
Classical Linear Logic of Implications

Masahito Hasegawa

Research Institute for Mathematical Sciences, Kyoto University
hassei@kurims.kyoto-u.ac.jp

Abstract. We give a simple term calculus for the multiplicative ex-
ponential fragment of Classical Linear Logic, by extending Barber and
Plotkin’s system for the intuitionistic case. The calculus has the non-
linear and linear implications as the basic constructs, and this design
choice allows a technically managable axiomatization without commut-
ing conversions. Despite this simplicity, the calculus is shown to be sound
and complete for category-theoretic models given by ∗-autonomous cat-
egories with linear exponential comonads.

1 Introduction

We propose a linear lambda calculus called Dual Classical Linear Logic (DCLL)
for the multiplicative exponential fragment of Classical Linear Logic [10] (often
called MELL in the literature). It can be regarded as an extension of the Dual
Intuitionistic Linear Logic (DILL) of Barber and Plotkin [1, 2].

The main feature of DCLL is its simplicity: just three logical connectives (in-
tuitionistic implication→, linear implication � and the bottom type ⊥) and six
axioms for the equational theory on terms (proofs) which are just the familiar
βη axioms of the lambda calculus (each for → and �) plus two axioms saying
that the type (σ � ⊥) � ⊥ is canonically isomorphic to σ. In particular we can
avoid axioms for commuting conversions, which have always been troublesome
on term calculi for Linear Logic. Other logical connectives and their proof ex-
pressions of MELL are easily derived in DCLL; for instance the exponential ! is
given by !σ ≡ (σ → ⊥) � ⊥. All the desired equalities between terms, including
the commuting conversions, are provable from the simple axioms of DCLL.

Thus DCLL can be used as a compact linear syntax for reasoning about
MELL, to compliment the drawbacks of conventional proof nets-based presen-
tations which are often tiresome to formulate and deal with. For instance, it is
much easier to describe and analyze the translations between type systems if
we use term calculi like DCLL instead of graph-based systems. Also techniques
of logical relations (e.g. [11, 23]) seem to work more smoothly on term-based
systems. As future work, we plan to study the compilations of call-by-value
programming languages into linearly typed intermediate languages [6, 13] using
DCLL as a target calculus. In fact, our choice of the logical connectives has been
motivated by this research direction – see the discussion in Sec. 6.

Despite its simplicity, it is shown that DCLL is sound and complete for
categorical models of MELL given by ∗-autonomous categories with symmetric

J. Bradfield (Ed.): CSL 2002, LNCS 2471, pp. 458–472, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Classical Linear Logic of Implications 459

monoidal comonads satisfying some coherence conditions (to be called linear
exponential comonads). It turns out that our simple axioms are sufficient for
giving such a categorical structure on the term model. Although this may not
be of big surprise, there seem not many systems for Linear Logic supported by
this sort of semantic completeness at the level of proofs, and we think that this
completeness result gives a justification on our design of DCLL.

This paper is organized as follows. We introduce the system DCLL in Sec. 2,
with some discussions on its alternative formulations. Sec. 3 gives a comparison
of DCLL with its precursor DILL. Sec. 4 then states the completeness result of
DCLL with respect to the categorical models of MELL. In Sec. 5 the extension
with additives (hence a full propositional Classical Linear Logic) is discussed.
We conclude the paper by giving some discussions on future work at Sec. 6.
Appendix A gives a summary of DILL, while Appendix B is devoted to a variant
of DCLL based on the λµ-calculus, called µDCLL. Appendix C describes an
alternative axiomatization of DCLL (and MLL) with no base type.

Acknowledgements I am grateful to Hayo Thieletcke for drawing my attention
to the {→,�}-fragment. I thank Martin Hofmann, Yoshihiko Kakutani and
Valeria de Paiva for discussions and comments related to this work.

2 DCLL

2.1 The System DCLL

In this “dual-context”1 formulation of the linear lambda calculus, a typing judge-
ment takes the form Γ ; ∆ �M : τ in which Γ represents an intuitionistic (or ad-
ditive) context whereas∆ is a linear (multiplicative) context. While the variables
in Γ can be used in the termM as many times as we like, those in∆must be used
exactly once. A typing judgement x1 : σ1, . . . , xm : σm ; y1 : τ1, . . . , yn : τn �
M : σ can be considered as the proof of the sequent !σ1, . . . , !σm, τ1, . . . , τn � σ,
or the proposition !σ1 ⊗ . . .⊗!σm ⊗ τ1 ⊗ . . .⊗ τn � σ.

As mentioned in the introduction, the system features both intuitionistic
(non-linear) arrow type → and linear arrow type �. We use λλxσ .M and M @N
for the non-linear lambda abstraction and application respectively, while λxσ.M
and M N for the linear ones. For expressing the duality of Classical Linear
Logic, there also is a special combinator Cσ which serves as the isomorphism
from (σ � ⊥) � ⊥ to σ (which, however, can be eliminated when we have no
base type – see the discussion at the end of this section).

Types and Terms

σ ::= b | σ → σ | σ � σ | ⊥
M ::= x | λλxσ .M | M @M | λxσ .M | MM | Cσ

where b ranges over a set of base types. We may omit the type subscripts for
ease of presentation.
1 As noted in [2] the word “dual” of DILL (and DCLL) comes from this dual-context
typing, and has nothing to do with the duality of Classical Linear Logic.

