r

��

TTA⊗ TB
h−1
r //

µ⊗1

��

T(TA⊗ TB)

T(µ⊗1)
��

T(TA⊗B) TA⊗ TB
h−1
r

// T(TA⊗B)

(9)

Proof. They follow from the identities on fusion operators found in [4] (Proposition 2.6).
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4.3. Theorem. [5, 4]Let T be a comonoidal monad on an autonomous category X. Then
T is a Hopf monad if and only if the category XT is autonomous and the forgetful functor
strictly preserves the structure.

4.4. Theorem. [4] Let T be a comonoidal monad on a monoidal closed category X. Then
T is a Hopf monad if and only if the category XT is monoidal closed and the forgetful
functor strictly preserves the structure.

Since ∗-autonomous categories (linearly distributive categories with negation) are
monoidal closed [2], as an immediate corollary to the theorem above we have:

4.5. Corollary. A ∗-autonomous monad (linearly distributive monad with negation) on
a ∗-autonomous category (linearly distributive category with negation) is a Hopf monad.

5. Main Result

In this section we will show that every Hopf monad on ⊗ such that ⊥ is a T-algebra
induces a linearly distributive monad with negation. So for the remainder of this section,
let (X,⊗,>,`,⊥, ∂l, ∂r) be a linearly distributive category with negation (S, S′, α, β, α′, β′)
and let (T, µ, η,m2,m1) be a Hopf monad on (X,⊗,>) equipped with a map n1 : T⊥ → ⊥
such that (⊥, n1) is a T-algebra.

Define the maps φ : TSTA⊗A→ ⊥ and φ′ : A⊗TS′TA→ ⊥ respectively as follows:

φ := TSTA⊗ A 1⊗η // TSTA⊗ TA
h−1
l // T(STA⊗ TA)

T(α) // T⊥ n1 // ⊥ (10)

φ′ := A⊗ TS′TA
η⊗1 // TA⊗ TS′TA

h−1
r // T(TA⊗ S′TA)

T(α′) // T⊥ n1 // ⊥ (11)

Similarly, define the maps Φ : TTSTTA⊗A→ ⊥ and Φ′ : A⊗TTS′TTA→ ⊥ respectively
as:

Φ := TTSTTA⊗ A 1⊗η // TTSTTA⊗ TA
h−1
l // T(TSTTA⊗ TA)

T(φ) // T⊥ n1 // ⊥ (12)

Φ′ := A⊗ TTS′TTA
η⊗1 // TA⊗ TTS′TTA

h−1
r // T(TA⊗ TS′TTA)

T(φ′)// T⊥ n1 // ⊥ (13)

5.1. Lemma. The following diagrams commute for a morphism f : B → A:

TSTA⊗B 1⊗f //

TST(f)⊗1

��

TSTA⊗ A
φ

��

B ⊗ TS′TA
f⊗1 //

1⊗TS′T(f)
��

A⊗ TS′TA

φ′

��
TSTB ⊗B

φ
// ⊥ B ⊗ TS′TB

φ′
// ⊥

(14)
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Proof. The commutativity of the left diagram is shown as follows:

TSTA⊗B

TST(f)⊗1

��

1⊗f //

1⊗η

((

TSTA⊗ A 1⊗η // TSTA⊗ TA
h−1
l // T(STA⊗ TA)

T(α) // T⊥

n1

��

TSTA⊗ TB
h−1
l //

TST(f)⊗1

��

1⊗T(f)
55

T(STA⊗ TB)

T(ST(f)⊗1)

��

T(1⊗T(f))

55

TSTB ⊗B
1⊗η

// TSTB ⊗ TB
h−1
l

// T(STB ⊗ TB)
T(α)

// T⊥ n1
// ⊥

And similar proof shows that the right diagram commutes as well.

5.2. Lemma. The following diagrams commute:

STA⊗ A η⊗1 //

1⊗η
��

TSTA⊗ A
φ

��

TTSTA⊗ A µ⊗1 //

TTS(µ)⊗1

��

TSTA⊗ A
φ

��
STA⊗ TA α

// ⊥ TTSTTA⊗ A
Φ

// ⊥
(15)

A⊗ S′TA
1⊗η //

η⊗1

��

A⊗ TS′TA

φ′

��

A⊗ TTS′TA
1⊗µ //

1⊗TTS′(µ)
��

A⊗ TS′TA

φ′

��
TA⊗ S′TA

α′
// ⊥ A⊗ TTS′TTA

Φ′
// ⊥

(16)

Proof. That φ satisfies the left diagram of (15) follows from commutativity of the fol-
lowing diagram:

STA⊗ A η⊗1 //

1⊗η
��

TSTA⊗ A
1⊗η
��

STA⊗ TA

η --

α

��

η⊗1
// TSTA⊗ TA

(6)
h−1
l
��

T(STA⊗ TA)

T(α)
��

T⊥
n1
��

T-alg.

