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Abstract. We give two categorical programming languages with wvari-
able arrows and associated abstraction/reduction mechanisms, which ex-
tend the possibility of categorical programming [Hag87, CF92] in prac-
tice. These languages are complementary to each other — one of them
provides a first-order programming style whereas the other does higher-
order — and are “children” of the simply typed lambda calculus in the
sense that we can decompose typed lambda calculus into them and, con-
versely, the combination of them is equivalent to typed lambda calculus.
This decomposition is a consequence of a semantic analysis on typed

lambda calculus due to C. Hermida and B. Jacobs [HJ94].

1 Introduction

There have been several attempts applying category theory to designing pro-
gramming languages directly, especially to typed functional programming lan-
guages, since category theory itself has been a typed functional language for
various mathematics. If one (possibly a programmer or a mathematician) can
regard a category as a programming language, then he can use it as not only a
mathematical framework but also as a tool for calculating his objects.

Of course, typed lambda calculus can be seen as a categorical programming
language, but it is a language only for very special categories (cartesian closed,
etc). We would like to seek languages for more general categories occurring in
programming and mathematics. The languages developed in this paper are mo-
tivated by such requests.

1.1 Categorical programming

One of the most successful in this direction is T. Hagino’s categorical program-
ming language based on categorical data types [Hag87]. His language has rich
data types including inductive/co-inductive data types and exponents as a kind
of limits/colimits, and is very expressive in theoretical sense. Regrettably, this
language is a pure combinatorial language and to use it in real programming is
far from practical.

For instance, writing a function adding two natural numbers in categorical
programming language is not so easy:

add = eval o (p0, it(cur(p0), cur(succ o eval)) o p1) : Nat x Nat—Nat



where we assume cartesian products with projections p0 and p1, exponents with
currying cur and co-unit eval, and a natural number object Nat with zero 0,
successor succ and iterator it (see Section 5.1 for explanations). In categorical
programming, a program (arrow) has its domain and codomain types, and a
datum is an arrow whose domain is the terminal object 1. In the construction
of add, we use the adjoint of cartesian products and exponents to distribute
the argument of add to each intended places of the combinator (pass (m,n) to
it(m, succ)on): such a distribution can be easily written if we can use variables
and a suitable abstraction mechanism in this language, as in lambda calculus.
As this example shows, the adjoint of cartesian products and exponents is too
complicated to write down by hand. This is a serious shortcoming in categorical
programming, because we want to use categorical combinators not for machine
languages (as [CCM8T7]) but for high-level programming languages. Also this
adjoint cannot capture variable arrows, so we should seek another mechanism.

1.2 Categorical programming languages with variable arrows

As a solution to this problem, we propose a couple of categorical programming
languages enriched with variable arrows and associated abstraction/reduction
rules, which enable us to write programs more easily and elegantly.

The first language, named conteztual calculus (k-calculus), has product types
((=) x (=)) on which its abstraction and reduction are constructed. s-calculus
can be regarded as a reformulation of the first-order fragment of typed lambda
calculus, but we do not need the exponent types and this calculus can be im-
plemented by a simple abstract machine on a cartesian category which doesn’t
have to be closed (see Appendix A). As its nature, k-calculus is a language for
first-order (“data-oriented”) programming style.

The other one, called (-calculus, is complementary to the first one in a
sense, and has exponential types ((—) = (—)) which provide a “continuation
passing style”-like reduction mechanism. As one expects, (-calculus formulates
the higher-order (higher-type) constructions in typed lambda calculus, in con-
trast to the first-orderness of k-calculus. This calculus can be used as a language
for higher-order (“control-oriented”) programming style.

Their abstraction and reduction mechanisms are summarized as the follow-
ing, where f may contain a variable arrow z : 1 — C.

k-calculus (-calculus

f:A—B f:A—B
(kzC.f): (C x A)—DB (¢z®.f): A—(C = B)

c:1—C c:1—C
lifta(c): A—(C x A) passg(c): (C = B)—B

(kz€.f) o lifta(c) ~ fc/z] passg(c)o (CzC.f) ~ fle/]
The reader should immediately notice the symmetry between these two calculi,
and wonder why such syntax and rules — which may be strange at first glance —



are introduced. In fact, the design of these calculi is a natural consequence of a
semantic consideration. Now we shall explain the origin of them.

1.3 Hermida-Jacobs’ analysis

The theoretical background of our development is an analysis of simply typed
lambda calculus by C. Hermida and B. Jacobs via categories with indeterminates
(variable arrows) [HJ94], after the work by J. Lambek [Lam74]. Let us briefly
review what they clarified. In typed lambda calculus there exists an adjointness
between cartesian products (concatenations of contexts) and exponent types.

INs:ob-M:71 &« IT'FM :0=>1

However, if we consider an extended calculus with an indeterminate (explicit
variable) ¢ of type o, this adjointness can be decomposed into two steps of
adjoints, as the following.