460 Masahito Hasegawa

Typing

Γ1, x : σ, Γ2 ; ∅ � x : σ (Int-Ax)
Γ ; x : σ � x : σ (Lin-Ax)

Γ, x : σ1 ; ∆ �M : σ2

Γ ; ∆ � λλxσ1 .M : σ1 → σ2
(→ I)

Γ ; ∆ �M : σ1 → σ2 Γ ; ∅ � N : σ1

Γ ; ∆ �M @N : σ2
(→ E)

Γ ; ∆, x : σ1 �M : σ2

Γ ; ∆ � λxσ1 .M : σ1 (σ2
((I)

Γ ; ∆1 �M : σ1 (σ2 Γ ; ∆2 � N : σ1

Γ ; ∆1
∆2 �M N : σ2
((E)

Γ ; ∅ � Cσ : ((σ(⊥)(⊥)(σ
(C)

where∆1�∆2 is a merge of∆1 and∆2 [2]. Thus,∆1�∆2 represents one of possible
merges of ∆1 and ∆2 as finite lists. We assume that, when we introduce ∆1�∆2,
there is no variable occurring both in ∆1 and in ∆2. We write ∅ for the empty
context. We note that any typing judgement has a unique derivation (hence
a typing judgement can be identified with its derivation).

Axioms
(β→) (λλx.M) @N = M [N/x]
(η→) λλx.M @x = M (x �∈ FV (M))
(β�) (λx.M)N = M [N/x]
(η�) λx.M x = M
(C1) L (CσM) = M L (L : σ � ⊥)
(C2) Cσ (λkσ�⊥.kM) = M

where M [N/x] denotes the capture-free substitution. Note that there is no side
condition x �∈ FV (M) for the axiom (η�) (and similarly for (C2)), as linearity
prevents x from occuring in M . The equality judgement Γ ; ∆ �M = N : σ for
Γ ; ∆ �M : σ and Γ ; ∆ � N : σ is defined as usual.
We note that the axiom (C1) is equivalent to λkσ�⊥.k (CσM) =M ; thus the last
two axioms say that Cσ is the inverse of λxσ .λkσ�⊥.k x : σ � (σ � ⊥) � ⊥.
Lemma 1. The “naturality” of C is provable in DCLL:

Lσ�τ (CσM
(σ�⊥)�⊥) = Cτ (λkτ�⊥.M (λxσ .k (Lx))) : τ

Proof:

L (CM)
C2= C (λk.k (L (CM)))

β�
= C (λk.(λx.k (Lx)) (CM))

C1= C (λk.M (λx.k (Lx))).

��

2.2 Alternative Formulations of DCLL

Formulation Based on the λµ-calculus. Instead of the combinator C for
the double-negation elimination, we could use the syntax of the λµ-calculus [21]
for expressing the duality, as done in [17] for the multiplicative fragment (MLL).

Classical Linear Logic of Implications 461

We do not take this approach here as our presentation using C seems suffi-
ciently simple, while the λµ-calculus style formulation requires to introduce yet
another typing context. For completeness, in Appendix B we present such a sys-
tem (µDCLL) which is routinely seen to be equivalent to DCLL. A potential
benefit of the λµ-calculus approach is that it may give a confluent and nor-
malizing reduction system (which cannot be expected for DCLL); also it allows
natural treatment of the connective

&

(by introducing the binary µ-bindings).
See also [8] for relevant results.

Axiomatization without C. In DCLL, the following equations are provable:

Lemma 2.

1. C⊥ = λm(⊥�⊥)�⊥.m (λx⊥.x)
2. Cσ→τ = λm((σ→τ)�⊥)�⊥.λλxσ .Cτ (λkτ�⊥.m (λfσ→τ .k (f @x)))
3. Cσ�τ = λm((σ�τ)�⊥)�⊥.λxσ .Cτ (λkτ�⊥.m (λfσ�τ .k (f x)))

Proof:

1. C⊥m = (λx⊥.x) (C⊥m) = m (λx⊥.x).
2. Cσ→τ m @x = Cτ (λk.k (Cσ→τ m @x)) = Cτ (λk.(λf.k (f @x)) (Cσ→τ m)) =

Cτ (λk.m (λf.k (f @x))).
3. Cσ(τ mx = Cτ (λk.k (Cσ(τ mx)) = Cτ (λk.(λf.k (f x)) (Cσ(τ m)) =

Cτ (λk.m (λf.k (f x))). ��
This implies that, if we do not have base types, all DCLL terms can be expressed
as just (non-linear and linear) lambda terms, without using the combinator C.
By induction we can show

Proposition 1. For σ = σ1 ⇒1 . . . σn ⇒n ⊥ (where ⇒i is either → or �)

CσM �1 N1 . . . �n Nn =M (λfσ.f �1 N1 . . . �n Nn) : ⊥
is provable in DCLL, where M : (σ � ⊥) � ⊥, Ni : σi, and �i is a non-linear
application if ⇒i is →, or a linear application if ⇒i is �. ��
If we define C’s as lambda terms by the equations of Lem. 2 or Prop. 1, then the
axiom (C2) follow just from the βη-axioms for→ and �. Therefore it is possible
to axiomatize DCLL with no base type as a quotient of the {→,�}-calculus
on the single base type ⊥ obtained by adding the axiom (C1) for these defined
C’s. In fact all of them are derivable from the following single instance and the
βη-axioms for → and �:

L (λxσ .M (λfσ�⊥.f x)) =M L

where L : (σ � ⊥) � ⊥ and M : ((σ � ⊥) � ⊥) � ⊥.2 So it suffices to have
the standard βη-axioms and this equation; Appendix C describes the resulting
system (as well as its multiplicative fragment MLL).
2 This in fact amounts to the infamous (in)equality known as “triple unit problem”
(which asks if two canonical endomorphisms on ((A(I)(I)(I are the same
in a symmetric monoidal closed category, see [19, 16]) if one replaces ⊥ by I .