⊥

η //

⊥
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That φ satisfies the right diagram of (15) follows from commutativity of the following
diagram:

TTSTA⊗ A
µ⊗1

��

TTS(µ)⊗1 //

1⊗η
--

TTSTTA⊗ A
1⊗η
��

TSTA⊗ A
1⊗η
��

TTSTA⊗ TA

µ⊗1
rr

h−1
l
��

TTS(µ)⊗1 // TTSTTA⊗ TA

h−1
l
��

TSTA⊗ TA

(6)

h−1
l

��

T (TSTA⊗ TA)

T(1⊗η)

��

T(TS(µ)⊗1) // T (TSTTA⊗ TA)

T(1⊗η)

��
T (TSTA⊗ TA)

(8)

T(h−1
l )

��

T (TSTA⊗ TTA)
T(1⊗µ)
oo T(TS(µ)⊗1)//

T(h−1
l )
��

T (TSTTA⊗ TTA)

T(h−1
l )

��
TT (STA⊗ TTA)

TT(S(µ)⊗1)//

TT(1⊗µ)tt

TT (STTA⊗ TTA)

TT(α)

��
TT (STA⊗ TA)

µ

yy

TT(α)
// TT⊥

T(n1)

��

µ

xx

T⊥
T-alg.

n1

��
T(STA⊗ TA)

T(α)
// T⊥ n1

// ⊥

Similar arguments are used to show that φ′ satisfies both diagrams of (16).

Define the natural transformations ν : TSTA→ SA and ν ′ : TS′TA→ S′A respectively
as follows:

ν := TSTA
1⊗β // TSTA⊗ (A` SA)

∂l // (TSTA⊗ A) ` SA
φ`1 // SA (17)

ν ′ := TS′TA
β′⊗1 // (S′A` A)⊗ TS′TA

∂r // S′A` (A⊗ TS′TA)
1`φ′ // S′A (18)

These will be our distributive laws for our linearly distributive monad with negation.

5.3. Lemma. ν and ν ′ are natural transformations.

Proof. Naturality of ν and ν ′ follows from (14), which we leave to the reader to check
for themselves.
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5.4. Lemma. The following diagrams commute:

TSTA⊗ A

φ
))

ν⊗1 // SA⊗ A
α

��

A⊗ TS′TA

φ′
))

1⊗ν′ // A⊗ S′A

α′

��
⊥ ⊥

(19)

TTSTTA⊗ A T(ν)⊗1 //

Φ
**

TSTA⊗ A
φ
��

A⊗ TTS′TTA
1⊗T(ν′) //

Φ′
**

A⊗ TS′TA

φ′

��
⊥ ⊥

(20)

Proof. These follow from the triangle identities of a linearly distributive category with
negation, which again we will leave to the reader to check for themselves.

5.5. Proposition. The natural transformation ν (resp. ν ′) is a distributive law of S
(resp. S′) over (T, µ, η).

Proof. We show that ν satisfies both diagrams of (2). First note that S(η) : STA→ SA
is equal to the following composite:

S(η) =

(
STA

1⊗β // STA⊗ (A` SA)
∂l // (STA⊗ A) ` SA

(1⊗η)`1// (STA⊗ TA) ` SA α`1 // SA

)
Then that ν satisfies the left diagram of (2) follows from commutativity of the following
diagram:

STA

η

��

1⊗β // STA⊗ (A` SA)
∂l //

η⊗(1`1)
��

(STA⊗ A) ` SA

(η⊗1)`1
��

(1⊗η)`1 //

(15)

(STA⊗ TA) ` SA

α`1
��

TSTA
1⊗β

// TSTA⊗ (A` SA)
∂l

// (TSTA⊗ A) ` SA
φ`1

// SA

That ν satisfies the right diagram of (2) follows from commutativity of the following
diagram:

TTSTA
TTS(µ)

++

µ

ss
1⊗β

��

TSTA

1⊗β
��

TTSTTA

1⊗β
��

T(ν) // TSTA

1⊗β
��

TSTA⊗ (A` SA)

∂l

��

TTSTA⊗ (A` SA)
µ⊗(1`1)oo (TTS(µ)⊗(1`1)//

∂l

��

TTSTTA⊗ (A` SA)

∂l

��

T(ν)⊗(1`1) // TSTA⊗ (A` SA)

∂l

��
(TSTA⊗A) ` SA

φ`1
00

(TTSTA⊗A) ` SA
(µ⊗1)`1oo (TTS(µ)⊗1)`1// (TTSTTA⊗A) ` SA

(15) (Φ⊗1)`1

��

(20)

(T(ν)⊗1)`1 // (TSTA⊗A) ` SA

φ`1ooSA

Similar arguments can be used to show that ν ′ satisfies both diagrams of (2) as well.
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We now have that S and S′ lift to the Eilenberg-Moore category XT. The next step is
to show that ` lifts to XT and that we have a second comonoidal structure on T. First
observe the following general results on lifting isomorphisms:

5.6. Lemma. Let T be a monad and (A, a) a T-algebra. If f : A→ B is an isomorphism,
then the following map:

TB
T(f−1) // TA a // A

f // B (21)

provides a T-algebra structure on B and also that f is a T-algebra morphism.

As an immediate consequence of Lemma 5.6, the canonical isomorphisms A ∼= SS′A ∼=
S′SA lift to XT. Note that while this isomorphism is defined using the distributors and
the evaluation and coevaluation maps, we have yet to show that the latter are indeed
T-algebra morphisms. At this point however, we can define a comonoidal structure on
the monad T, which in turn determines ` for XT.

Define the natural transformation n2 : T(A`B)→ TA` TB as follows:

T(A`B)
∼= // TS(S′B ⊗ S′A)

TS(ν′⊗ν′) //

TS (TS′TB ⊗ TS′TA)
TS(m2) // TST (S′TB ⊗ S′TA) ν //

S (S′TB ⊗ S′TA)
∼= // TA` TB

(22)

5.7. Proposition. (T, µ, η, n2, n1) is a comonoidal monad on (X,`,⊥).

Proof. Rather than proving this directly, we will define a monoidal structure on XT

which is strictly preserved by the forgetful functor. Let (A, a) and (B, b) be T-algebras.
Since (T, µ, η,m2,m1) is a comonoidal monad and both S and S′ lifts to XT, we can
build the T-algebra S

(
S′(B, b)⊗ S′(A, a)

)
whose underlying object is S(S′B⊗S′A). Since

A`B ∼= S(S′B⊗S′A), we can apply Lemma 5.6 to obtain a T-algebra structure on A`B
which one can easily check ends up being:

T(A`B)
n2 // TA` TB a`b // A`B (23)

We define (A, a)` (B, b) as this new T-algebra. Furthermore, the canonical isomorphisms
A ` B ∼= S(S′B ⊗ S′A) ∼= S′(SB ⊗ SA) are all T-algebra morphisms. It follows that
(XT,`, (⊥, n1)) is a monoidal category and the forgetful functor U : (XT,`, (⊥, n1)) →
(X,`,⊥) preserves the monoidal structure strictly. This induces a comonoidal monad
structure on (T, µ, η), which is precisely (T, µ, η, n2, n1).
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To show that we obtain a linearly distributive monad with negation, it remains to
show that the distributors (∂l and ∂r) and the four evaluation and coevaluation maps
(α, β, α′, and β′) are all T-algebra morphisms (which recall is equivalent to checking the
remaining coherence axioms for a linearly distributive monad with negation). We will use
the same trick that Pastro uses in his paper [9].

5.8. Theorem. Let (X,⊗,>,`,⊥, ∂l, ∂r) be a linearly distributive category with negation
(S, S′, α, β, α′, β′), and (T, µ, η,m2,m1) be a Hopf monad on (X,⊗,>) with a T-algebra
structure n1 : T⊥ → ⊥ on ⊥. Then, with natural transformations ν, ν ′ and n2 defined as
above, (T, µ, η,m2,m1, n2, n1, ν, ν

′) is a linearly distributive monad with negation on X.