1 11
INe:obFM:71 g—) I'beo M' i 7 (<—>) 't M':0=>r
where we write .., for the typing entailment in the extended calculus, which has
an additional axiom k.., ¢ : 0. The left step (T), named contextual completeness
(functional completeness in [Lam74]) is concerned with the formation of contexts
(cartesian products). More explicitly,

If one writes a term I' F.., M' : 7 in the extended language with help
of an indeterminate ¢, then there is a unique term Iz : o - M : T
which contains no ¢ but refers one more context z, and satisfies I" ..,

Mlc/x]=M":T.

The right one (IT) is called functional completeness and is the combinatorial
completeness of the combinatorial algebra. Explicitly:

If one writes a term I' k.., M’ : 7 in the extended langnage with help
of an indeterminate ¢, then there is a unique term I' - M" : ¢ = 7 such
that I'Foy M"¢e = M’ : 7.

In typed lambda calculus, functional completeness is the property about the
higher-order construction, independent on the context formations (cartesian
products). In [HJ94], Hermida and Jacobs did much more; their definitions and
results were extended to polymorphic lambda calculus, hence fibrations, in terms
of 2-categories — however all we need in this paper is summarized as above. We
borrow their clear definitions and terminology.

1.4 Owur development

The idea of extension by explicit variables and the division of adjointness is
essential in our application to categorical programming, as explicit variables



correspond to variable arrows in categories whereas two adjoints above corres-
pond to abstraction/reduction mechanisms of our two calculi. If we consider the
categorical version of these adjoints, we find

Home(C x A, B) ~ Homgl,.c)(A, B) >~ Home(A,C = B)

where C is the cartesian closed category corresponding to the typed lambda
calculus, and C[z : C] is the cartesian closed category generated from C and
an indeterminate (variable arrow) z : 1 — C. C[z : C] corresponds to the ex-
tended calculus with an indeterminate. Both of these adjoints give a suitable
abstraction mechanism for categorical programming. Assume that we are work-
ing in a categorical programming language which enjoys contextual completeness
(resp. functional completeness). If we write a categorical program f : A — B
with help of a variable arrow z : 1 — C (i.e., programming in Clz : C])
then we have a (unique) variable-free program (kz®.f) : (C'x A) — B (resp.
(¢z€.f): A — (C = B)). For example,

add = razNat.it(x, succ) : Nat x Nat—Nat
which is not only easier to write/read but also theoretically simpler than the pre-
vious example in Section 1.1, as it does not require exponents (see Section 5.1). In
categorical programming, A-abstraction is not adequate, because it cannot cap-
ture the nature of variable arrows. Two more primitive factors of A-abstraction,
k- and (-abstractions, are more suitable because they can directly deal with
variable arrows.

1.5 Typed A-calculus ~ k-calculus + (-calculus

From the view of the theory of lambda calculus, x-calculus and (-calculus throw
a new light on the complementary natures — data-oriented and control-oriented
features — of lambda calculus respectively. In fact, a typed lambda calculus (with
product types) induces a &(-calculus (in which (=) x (=) is cartesian product)
i.e., a calculus which is not only & but also {. In other words, any A-term can be
represented by a combination of primitives of k- and (-calculi (see Section 6). So
we can say that a typed lambda calculus is the union of two more specific cal-
culi. Apart from the original motivation, such a decomposition should be useful
to analyze typed lambda calculus more carefully. For instance, (-calculus may
be used to study higher-order controls in lambda calculus, as control-primitives
(like call/cc [RC86] or C & A [FFKD87]) are usually definable independently of
context-formations (first-order constructions). We will discuss about the mean-
ing of this “decomposition” with some examples in Section 6.

We start with a semantic consideration on variables in categories (Section 2),
and then (quite immediately) arrive at the two syntactical calculi (Section 3 and
4, with examples in Section 5, 6 and Appendix A); although this development
is still in elementary (we use only the quite basic part of categorical logic) and
preliminary stage, we believe that it demonstrates how categorical semantics can
be systematically applied to designing programming languages.



2 Variables in categories

2.1 Polynomial categories

We follow Lambek’s approach of constructing a new category by adding an
indeterminate arrow [Lam74, LS86].

Let us fix a structure S for categories (e.g., cartesian, cartesian closed, having
limits, having some data types like natural numbers object, and so on). .S will be
the property which a categorical programming language should satisfy. We shall
say a category is an S-category if it satisfies the structure S and has a (chosen)
terminal object 1. An S-functor is a functor which strictly preserves S and 1.

Definition1 (polynomial category). For an S-category C, a polynomial cat-
egory C[z : Cfor an object C' € Cis an S-category with an S-functor (called inclu-
sion functor) Iy.c : C—Clz :C] and an arrow 2z : I;.c(1)(= 1) — L;.c(C) such
that, for any S-category D, S-functor F' : C—D and an arrow ¢ : F(1)(=1) —
F(C), there is a unique S-functor F. : C[x : C]—D which satisfies FlI,.c = F
and Fl(z) = c.

C LN Clz:C]

. CAF! st Fl(z)=c
VF with ¢:F(1)—=F(C) :

A\

D

Of course, it is also possible to freely generate C[z : C] syntactically from the
category C and an indeterminate z : 1 — C, preserving the structure S (c.f.
[LS86, HI94]). We say C[z:C] is full if the “fullness condition” Clz: C)(1,—) ~
C(C, —) holds (we will see the very concrete meaning of this condition in Section
3 and 4).