462 Masahito Hasegawa

3 DILL in DCLL

The primitive constructs of DILL (summarized in Appendix A) can be defined
in DCLL as follows:

I ≡ ⊥ � ⊥
σ1 ⊗ σ2 ≡ (σ1 � σ2 � ⊥) � ⊥
!σ ≡ (σ → ⊥) � ⊥

∗ ≡ λx⊥.x
let ∗ be M I in N τ ≡ Cτ (λkτ�⊥.M (k N))
Mσ1 ⊗Nσ2 ≡ λkσ1�σ2�⊥.kM N
let xσ1 ⊗ yσ2 be Mσ1⊗σ2 in N τ ≡ Cτ (λkτ�⊥.M (λxσ1 .λyσ2 .k N))
!Mσ ≡ λhσ→⊥.h @M
let !xσ be M !σ in N τ ≡ Cτ (λkτ�⊥.M (λλxσ .k N))

(It is also possible to introduce connectives ? and

&

by ?σ ≡ (σ � ⊥) → ⊥
and σ1

&

σ2 ≡ (σ1 � ⊥) � (σ2 � ⊥) � ⊥, though giving the term expressions
associated to these connectives seems less obvious.)

Below we shall see that this encoding is sound, for both the typing and
equational theory.

Lemma 3. Derivation rules of typing judgements in DILL are admissible in
DCLL.

Proof: We shall spell out the cases of introduction and elimination rules for !

Γ ; ∅ � M : σ

Γ ; ∅ � !M : !σ
(! I)

Γ ; ∆1 �M : !σ Γ, x : σ ; ∆2 � N : τ

Γ ; ∆1
∆2 � let !xσ be M in N : τ
(! E)

which are derivable in DCLL as follows.

Γ ; h : σ → ⊥ � h : σ → ⊥ Lin-Ax
Γ ; ∅ � M : σ

Γ ; h : σ → ⊥ � h @ M : ⊥ →E

Γ ; ∅ � !M ≡ λhσ→⊥.h @ M : (σ → ⊥) � ⊥ ≡ !σ
� I

Γ ; ∅ � Cτ : ((τ �⊥)�⊥)�τ
C

Γ ; ∆1 � M : !σ ≡ (σ →⊥)�⊥

Γ, x : σ ; k : τ �⊥ � k : τ �⊥ Lin-Ax
Γ, x : σ ; ∆2 � N : τ

Γ, x : σ ; ∆2, k : τ �⊥ � k N : ⊥ �E

Γ ; ∆2, k : τ �⊥ � λλxσ.k N : σ→⊥
→ I

Γ ; ∆1
∆2, k : τ �⊥ � M (λλxσ.k N) : ⊥
�E

Γ ; ∆1
∆2 � λkτ�⊥.M (λλxσ.k N) : (τ �⊥)�⊥
� I

Γ ; ∆1
∆2 � let !xσ be M in N ≡ Cτ (λkτ�⊥.M (λλxσ.k N)) : τ
�E

The cases of I and ⊗ are derived similarly. ��

Theorem 1. Equality axioms in DILL are admissible in DCLL.

Classical Linear Logic of Implications 463

Proof: The β-axioms are easy:

let ∗ be ∗ in N ≡ C (λk.(λx.x) (kN))
= C (λk.k N)
= N

let x⊗ y be M1 ⊗M2 in N ≡ C (λk.(λh.hM1M2) (λx.λy.kN))
= C (λk.(λx.λy.kN)M1 M2)
= C (λk.k N [M1/x,M2/y])
= N [M1/x,M2/y]

let !x be !M in N ≡ C (λk.(λh.h @M) (λλx.kN))
= C (λk.(λλx.kN) @M)
= C (λk.k N [M/x])
= N [M/x]

The η-axioms are slightly more subtle.

let ∗ be M in ∗ ≡ C (λk.M (k (λx.x)))
= λy.(λk.M (k (λx.x))) (λf.f y) (Prop.1)
= λy.M ((λf.f y) (λx.x))
= λy.M ((λx.x)y)
= λy.M y
= M

let x⊗ y be M in x⊗ y ≡ C (λk.M (λxy.k (λn.n x y)))
= λu.(λk.M (λxy.k (λn.n x y))) (λf.f u) (Prop.1)
= λu.M (λxy.(λf.f u) (λn.n x y))
= λu.M (λxy.ux y)
= λu.M u
= M

let !x be M in !x ≡ C (λk.M (λλx.k (λh.h @x)))
= λu.(λk.M (λλx.k (λh.h @x))) (λf.f u) (Prop.1)
= λu.M (λλx.(λf.f u) (λh.h @x))
= λu.M (λλx.(λh.h @x)u)
= λu.M (λλx.u @x)
= λu.M u
= M

There remain (30 instances of) axioms for commuting conversions which, for instance,
can be shown as