Proof. It suffices to show that the distributors, the evaluation and coevaluation maps are
T-algebra morphisms. First recall that every linearly distributive category with negation
admits a closed monoidal structure with respect to ⊗. In particular the left and right
internal homs are respectively S(A ⊗ S′B) and S′(SB ⊗ A), we have an evaluation map
e : S(A ⊗ S′B) ⊗ A → B and a coevaluation map e′ : A ⊗ S′(SB ⊗ A) → B. Now since
(T, µ, η,m2,m1) is a Hopf monad, it follows that both e and e′ are T-algebra morphisms
(when A and B are T-algebras).

Now note that the following diagrams all commute:

A⊗ (B ` C)

∂l

��

∼= // A⊗ S′(SC ⊗ SB)
1⊗S′(1⊗e) // A⊗ S′ (SC ⊗ S(A⊗ S′SB)⊗ A)

∼=
��

A⊗ S′ (SS′ (SC ⊗ S(A⊗ S′SB))⊗ A)

e′

��
S′ (SC ⊗ S(A⊗ S′SB))

∼=
��

(A⊗B) ` C (A⊗ S′SB) ` C∼=
oo

(A`B)⊗ C

∂l

��

∼= // S(S′B ⊗ S′A)⊗ C S(e′⊗1)⊗1 // S (C ⊗ S′(SS′B ⊗ C)⊗ S′A)⊗ C
∼=
��

S (C ⊗ S′S (S′(SS′B ⊗ C)⊗ S′A))⊗ C
e

��
S (S′(SS′B ⊗ C)⊗ S′A)

∼=
��

A` (B ⊗ C) A` (SS′B ⊗ C)∼=
oo
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SA⊗ A

α

++

∼= // S(A⊗ S′S>)⊗ A e // S>
∼=
��

A⊗ S′A

α′

++

∼= // A⊗ S′(SS′>⊗ A) e′ // S′>
∼=
��

⊥ ⊥

>

β

''

∼= // SS′> S(e′) // S (S′SA⊗ S′(SS′>⊗ S′SA))

∼=
��

>

β′

''

∼= // S′S> S′(e) // S′ (S(SS′A⊗ S′S>)⊗ SS′A)

∼=
��

S (S′SA⊗ S′A)

∼=
��

S′ (SA⊗ SS′A)

∼=
��

A` SA S′A` A

This implies that ∂l, ∂r, α, β, α′, β′ are all composites of T-algebra morphisms, and
are therefore T-algebras morphisms themselves. And hence, we indeed have a linearly
distributive monad with negation.

In terms of ∗-autonomous categories and ∗-autonomous monads, our theorem can be
stated as follows.

5.9. Theorem. Let (X,⊗,>, S, S′) be a ∗-autonomous category, and (T, µ, η,m2,m1) be a
Hopf monad on (X,⊗,>) with a T-algebra structure n1 : T⊥ → ⊥ on ⊥ = S>. Then, with
natural transformations ν, ν ′ defined as above, (T, µ, η,m2,m1, ν, ν

′) is a ∗-autonomous
monad on (X,⊗,>, S, S′).

Let us conclude this paper with a few examples.

5.10. Example. An autonomous category can be seen as a linearly distributive category
with negation with ⊗ = ` and > = ⊥. In this “compact” case, as Pastro observed [9], the
notions of Hopf monads and linearly distributive monads with negation coincide: there is
an algebra structure on ⊥ = > given by the comonoidality T> → >.

5.11. Example. More generally, when > ∼= ⊥, the notions of Hopf monads and linearly
distributive monads with negation coincide (apply Lemma 5.6 to the comonoidality T> →
> to get an algebra structure on ⊥). Therefore, on isoMIX categories (in the sense of
Cockett and Seely [7]), Hopf monads are the same as linearly distributive monads with
negation.

5.12. Example. Suppose that H is a Hopf algebra with invertible antipode in a symmet-
ric linearly distributive category with negation (or symmetric ∗-autonomous category).
The monad T = H ⊗ (−) is a Hopf monad [5], and every object A has a trivial T-algebra
structure (H-module structure) H ⊗ A → A induced by the counit H → > of the Hopf
algebra. In particular, the dualizing object ⊥ has a T-algebra structure. It follows that
T is a linearly distributive monad with negation, and the linearly distributive structure
with negation is lifted to category of T-algebras (or H-modules).
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