The definition above is sufficient to determine the notion of (semantic) sub-
stitution: the substitution functor (—)[e/z] : C[x: C]—C of an arrow ¢ : 1—C'
for the indeterminate x is the uniquely determined functor (Idc)’ : C[x: C]—C
given as above (put F' = Idc). We shall identify the objects of C and those of
C[z : C] via the inclusion I.c. C is regarded as a subcategory of C[z:C] whose
arrows are “closed” (i.e., not depend on the “free” variable arrow ). By the
definition, substitution works as z[e/z] = ¢, (g o f)[¢/z] = g[e/z] o flc/z] and
hle/x] = h if h is closed.

We also call a polynomial category of the form Clxzy : Cy]...[x, : Cy] a poly-
nomial category of C. Obviously C[z : 1] ~ C and Clzy : Cy]{zg : Cq] ~ Clzs:
C5][z1 : C4] hold, and we will identify them (so we will write C[z; : Cy, 29 : Cs]
for them). If {C;}iez C {Cj}jes as multisets (Z, J: finite sets) then there is
an inclusion functor from C[z; : Csliez to Cly; : Cjljes as an evident extension
of the definition. We choose inclusion functors to be “split”, 1.e., two step inclu-
sion Clz; : Ciliez — Cly; : Cjljeqs — Clzr : Crlrex is equivalent to a direct one
Clzi: Ciliez — Clzk: Cilrex, provided {Ci}tiez C {Cj}jeq C {Cr}rex. Similarly
substitution functors are generalized and will be used in an overloaded manner,



on the family of polynomial categories. Hereafter we use the terms of “polyno-
mial category” “inclusion functor” and “substitution functor” in this extended
sense.

The basic syntax and equations for polynomial categories (intended to be
used as a programming language) are given as the following. If a structure S is
specified then its associated syntax and equations should additionally be spe-

cified.

f:A—B g¢g:B—C

daa—a I gof:A—C (Comp)
la: A—1 (1R) z:1—A (Var)

[z : 1.—>C]

I A:—>B c:1—C
fle/z]: A—B

(Subst)

foida=idgof=f for f: A—B
(hog)of=ho(gof) for f:A—B,g: B—C and h: C—D
h='4 forh: A—1

idafe/z] =1da (g0 f)le/z] = gle/z] o fle/=] z[e/z]=c

Our axiomatization reflects Lambek’s idea to regard categories as deductive
systems, since such formulations are convenient to directly relate semantic prop-
erties to syntax. In the rule (Subst) we use a “natural deduction”-like syntax
for a “consumed” variable, as a discharged assumption (this convention will be
used through this paper).

2.2 Contextual & functional completeness

Then we consider how abstraction mechanisms are implemented on polynomial
categories, following the terminology by Hermida and Jacobs [HJ94] (with slight
modification for our purpose). We have quite simple requirements:

Definition2 (contextual/functional completeness). An S-category is

— contextually complete if inclusion functors have their left adjoints (i.e. reflex-
ive) which are preserved by inclusion functors,

— functionally complete if inclusion functors have their right adjoints (i.e. core-
flexive) which are preserved by inclusion functors,

where inclusion functors are assumed to be the extended ones.
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Now let us explain why such adjoints can be regarded as abstraction mech-
anisms. We shall see the case of contextual completeness. If one writes X, :
Clz : C]—C for a left adjoint of Iy.c : C—Clz : C] and ng.c.a * A—Ep.c(A)

for the unit of this adjointness, he has

For any arrow f: A—B in C[z : C], there uniquely exists an (unique)
arrow (fi;l‘c.f) : Xp.c(A)— B in C such that (E:L‘C.f) ong:c,a = f holds

by the definition of adjointness. Zy;.c (A) behaves like a cartesian product C' x A.
We can consider that z is bound in (m@c.f), as bound variables in the body of
a A-abstraction. Applying the substitution functor (—)[c/z] to both sides of
(nmc.f) o Ng.c,a = f, we have

(k2°.f) o (ns:c,ale/2]) = fle/x]

which can be read that an application of an abstracted function (fcxc.f) to a
datum ¢ (lifted from C to Xy.c(A) by ng.c,a[—/z]) is reduced to flc/z]. In the
next section we write C'x A for Zy.c(A) (as this behaves like a cartesian product)
and 1ift(c) for nz.c a[c/z], and construct a programming language with this
abstraction and reduction rule (the conteztual calculus).