L (let !x be M in N) ≡ L (C (λk.M (λλx.kN)))
= C (λh.(λk.M (λλx.kN)) (λy.h (Ly))) (Lem. 1)
= C (λh.M (λλx.(λy.h (Ly))N))
= C (λh.M (λλx.h (LN)))
≡ let !x be M in LN

let !x be M in λy.N ≡ C (λk.M (λλx.k (λy.N)))
= λy.C (λh.(λk.M (λλx.k (λy.N))) (λf.h (f y))) (Lem. 2)
= λy.C (λh.M (λλx.(λf.h (f y)) (λy.N)))
= λy.C (λh.M (λλx.hN))
≡ λy.(let !x be M in N)

We leave the other cases as exercises for the interested readers. ��

464 Masahito Hasegawa

4 Completeness for Categorical Models

An important implication of Thm. 1, together with the result in [2] (completeness
via the term model construction), is that the term model of DCLL forms a model
of DILL, i.e., a symmetric monoidal closed category equipped with a symmetric
monoidal comonad satisfying certain coherence conditions (see e.g. [7]) which we
shall call a “linear exponential comonad” (following [15]).3

Definition 1 (linear exponential comonad). A symmetric monoidal
comonad ! = (!, ε, δ,mA,B,mI) on a symmetric monoidal category C is called
a linear exponential comonad when the category of its coalgebras is a category
of commutative comonoids – that is:

– for each free !-coalgebra (!A, δA) there are specified monoidal natural trans-
formations eA :!A → I and dA :!A →!A⊗!A which form a commutative
comonoid (!A, eA, dA) in C and also are coalgebra morphisms from (!A, δA)
to (I,mI) and (!A⊗!A,m!A,!A ◦ (δA ⊗ δA)) respectively, and

– any coalgebra morphism from (!A, δA) to (!B, δB) is also a comonoid mor-
phism from (!A, eA, dA) to (!B, eB , dB).

Moreover, the symmetric monoidal closed category given by the term model
of DCLL is a ∗-autonomous category [3, 4] if we take ⊥ as the dualizing ob-
ject. Recall that a ∗-autonomous category can be characterized as a symmetric
monoidal closed category with an object ⊥ such that the canonical morphism
from σ to (σ � ⊥) � ⊥ is an isomorphism — in the term model of DCLL, the
inverse is given by the combinator Cσ.

On the other hand, all the axioms of DCLL are sound with respect to inter-
pretations in such categorical models, where a typing judgement

x1 : σ1, . . . , xm : σm ; y1 : τ1, . . . , yn : τn �M : σ

is inductively interpreted as a morphism [[x1 : σ1, . . . ; y1 : τ1, . . . �M : σ]] from
![[σ1]]⊗ . . .⊗![[σm]]⊗ [[τ1]]⊗ . . .⊗ [[τn]] to [[σ]] in the ∗-autonomous category with the
linear exponential comonad !. Thus we have:

Theorem 2 (categorical completeness). The equational theory of DCLL is
sound and complete for categorical models given by ∗-autonomous categories with
linear exponential comonads: Γ ; ∆ � M = N : σ is provable if and only if
[[Γ ; ∆ �M : σ]] = [[Γ ; ∆ � N : σ]] holds for every such models. ��
3 In [2] a model of DILL is described as a symmetric monoidal adjunction between
a cartesian closed category and a symmetric monoidal closed category (Benton’s
LNL model [5]). It is known that such an “adjunction model” gives rise to a linear
exponential comonad on the symmetric monoidal closed category part. Conversely,
a symmetric monoidal closed category with a linear exponential comonad has at
least one symmetric monoidal adjunction from a cartesian closed category so that it
induces the linear exponential comonad (such an adjunction is not unique in general,
though). Therefore, for our purpose (the completeness result as stated here), it does
not matter which class of structures we choose as models. However we must be
careful when we talk about the morphisms between models, e.g. to use the term
model of DILL (or DCLL) as a classifying category of such structures.

Classical Linear Logic of Implications 465

5 Additives

It is fairly routine to enrich DCLL with additives. We add the cartesian product
& and its unit �, and terms

Γ ; ∆ � 〈 〉 : � (� I)
Γ ; ∆ � M : σ Γ ; ∆ � N : τ

Γ ; ∆ � 〈M,N〉 : σ& τ
(& I)

Γ ; ∆ �M : σ& τ

Γ ; ∆ � fstσ,τ M : σ
(& EL)

Γ ; ∆ �M : σ& τ

Γ ; ∆ � sndσ,τ M : τ
(& ER)

and the standard axioms
M = 〈 〉 (M : �)
fst 〈M,N〉 =M
snd 〈M,N〉 = N
〈fstM, sndM〉 =M

Again we do not need any additional axiom for commuting conversions. Further-
more, it is possible to eliminate the C combinators for additives as we can prove
(using Lem. 1 for the latter case)

Lemma 4.

1. C� = λm(��⊥)�⊥.〈 〉
2. Cσ & τ =
λm((σ & τ)�⊥)�⊥.
〈Cσ (λkσ�⊥.m (λzσ & τ .k (fstσ,τ z))),Cτ (λhτ�⊥.m (λzσ & τ .h (sndσ,τ z)))〉

��
In particular, if we do not have base types, it is possible to axiomatize DCLL
with additives as a quotient of a typed lambda calculus (with →, �, �, &) on
a single base type ⊥, in the same way as described at the end of Sec. 2.

The coproduct ⊕ and its unit 0 are given by σ1 ⊕ σ2 ≡ ((σ1 � ⊥)& (σ2 �
⊥)) � ⊥ and 0 ≡ � � ⊥ as usual. The associated term constructs are

Γ ; ∆ �M : σ

Γ ; ∆ � inlσ,τ M ≡ λk(σ(⊥)& (τ(⊥).fstσ(⊥,τ(⊥ kM : σ ⊕ τ
(⊕ IL)

Γ ; ∆ � N : τ

Γ ; ∆ � inrσ,τ N ≡ λk(σ(⊥) & (τ(⊥).sndσ(⊥,τ(⊥ kN : σ ⊕ τ
(⊕ IR)

Γ ; ∆ � L : σ ⊕ τ Γ ; ∆,x : σ �M : θ Γ ; ∆, y : τ � N : θ

Γ ; ∆ � case L of inlxσ �→M ‖ inr yτ �→ N ≡
Cθ (λk

θ(⊥.L 〈λxσ.k M, λyτ .k N〉) : θ
(⊕E)

They do satisfy the standard axioms for coproducts as well as a number of
commuting conversion axioms.

A category-theoretic model of DCLL extended with additives can be given as
a ∗-autonomous category with a linear exponential comonad and finite products.
The soundness and completeness results in the last section easily extend for this
setting.

466 Masahito Hasegawa

6 Discussions and Future Work

6.1 DCLL as a Typed Intermediate Language

The design of DCLL is heavily inspired from our experience (and still on-going
project) on the study of compiling (mostly call-by-value typed) programming
languages into linearly typed intermediate languages [13], which has been briefly
mentioned in the introduction.

In [6] the {→,�}-fragment of DILL (with recursive types) is used as the
target language of CPS transformations. In [13] we extend the idea of [6] to
general monadic transformations into the {!,�}-fragment of DILL, and have
observed that the {→,�}-fragment is full in the {!,�}-fragment4 (hence both
approaches essentially agree, as long as we talk about CPS transformations).
In these studies the “linearly-used continuation monad” ((−) → θ) � θ plays
the key role5 :→ for continuations, and � for the linearity of their passing.
The choice of connectives of DCLL then comes to us naturally; → and � come
first, and we regard the exponential ! as the special case of the linearly-used
continuation monad by letting θ be ⊥: !σ � (!σ � ⊥) � ⊥ � (σ → ⊥) � ⊥.

It is also interesting to re-examine the previous work on applying Classical
Linear Logic to programming languages with control features [9, 20] using DCLL;
in particular Filinski’s work [9] seems to share several ideas with the design of
DCLL.

6.2 Is “!” better than “→”?

A possible criticism on DCLL is on its indirect treatment of the exponentials,
which have been regarded as the central feature of Linear Logic by many people
(though there are some exceptions, e.g. [24, 22, 18]6). We used to consider ! as
a primitive and → as a derived connective as σ → τ ≡!σ � τ , but not in the
other way (i.e. !σ ≡ (σ → ⊥) � ⊥ as we do in DCLL).

However, even in the Intuitionistic Linear Logic, the full completeness of
the {→,�}-fragment in the {!,�}-fragment tells us that → is no less delicate
than ! at the level of proofs (terms), while {→,�} enjoys much simpler term
structures and nice properties like confluence and strong normalization. And, in
Classical Linear Logic, {→,�,⊥} is literally isomorphic to {!,�,⊥} — then it
is not unnatural to use the technically simpler presentation.
4 This result is shown by mildly extending the proof of full completeness of Gi-
rard’s translation from the simply typed lambda calculus into the {!,(}-fragment
of DILL [12].

5 This is not a monad on the term model of DILL; it is a monad on a suitable subcat-
egory of the category of !-coalgebras.

6 In particular Plotkin’s system [22] is the second-order {→,(}-calculus in which
other connectives of DILL including ! are definable in the similar way as we do
in DCLL, for example !σ as ∀X.(σ → X) (X. In fact it suffices to add an
axiom Lσ(τ (M∀X.(σ(X)(X σ (λxσ.x)) = M τ L (which just says σ � ∀X.(σ (
X)(X) to give the structure of models of DILL to the term model of this calculus
– the story is completely analogous to the case of DCLL.

Classical Linear Logic of Implications 467

Moreover, as mentioned above, DCLL do have natural advantages in pro-
gramming language theory. From such an application-oriented view, we think
that the simplicity of DCLL is undeniably attractive. See also [18] for relevant
discussions on the {→,�,⊗, I, & ,�}-fragment and its fibration-based models
(which can be adopted for DCLL without problem).

6.3 Why not σ⊥⊥
= σ

Another possible source of criticism would be the way we deal with the duality,
which again is the essential feature of Classical Linear Logic. Many systems
for Classical Linear Logic, especially those of proof nets, identify the type σ⊥⊥

(= (σ � ⊥) � ⊥) with σ. On the other hand, in DCLL (and some other term-
based systems like [8]) they are just isomorphic, and we explicitly have terms
for the isomorphisms. The essential reason of this non-identification in DCLL
is that we intend it to have ∗-autonomous categories with linear exponential
comonads as models, rather than those with strict involution (i.e. (−)⊥⊥ is
the identity functor and the canonical isomorphism σ

�→ σ⊥⊥ is an identity
arrow), as we think that having a strict involution is not a natural assumption
on semantic models. (However, it might be the case that any ∗-autonomous
category is equivalent to a ∗-autonomous category with strict involution, and if
this is true, this design choice would be just a matter of taste.)

6.4 ILL vs. CLL

We believe that the relationship between Intuitionistic Linear Logic and Classical
Linear Logic – at the level of proofs rather than that of provability – has not
been sufficiently sorted out yet. Let us state the problems in terms of DCLL.

The first question concerns the converse of Thm. 1.