The condition “left adjoints are preserved by inclusions” means that, for
example, the left adjoint X,.c : Clz : C]—C of the inclusion functor I.c :
C—C[z:C] is naturally extended to the left adjoint £’ ~ : C[z:C,y: D]—C[y:
D] of the inclusion functor I, » : Cly: D]—C[z :C,y: D] and we can identify
(overload) X;.c and X’ .. More precisely, the pair (Izl/tD ,Iy:p) is a morphism of
adjunctions from Yy.c 4 I..c to Z;:C B I;:C n

I;:D
Clz:C] C Clz:C,y: D]
E:r:C - Iz:C E.;::C . I;::C
c C Cly: D)
Iy:D

which should be extended to general cases in the obvious manner. In other
words, our abstraction/reduction mechanisms work independently from other
variables; in this case, abstraction by x doesn’t depend on another variable y.
So, in the object level, there is no need to distinguish X,.c from X’ - and, in
the arrow level, substitutions commute with abstractions (for each f: A — B in
Clz:C,y: D] and d : 1 — D in C, the condition above implies (E;yc(f))[d/y] =
Y. (fld/y]), hence we have (KIC.f)[d/y] = (ﬁrcf[d/y]))

We can similarly consider the case of functional completeness: let I1,.c be a
right adjoint of Iy.c and €;.¢ B : II;.c(B)— B the co-unit. Then we have

For any arrow f: A—B in C[z : C], there uniquely exists an (unique)

arrow (Crcf) : A—II;.c(B) in C such that e;.c p o (C:ncf) = f holds



where II;.c(B) behaves like a exponent type C' = B. We construct (-calculus
on this observation in Section 4.

Remark. If the reader is familiar with categorical logic (we refer [Cur90] as a
survey close to our purpose), he may see our definition as an instance of the
usual categorical understanding of products/exponents (more generally quan-
tifications) as the left/right adjoints of a weakening functor; adding an inde-
terminate exactly corresponds to weakening. This view is more clarified in terms
of fibration, in which polynomial categories are regarded as fibres on the free
cartesian category generated from C’s objects. The condition “adjoints are pre-
served by inclusions” in the definition of contextual/functional completeness
is no other than the Beck-Chevalley condition. The same situation appears in
[Jac92] for describing the simply typed lambda calculus without product types.

We could follow such a more traditional view, but the use of polynomial
categories has a substantial advantage for analyzing the role of variables with a
clear intuition, hence for our purpose.

3 Contextual calculus (&-calculus)

A conteztual calculus (k-calculus) is (the set of polynomial categories of ) a con-
textually complete category. The basic syntax and equations for a k-calculus are
the union of those for polynomial categories and the following ones.

[z : 1.—>C]
f: A:—’B c:1—C
et )0 xa—p P Titta(c)  A—(CxA) B
(k2. N)d/y] = (k2. f[d[y]) (= # ) lifta(c)[d/y] = Lifta(c[d/y])

(kz®.f)olifta(c) ~ flc/z]: A—B (%)

(kz®.(holifta(z)))~ h if h:(C x A)— B contains no free ¢ (k)

4 49 ”

~” for “=" to regard these equations as reduction rules
of our calculus. In the terminology of the last section, 1ift,(¢) is the unit
Ny, alc/x] (substituted ¢ to z, via the substitution functor (—)[¢/z]). The last
“eta-conversion”-like rule (k) represents the uniqueness of (kz.f) for each f,
as the definition of the adjoint requires.

To understand what is happening in the reduction rule (/{"'), an informal
description by the traditional “internal language” might me helpful:

[z:0, M :7]o([l'F N:o],[TFz1:01],..., [ Fzn:0n]) ~ [I'FM[N/z]: 7]

where we write

where I' = z1:01,...,%,:0,. One may say that this reduction step is a variant
of the ezplicit substitution [ACCL91]. Indeed, our 1ift(a) corresponds to the
cons-construction (a - id).
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Although C x (=) is not a cartesian product but a left adjoint of an inclusion
functor, it behaves like a cartesian product. Let us define
To,A = (nxc.(zo!A)) : (C x A)—C 7{'6’14 = (nzc.idA) :(Cx A)— A

c:1—C
lifta(c): A—(Cx A) a:1—A
{c,a) =1ifta(c)oa:1—(C x A)

g:C—D [z:1—C]
goz:1—D
liftg(goz): B—(DxB) f:A—B
liftp(goz)o f: A—(D x B)
(9 x f) = (kz®.(1iftp(goz)o f)): (C x A)—(D x B)
(by the last one (=) x (—) becomes a functor). Then we have
(kz®.f)o (c,a) = (kz.f) o lifta(c)oa = flc/z]oa
mo,a0{c,a) =colaoa=c To,a0{c,a)=idaoa=a
(g x f)o{c,a) =1iftg(goc)ofoa={goc,foa)

To let (=) x (=) be the true cartesian product, the following condition (the
“fullness condition” for a suitable fibration, i.e. C[z : C](1, B) ~ C(C, B)) is

sufficient.

Proposition 3. In a k-calculus, (=) x (=) is cartesian product if and only if
mea = (kx€.2) : (C x 1)—C' is an isomorphism (i.e., has an inverse) for each

Therefore, an identification of C' and C' x 1 makes a contextually complete cat-
egory cartesian. Practically, this is a reasonable choice: in [Has94] we can find
an original version of k-calculus which is assumed to be cartesian and has a sim-
pler syntax. However here we shall give priority on theoretical uniformity and
simplicity, and don’t go into further discussion on this topic.

Proposition 4 (basic properties of k-abstraction).

M’C Lifty(2)) = idcyxa.

kz® J)y=1Ffor1 ”rCA if no free x appears in f: A — B.