Conjecture 1 (conservativity, or completeness). The equational theory of DCLL
is conservative over that of DILL. That is, Γ ; ∆ � M = N : σ is provable in
DILL if and only if it is provable in DCLL (via the encoding given in Sec. 3 –
the “only if” part follows from Thm. 1).

The second question is on the fullness of Intuitionistic Linear Logic in Classical
Linear Logic.

Conjecture 2 (fullness). DILL is full in DCLL. That is, if Γ ; ∆ � N : σ is
derivable in DCLL and all the types in Γ , ∆ and σ stay in DILL, then there
exists a DILL-term Γ ; ∆ � M : σ so that Γ ; ∆ � M = N : σ is provable in
DCLL.

Note that the corresponding results for multiplicative fragments are already
known: MILL is fully complete in MLL, see for instance [15]. We also know that
MILL is fully complete in DILL [11] – but how about DILL and DCLL? In fact,
one of our motivations to introduce DCLL has been to provide a manageable
foundation for attacking this question. We expect that this will be positively
solved by using the model construction techniques (categorical glueing / logical
relations) in [23, 15].

468 Masahito Hasegawa

6.5 Decidability of the Equational Theory

Another natural question on DCLL is

Conjecture 3 (decidability). The equational theory of DCLL is decidable.

We shall note that the equational theory of DILL is known to be decidable,
see [1]. The same is true for MLL (in [17] the corresponding coherence prob-
lem for ∗-autonomous categories is solved). We hope that some rewriting tech-
niques are effective for this purpose, especially using some λµ-calculus style
variant of DCLL (e.g. µDCLL given in Appendix B). However, even though
DCLL avoids to deal with commuting conversions explicitly, we still have to
work up to certain equivalence classes of terms, e.g. as in [17] (for instance
λx⊥.λf⊥�⊥.λg⊥�⊥.f (g x) = λx⊥.λf⊥�⊥.λg⊥�⊥.g (f x) holds in DCLL, but
there is no natural way to give an orientation on this equation).

References

[1] Barber, A. (1997) Linear Type Theories, Semantics and Action Calculi. PhD
Thesis ECS-LFCS-97-371, University of Edinburgh. 458, 468

[2] Barber, A. and Plotkin, G. (1997) Dual intuitionistic linear logic. Submitted.
An earlier version available as Technical Report ECS-LFCS-96-347, LFCS, Uni-
versity of Edinburgh. 458, 459, 460, 464

[3] Barr, M. (1979) ∗-Autonomous Categories. Springer Lecture Notes in Math. 752.
464

[4] Barr, M. (1991) ∗-autonomous categories and linear logic. Math. Struct. Comp.
Sci. 1, 159–178. 464

[5] Benton, P.N. (1995) A mixed linear and non-linear logic: proofs, terms and mod-
els (extended abstract). In Computer Science Logic (CSL’94), Springer Lecture
Notes in Comput. Sci. 933, pp. 121–135. 464

[6] Berdine, J., O’Hearn, P.W., Reddy, U. S. and Thielecke, H. (2001) Linearly used
continuations. In Proc. ACM SIGPLAN Workshop on Continuations (CW’01),
Technical Report No. 545, Computer Science Department, Indiana University,
pp. 47–54. 458, 466

[7] Bierman, G.M. (1995) What is a categorical model of intuitionistic linear logic?
In Proc. Typed Lambda Calculi and Applications (TLCA’95), Springer Lecture
Notes in Comput. Sci. 902, pp. 78–93. 464

[8] Bierman, G.M. (1999) A classical linear lambda-calculus. Theoret. Comp. Sci.
227(1-2), 43–78. 461, 467

[9] Filinski, A. (1992) Linear continuations. In Proc. Principles of Programming
Languages (POPL’92), pp. 27–38. 466

[10] Girard, J.-Y. (1987) Linear logic. Theoret. Comp. Sci. 50, 1–102. 458
[11] Hasegawa, M. (1999) Logical predicates for intuitionistic linear type theories.

In Proc. Typed Lambda Calculi and Applications (TLCA’99), Springer Lecture
Notes in Comput. Sci. 1581, pp. 198–213. 458, 467

[12] Hasegawa, M. (2000) Girard translation and logical predicates. J. Funct. Pro-
gramming 10(1), 77–89. 466

[13] Hasegawa, M. (2002) Linearly used effects: monadic and CPS transformations
into the linear lambda calculus. In Proc. Functional and Logic Programming
(FLOPS2002), Springer Lecture Notes in Comput. Sci. 458, 466

Classical Linear Logic of Implications 469

[14] Hofmann, M., Pavlović, D. and Rosolini, P. (eds.) (1999) Proc. 8th Conf. on
Category Theory and Computer Science. Electron. Notes Theor. Comput. Sci.
29. 469

[15] Hyland, M. and Schalk, A. (200x) Glueing and orthogonality for models of linear
logic. To appear in Theoret. Comp. Sci. 464, 467

[16] Kelly, G.M. and Mac Lane, S. (1971) Coherence in closed categories. J. Pure
Appl. Algebra 1(1):97–140. 461

[17] Koh, T.W. and Ong, C.-H. L. (1999) Explicit substitution internal languages for
autonomous and ∗-autonomous categories. In [14]. 460, 468

[18] Maietti, M.E., de Paiva, V. and Ritter, E. (2000) Categorical models for intu-
itionistic and linear type theory. In Foundations of Software Science and Compu-
tation Structure (FoSSaCS 2000), Springer Lecture Notes in Comput. Sci. 1784,
pp. 223–237. 466, 467

[19] Murawski, A. S. and Ong, C.-H. L. (1999) Exhausting strategies, Joker games
and IMLL with units. In [14]. 461

[20] Nishizaki, S. (1993) Programs with continuations and linear logic. Science of
Computer Programming 21(2), 165–190. 466

[21] Parigot, M. (1992) λµ-calculus: an algorithmic interpretation of classical natu-
ral deduction. In Proc. Logic Programming and Automated Reasoning, Springer
Lecture Notes in Comput. Sci. 624, pp. 190–201. 460

[22] Plotkin, G. (1993) Type theory and recursion (extended abstract). In Proc. Logic
in Computer Science (LICS’93), pp. 374. 466

[23] Streicher, T. (1999) Denotational completeness revisited. In [14]. 458, 467
[24] Wadler, P. (1990) Linear types can change the world! In Proc. Programming

Concepts and Methods, North-Holland, pp. 561–581. 466

A Dual Intuitionistic Linear Logic

Types and Terms
σ ::= b | I | σ ⊗ σ | σ(σ | !σ
M ::= x | ∗ | let ∗ be M in M | M ⊗M | let xσ ⊗ xσ be M in M |

λxσ.M | MM | !M | let !xσ be M in M

Typing

Γ1, x : σ, Γ2 ; ∅ � x : σ (Int-Ax) Γ ; x : σ � x : σ (Lin-Ax)

Γ ; ∅ � ∗ : I (I I)
Γ ; ∆1 �M : I Γ ; ∆2 � N : σ

Γ ; ∆1
∆2 � let ∗ be M in N : σ
(I E)

Γ ; ∆1 �M : σ1 Γ ; ∆2 � N : σ2

Γ ; ∆1
∆2 �M ⊗N : σ1 ⊗ σ2
(⊗ I)

Γ ; ∆1 � M : σ1 ⊗ σ2

Γ ; ∆2, x : σ1, y : σ2 � N : τ

Γ ; ∆1
∆2 � let xσ1⊗yσ2 be M in N : τ
(⊗E)

Γ ; ∆,x : σ1 �M : σ2

Γ ; ∆ � λxσ1 .M : σ1 (σ2
((I)

Γ ; ∆1 � M : σ1 (σ2 Γ ; ∆2 � N : σ1

Γ ; ∆1
∆2 �M N : σ2
((E)

Γ ; ∅ �M : σ

Γ ; ∅ �!M :!σ
(! I)

Γ ; ∆1 �M :!σ Γ, x : σ ; ∆2 � N : τ

Γ ; ∆1
∆2 � let !x be M in N : τ
(! E)

470 Masahito Hasegawa

Axioms

let ∗ be ∗ in M = M let ∗ be M in ∗ = M
let x⊗ y be M ⊗N in L = L[M/x,N/y] let x⊗ y be M in x⊗ y = M

(λx.M)N = M [N/x] λx.M x = M
let !x be !M in N = N [M/x] let !x be M in !x = M

C[let ∗ be M in N] = let ∗ be M in C[N]
C[let x⊗ y be M in N] = let x⊗ y be M in C[N]

C[let !x be M in N] = let !x be M in C[N]

where C[−] is a linear context (no ! binds [−]).

B µDCLL

B.1 The System µDCLL

Types and Terms

σ ::= b | σ → σ | σ � σ | ⊥
M ::= x | λλxσ .M | M @M | λxσ .M | MM | [α]M | µασ.M

Typing

Γ1, x : σ, Γ2 ; ∅ � x : σ | Σ (Int-Ax)
Γ ; x : σ � x : σ | ∅ (Lin-Ax)

Γ, x : σ1 ; ∆ �M : σ2 | Σ
Γ ; ∆ � λλxσ1 .M : σ1 → σ2 | Σ (→ I)

Γ ; ∆ �M : σ1 → σ2 | Σ
Γ ; ∅ � N : σ1 | ∅

Γ ; ∆ �M @N : σ2 | Σ (→E)

Γ ; ∆,x : σ1 �M : σ2 | Σ
Γ ; ∆ � λxσ1 .M : σ1 (σ2 | Σ ((I)

Γ ; ∆1 � M : σ1 (σ2 | Σ1

Γ ; ∆2 � N : σ1 | Σ2

Γ ; ∆1
∆2 �MN : σ2 | Σ1
Σ2
((E)

Γ ; ∆ �M : σ | Σ
Γ ; ∆ � [α]M : ⊥ | α : σ,Σ

(⊥I) Γ ; ∆ � M : ⊥ | α : σ,Σ

Γ ; ∆ � µασ.M : σ | Σ (⊥E)

Axioms
(λλx.M) @N =M [N/x]
λλx.M @x =M (x �∈ FV (M))
(λx.M)N =M [N/x]
λx.M x =M
L (µασ.M) =M

[
L(−)/[α](−)

]
(L : σ � ⊥)

µα.[α]M =M

whereM
[
L(−)/[α](−)

]
is obtained by replacing the (unique) subterm of the form

[α]N by LN in the capture-free way.

Lemma 5. The following equations are provable in µDCLL.