K ( ) = (kz¢ .g)o(/{xc.(lzftB(a:)of)) forA—>Bi>D.
kz® {gof))=go (fwc.f) if no free x appears in g.

= (
= (
= (kz
-~

Proposition5 (termination). The reduction in k-calculus terminates.

This can be simply shown by giving an embedding of the k-calculus into a simply
typed lambda calculus with product types. It is like the following:

2C€ =z:0C, (kzC.fA=B) = \""4T[x(2)/z]7'(z): (C x A) = B,
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lifta(c!—¢) = )\yA.(E, y):C= (CxA), ¢gB~Cofrt-B= )\yA.ﬁ(Ty) A=, ...

It is easy to show that the reduction in the object lambda calculus simulates
that of k-calculus via this embedding, and the termination of the lambda calcu-
lus implies that of k-calculus. We can show the termination of ¢-calculus (Pro-
position 8) and k(-calculus (Proposition 12) in a similar way. Unfortunately
#-calculus is not confluent: (kz®.(ky*.(1ift4(z) o741 01ift1(y)))) reduces to
both (fwc.(/cyA.(liftA(m)oy))) and (fi;l‘c.(li'ftA(;l‘)Oﬂ'AJ)) which are no more
reducible with respect to the reduction rules of k-calculus. This non-confluency
comes from the interaction between (x%) and (k7). In practice, we could ignore
(,7) (then we have a confluency) or try to use (¥7) as an expansion rule. Also
we have the following weaker result:

Proposition 6 (confluency for closed data). The reduction in k-calculus is
confluent for closed arrows with domain 1, provided constants inhabit in only
primitive objects (not product types).

This follows from a routine check of the local confluency.

4 (-calculus

Similarly to the case of k-calculus, a -calculus is (the set of polynomial categories
of) a functionally complete category (we might call this calculus “functional
calculus”, but this name may cause some misunderstandings...). The basic syntax
and equations for a (-calculus are the union of those for polynomial categories
and the following ones.

[z : 1.—>C’]
c:1—C f: A:—>B R
passp(c): (C = B)—B (= 1) (¢z°.f): A—(C = B) ( )
passp(c)[d/y] = passg(c[d/y]) (Cz°.H)ld/y) = (CzC.fld]y]) (= #y)

passg(c) o (Cch) ~+ fle/z] : A—B (C+)

(¢Cz€.(passg(z) o b))~ h if b : A—(C = B) contains no free z ((7)

If the reader compares the syntax and equations of (-calculus with those of «-
calculus, he should immediately see the symmetry between them. There is a
similarity between (-calculus and “continuation passing style”-computation in
A-calculus: the co-unit passg(c) takes a function closure (or, rather, a continu-
ation) (Cxc.f) as its argument and pass ¢ to z in f, i.e., returns f[e/z]. For a
help for understanding, we again use a description of the reduction rule (C"’) by
the “internal language” as below.

[y:o=>rtyN:r]Jo[I'F Xz’ M:0=>71] ~ [I't M[N/z]:7]
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One may say this is just a G-reduction, but we should notice that I' cannot
represent the usual multiple contexts as we don’t have products in (-calculus.
So this is a “restricted” F-reduction; to simulate the “full” g-reduction, we have
to combine k- and (-calculi (see Section 6).

To see how higher-order constructions are done in (-calculus, we shall give a
syntax sugar. Let us define
f:C—D [z:1—C(C]
fox:1—D
code(f) = (¢Cz€.(fox)): 1—(C = D).

Then we have passp,(c)ocode(f) = passp(c)o(Cz .(for)) = focfor ¢ : 1—C.
Repeated use of code/pass-constructions is also possible:
c:1—C f:C—D
code(passy(¢)) : 1—((C = D) = D) passp(code(f)): (C= D)= D)—D

passp(code(f)) o code(passp(c)) = passp(c) o code(f) = foc

However, we don’t have the “decoding” (finding decode(a) : C—D for a :
1—(C' = D)) in the pure (-calculus (see Section 5.2); indeed, it is necessary
and sufficient to satisfy the “fullness condition” C[z : C](1, B) ~ C(C, B) for
having such a decoding method, as the case of “cartesian” k-calculus in the
previous section (thus we have a similar result to Proposition 3; we leave the
detail to the reader).

We also remark that (—) = (—) is naturally extended to a functor, by defining

f:A—B g¢g:C—D (no free z appearsin f and g)
(f=9)=(Cz™(yg opass,(foz))): (B = C)—(A= D).

From the view of practice, the syntax of (-calculus is somewhat annoying
and problematic; the absence of first-order construction (which is the role of
k-calculus) makes this calculus a bit strange and restrictive. However, it may be
possible to construct a “calculus for (higher-order) control” on the basis of (-
calculus, by adding some control operators such as call/cc of the programming
language Scheme [RC86] because such control primitives are usually defined
independently of context-formation rules.

Proposition 7 (basic properties of (-abstraction).

- (C;L’C.passB(m)) =idc=>B.
- (Crc.(g of)) = (Crc.(g o passg(x))) o (Crcf) for A L B2

— (¢x%.(go f)) = (Cx%.g)o f if no free x appears in f.
Proposition 8 (termination). The reduction in -calculus terminates.
Again, (-calculus is not confluent. For instance,
(¢ (pass o o (2)0(¢217 5 (¢a%pass . (pass(2)0z1)))oz1)) : 1 — (C=C)=(C =)

reduces to both ((z.(((z.pass(pass(z)oz))oz)) and ((z.((z.(pass(pass(z) o
z) 0 z))) which have no redex.
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5 Examples

5.1 k-calculus with primitive recursion

Since k-calculus is a first-order (hence “data-oriented”) language, we need suffi-
cient primitive data (and data types) for using this calculus in practice. In some
sense this situation is similar to old-generation Lisp languages which are not
higher-order. Their “lambda” abstraction (lambda (zi...z,) body ) is essen-
tially same as our k-abstacrion (k1. ...(kzy.body). . .) if we ignore the syntactic
difference, and Lisp languages are based on a rich data structure: lists.

To give non-trivial example, we introduce an object for natural numbers and
primitive recursions (iterations). Though this calculus (Kyat) is very weak (it
computes only primitive recursive functions), it may be enough to tell the feel
of categorical programming.

A natural numbers object Nat in a category with a terminal object 1 is given
by the following data.

— an arrow for zero, 0 : 1 — Nat, and an arrow for successor, succ : Nat — Nat,
— forarrows @ : 1 — C and f: C — C, an arrow for iterator itc(a, f) : Nat —
C' is the unique arrow such that

0
1 — Nat SEE€ Nat
‘Bite(a,f) :itelaf)
v v

C c

!

In other words, it(a, f) is a unique function such that it(a, f)(n) = f"(a). We
regard equations as reduction rules, as:

it(a, f) 0 0~ a, it(a, f) o succon ~» foit(a, f)on.

Kyat is the k-calculus with a natural numbers object Nat, in which (=) x (=)
is cartesian product. A careful reader should notice that in Kyt contextual
completeness respects the natural numbers object, and equations for substitution
must be extended in the obvious manner (0[c/z] = 0, succ[c¢/z] = succ and
it(a, f)le/2] = it(ale/a], flc/a])).

As a simple demonstration, we give the addition function in Section 1.4.

[z : 1—Nat] succ:Nat—Nat

it(z,succ) : Nat—Nat

add = (nzNat.it(x, succ)) : Nat x Nat—Nat

Notice that our programming doesn’t require any exponent types nor associated
currying & evaluating combinators which are needed in Hagino’s categorical
programming language [Hag87]. In other words, we avoid unnecessary abuse of
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higher-order constructions in writing such a first-order program. The usage of
add is as the following.

add o (succo 0,succo0) = (ramNat.it(z, succ)) o lifty,t(succo 0) o succo0
= it(z, succ)[succo 0/z] o succo 0
= it(z[succo 0/z], succ[succo0/z]) o succo 0
= it(succo 0, succ)o succo0
= succo it(succo 0,succ)o0
= succosucco0

One may compare this reduction with that in Appendix A, in a compiled form.
We can define other primitive recursive functions in a similar manner.

A more powerful calculus with general inductive/co-inductive data types can
be found in [Has94] which is a direct extension of Ky5¢ and can calculate more
than primitive recursion (including Ackermann’s function, etc).

5.2 (-calculus and higher-order functionals

Similarly, we can give a (-calculus with a natural numbers object, but this lan-
guage is not so comfortable as Ky, ¢ (e.g., try to define and use the curried version
of the addition function in such a calculus). It seems that (-calculus should be
used to investigate and implement the nature of higher-order functionals. An
elementary example can be given as follows.

[z:1—C)y
[z:1—(C = ()]s passs(z): (C=>C)—C
pass(z)oz:1—C
[#:1—(C = O))2 pass(pass(z)oz): C = (C—C)
pass(pass,(z)oz)oz:1—C )
(¢z€ .(passq(passp(z) 0 2)02)): 1—(C = C) )
dupl = (¢2°7.(¢z“ (pass (pass (z) 0 2) 0 2))) : 1—((C = C) = (C = C))

dupl is the duplicator of functions (and also the Church numeral “two”). For

f:C—C,

2 .(pass,(pass.(z) o code(f)) o code(f)))
2. (pass,(f o z) o code(f)))
z%.(fo foz))

pass_, o (code(f)) o dupl =

I
O o~

A calculation reveals that there is no h : C' = C—C = C such that code(h) =
dupl in the pure (-calculus. So we cannot have the decoding rule
d:1—A=B
decode(d) : A—B

such that code(decode(d)) = d. We also know that we cannot have the Modus

Ponens
a:C—A f:C—A=B

apply(f,a) : C—B
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such that apply(f,a)oc = passg(aoc)ofocfor ¢c: 1—C, as we can construct
decode from this rule (and its converse is also possible). To avoid this problem,
we need the fullness condition (recall Section 4).