Classical Linear Logic of Implications 471

– L (µασ.M) = µβτ .M
[
[β]L(−)/[α](−)

]
where L : σ � τ

– [α′](µασ.M) =M [α′/α]
– µα⊥.M =M

[
(−)/[α](−)

]

– µγσ→τ .M = λλxσ .µβτ .M
[
[β](−) @ x/[γ](−)

]

– µγσ�τ .M = λxσ.µβτ .M
[
[β](−)x/[γ](−)

] ��

B.2 DCLL vs. µDCLL

We first note that the combinator Cσ is easily represented in µDCLL by

Cσ = λm(σ�⊥)�⊥.µασ .m (λxσ.[α]x) : ((σ � ⊥) � ⊥) � σ.

Let us write M◦ for the induced translation of a DCLL-term M in µDCLL by
this encoding.

Lemma 6. If Γ ; ∆ � M : σ is derivable in DCLL, Γ ; ∆ � M◦ : σ | ∅ is
derivable in µDCLL. ��
Proposition 2. If Γ ; ∆ � M = N : σ is provable in DCLL, Γ ; ∆ � M◦ =
N◦ : σ | ∅ is provable in µDCLL. ��
Conversely, there is a translation (−)• from µDCLL to DCLL given by

([α]M)• = [α]M•

(µασ.M)• = Cσ (λk.M•[k(−)/[α](−)

]
)

and so on; for this (−)• we have
Lemma 7. If Γ ; ∆ � M : σ | α1 : σ1, . . . , αn : σn is derivable in µDCLL,
Γ ; ∆, kn : σn � ⊥, . . . , k1 : σ1 � ⊥ � M•[k1(−)/[α1](−), . . . ,

kn(−)/[αn](−)

]
: σ

is derivable in DCLL. In particular, if Γ ; ∆ �M : σ | ∅ is derivable in µDCLL,
Γ ; ∆ �M• : σ | ∅ is derivable in DCLL. ��
Proposition 3. If Γ ; ∆ � M = N : σ | ∅ is provable in µDCLL, Γ ; ∆ �
M• = N• : σ is provable in DCLL. ��
Proposition 4. For Γ ; ∆ � M : σ we have Γ ; ∆ � M = M◦• : σ in DCLL.
For Γ ; ∆ �M : σ | ∅ we have Γ ; ∆ �M =M•◦ : σ | ∅ in µDCLL. ��
Thus we conclude that DCLL is identical to the single conclusion-fragment of
µDCLL as typed equational theories.

B.3 Categorical Semantics

The interpretation of a typing judgement of the form

x1 : σ1, . . . , xm : σm ; y1 : τ1, . . . , yn : τn �M : σ | α1 : θ1, . . . , αk : θk

is given as an arrow from ![[σ1]]⊗ . . .⊗![[σm]]⊗ [[τ1]]⊗ . . .⊗ [[τn]] to [[σ]] &

[[θ1]]

&

. . .

&

[[θk]],
by routinely extending the case of DCLL. The soundness and completeness of
µDCLL with respect to the same class of categorical models immediately follow.

472 Masahito Hasegawa

C Formulation without C

As noted in Sec. 2, we can formalize DCLL using just lambda terms and five
axioms, if there is no base type. The same is true for MLL, for which just three
axioms are sufficient.

C.1 DCLL

Types and Terms

σ ::= σ → σ | σ(σ | ⊥ M ::= x | λλxσ.M | M @M | λxσ.M | MM

Typing

Γ1, x : σ, Γ2 ; ∅ � x : σ (Int-Ax)
Γ ; x : σ � x : σ (Lin-Ax)

Γ, x : σ1 ; ∆ � M : σ2

Γ ; ∆ � λλxσ1 .M : σ1 → σ2
(→ I)

Γ ; ∆ �M : σ1 → σ2 Γ ; ∅ � N : σ1

Γ ; ∆ �M @N : σ2
(→ E)

Γ ; ∆,x : σ1 � M : σ2

Γ ; ∆ � λxσ1 .M : σ1 (σ2
((I)

Γ ; ∆1 � M : σ1 (σ2 Γ ; ∆2 � N : σ1

Γ ; ∆1
∆2 �M N : σ2
((E)

Axioms
(λλx.M) @N = M [N/x]
λλx.M @x = M (x �∈ FV (M))
(λx.M)N = M [N/x]
λx.M x = M

L (λxσ.M (λfσ(⊥.f x)) = M L

�
L : (σ(⊥)(⊥
M : ((σ(⊥)(⊥)(⊥

�

C.2 MLL

Types and Terms

σ ::= σ(σ | ⊥ M ::= x | λxσ.M | MM

Typing

x : σ � x : σ (Ax)
∆,x : σ1 � M : σ2

∆ � λxσ1 .M : σ1(σ2
((I)

∆1 �M : σ1(σ2 ∆2 � N : σ1

∆1
∆2 �M N : σ2
((E)

Axioms
(λx.M)N = M [N/x]
λx.M x = M

L (λxσ.M (λfσ(⊥.f x)) = M L

�
L : (σ(⊥)(⊥
M : ((σ(⊥)(⊥)(⊥

�

	Classical Linear Logic of Implications
	Introduction
	DCLL
	The System DCLL
	Alternative Formulations of DCLL

	DILL in DCLL
	Completeness for Categorical Models
	Additives
	Discussions and Future Work
	DCLL as a Typed Intermediate Language
	Is ``!'' better than ``\rightarrow''?
	Why not \sigma^\perp^\perp = \sigma
	ILL vs. CLL
	Decidability of the Equational Theory

	Dual Intuitionistic Linear Logic
	\mu DCLL
	The System \mu DCLL
	DCLL vs. \mu DCLL
	Categorical Semantics

	Formulation without C
	DCLL
	MLL