Although programming in (-calculus frustrates us (this fact indicates how
our real programming activity is deeply supported not by higher-order compu-
tations but by first-order ones), we can use this restrictive language to study
some situations in which higher-order computations are essential, e.g., continu-
ation passing style. Unfortunately, it is not possible to add a dualizing object to
¢-calculus without a degeneration (this situation is same as in A-calculus with
control operators in which unrestricted @-rule makes the calculus inconsistent,
e.g., [Hof94]), so such a duality-based approach to implement control operators
fails. However some categories of “computations” are functionally complete al-
though they are not cartesian closed (c.f. tbid.), and {-calculus should provide an
alternative foundation for this research direction. At least, it seems instructive
that the rest of eliminating the first-order part (x-calculus) from typed lambda
calculus is a calculus (¢-calculus) which has a CPS-like reduction mechanism as
its essential part.

6 k(-calculus and A-calculus

We have observed two complementary children of typed lambda calculus so far.
Now let us try to combine them; we consider a calculus which is not only x but
also (. A &(-calculus is (the set of polynomial categories of) a category which is
both contextually complete and functionally complete. Its syntax and equations
are the union of those for k-calculus and (-calculus.

6.1 k(-calculus and cartesian closed category

Combining primitives of x- and (-calculi, we can define familiar combinators
associated to the adjointness between C' x (=) and C' = (=) as the following:

g:(C x A)—B (no free z appears in g)
cur(g) = (¢z%.(g o 1ifta(z))) : A—(C = B)

h: A—(C = B) (no free z appears in h)
uncur(h) = (kz.(passg(z) o h)) : (C x A)—B

and evale p = uncur(idc=pg) = (mxc.passB(a:)) :(C x (C = B))—B. They
work as usual currying, uncurrying and evaluation respectively.

uncur(cur(g)) = (kz.(passg(z) o (¢z%.(g 0 1ifta(z)))))
= (kz%.(go1lifta(z)))

|
—_

cur(uncur(h)) = (Cz.((kzC.(passg(z) o h)) o 1ifta(z)))
= (¢z%.(passg(z) o h))
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evale,p o {c,cur(g) oa) = (nxc.passB(x)) o {c, (Cxc.(g 0lifta(z)))oa)
=passg(c)o (Cz%.(golifta(z)))oa
=golifta(c)oa
=go(ca)

Proposition 9. A cartesian closed category induces a kC-calculus in which (—)x
(=) is cartesian product, and vice versa.

One direction of this proposition comes from the fact that a cartesian closed
category is both contextually and functionally complete w.r.t. the structure of
cartesian closed category [Lam74, LS86, HJ94]. The converse is the consequence
of the calculations above.

Following the proposition above, we can establish the relation between x(-
calculi (in which (=) x (=) is cartesian product) and typed lambda calculi (with
product types), using the standard correspondence between typed lambda calculi
and cartesian closed categories [LS86]. Remark that any A-term (which may
contain free variables) corresponds to a closed x(-term. For instance,

[z:(c=>71)F (Ay.(zy)) : (6=>7)]=cur([y: 0,z : (6=>7) F (zy) : T])
= cur(evalpoy i) : ([o]=[r])—([s]=[])
which is equivalent to [z : (0= )b 2 : (0= 7)] = id[= [+ : ([e] = [7]) —([c] =
[7]); one can calculate this n-conversion in k{-calculus as the following.

cur(evalpe ,) = (Cz1L.((sy!"Vpassy,y(v)) 0 Liftgopop(2)))

(Cx[[c]].passnr]](x))
tdfo]= {1

As another example, we shall prove that add in Section 1.1 is equivalent to
that in Section 1.4 (and 5.1) in a cartesian closed category with natural numbers
object.

evalyat Nat O (idyat X it(cur(pONat’l), cur(succ o evalyat at)))
= (nz“at.passnat(z))o(nz“at.(liftnat:nat(m)oit(((x“aﬁz), ({’znm.(succopassNat (z)))N))
= (nz“at.(passnn (z)o it((CzN“.z), (Cz“at.(succ opassy,,(z)))))) Prop.4
= Enzx:.itgpassnat)()m) o (¢z"*.z), passy,, (z) o ((£"**.succ))) Uniqueness of it
= (kz " .it(z, succ)).

6.2 Comparison with A-calculus

In the case of the typed lambda calculus without product types, we have a
simpler and more direct translation from the calculus into a subset of k(-calculus.
This translation preserves not only equality but also reductions.

Definition 10 (The direct translation). We define the translation function
[—] from the simply typed lambda calculus into x(-calculus as follows.

[FM:r]=[M]:1—]r] [z:0,FM:7]= (K;E'IG]].[[F FM:T])
[z] =z (we abuse variables in two calculi)

2”7 M] = (¢z1L[MT])  [M7Z7N°] = passy([N]) o [M]
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This translation is quite straightforward and the reduction rules of (-calculus
directly simulate the fn-reductions in A-calculus as one can easily check. Remark
that there is no need that the products are cartesian; this is an instance of models
of typed lambda calculus without the fullness condition, hence non-cartesian-
closed.

However we don’t think the direct translation the best connection between
lambda calculus and «(-calculus. One of the most interesting phenomena in (-
calculus is the explicit interactions between k-primitives and (-primitives which
reflect the operational interactions between first-order computations and higher-
order computations in lambda calculus. Equationally - and (-constructions
work very independently:

Proposition11. (kz.(Cy.f)) = (Cy.(kz.f)) provided x # y.

However the operational behaviours of (xkz.(Cy.f)) and ((y.(kz.f)) are not the
same:

pass(b) o (kz.(Cy.f)) o Litt(a) > pass(b) o (Cy.fla/z]) > f[a/z,b/y]

pass(b) o (Cy.(kz.f)) o lift(a) < (kz.f[b/y]) o L1ift(a) A fla/z,b/y]
(a, b don’t contain free y and z respectively). Roughly speaking, they correspond
to the following two reduction paths.

[z:7=>vEzN v]o[e:o, ' Ay" M 7= v]o{[I'F L :0],[I'Fx1:01],....[L' Fan:on])
[z:7=>vF 2N :v]o[l'+Ay". M[L/z]: 7 = v] [ :0, '+ M[N/y]:7 = v]o{. ..)

B /5

[I"+ M[L/z,N/y] : v]

where I' = x1:01,...,%, : 0. That is, a x-reduction simulates a non-local
reduction which refers the global context and do a substitution, whereas a (-
reduction a local reduction which refers the local argument of a function.

Generally, we have a choice for each lambda term: to be translated to a
kz.Cy. .. -form or a (y.kz... -form. This gives us a possibility to specify some
operational behaviours of lambda terms in detail. For instance, the direct trans-
lation in the previous subsection is an extreme case where we avoid any inter-
action between k and (. Here we shall point out the similarity to the explicit
substitution (Ao-calculus) [ACCL91] once again.

Proposition12 (termination). The reduction in k(-calculus terminates.

k(-calculus is not confluent (as k- and (-calculi). We remark again that the non-
confluency of our calculi comes from the interaction between the 3-like rules (x1)
(¢*) and n-like rules (x7) (¢7), and this situation may be radically changed if
we regard (k7) and ((7) as expansion rules rather than conversion rules.
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7 Conclusion

We have developed two categorical programming languages on the basis of cat-
egories with variable arrows (indeterminates): contextual calculus (&-calculus)
and (-calculus. They are the children of the typed lambda calculus in a sense,
and can deal with variable arrows and associated abstraction/reduction mechan-
isms, which cannot be captured by the adjoint between products and exponents
in typed lambda calculus (cartesian closed categories). Here we tried to review
well-known (and elementary) concepts in categorical logic from an application-
oriented view. In our development, there is an intimate relationship between
semantics and syntax, which is the joy of categorical programming.

Though categorical aspect of our calculi is very clear, their computational
property has not been clarified. Our definitions and examples are still rough and
should be regarded as preliminary ones. For instance, we took a sequent-calculus-
like syntax with natural-deduction-like assumptions in this paper since this is
the natural syntax directly derived from categorical consideration, but there
may be a better one for further development. Also the correspondence to real
programming activity, implementation, efficiency and other practical aspects are
not touched here, except for a rough sketch of an implementation of a contextual
calculus in Appendix A. We should like to clarify such matters.

There are many possible extensions of our calculi, analogous to those of
typed lambda calculus, e.g., polymorphism, type dependency and so on. Espe-
cially, polymorphic type structures may give the faithful usage of k-calculus, as
the practical role of higher-type programs can be relatively small in polymorphic
programming languages [Gog90]. Also, if one replaces the product type in con-
textual calculus by dependent sums, he obtains a “first-order dependent type
theory” which seems useful for describing first-order (ML-like) modules in vari-
ous programming languages. Here we shall give a candidate of such an extension
(inspired by W. Phoa’s internal language of an elementary topos [Pho92]).

[©,2:1—C] f: A—B  [O] B Object
(0] (kz°.f) : Zuc(A)—B

[OB]c:1—C [0,z :1—C] A Object
[O] Lift(sc a(c) : Alc/z]— Tr.c(A)

The k-abstraction

The 1ift rule

The r-reduction  (kz€.f) o lift(s.c,a)(c) = fle/z]: Ale/z]—B
[@,z:1—C] f: A—DB [©] A Object
@] (¢z€.f): A—I,.c(B)
[O]c:1—C [0,z : 1—C] B Object
[©] pass,.c,p)(¢) : Maic(B)— Blc/x]

The (-abstraction

The pass rule

The ¢-reduction pass(r:qB)(c) 0 (¢zC.f) = fle/z] : A—B[c/x]

For a further development we should take the advantage of polynomial fibrations

developed in [HJ94].
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Another interesting instance is the linear version of our calculi, since a linear
lambda calculus (for example, [Laf88]) can be decomposed into linear x-calculus
and linear (-calculus, in the similar manner as the non-linear case. However, it
seems not so obvious to relate linear logic and our decomposition; how can the
linearity of these calculi be captured in terms of polynomial categories?

A final remark: Charity [CF92] has been developed on the foundation of dis-
tributive category and categorical data types with tensorial strength [CS91], and
shares many things with our contextual calculus. Indeed, a contextually com-
plete cartesian category with coproducts is distributive (since left adjoints pre-
serve colimits) and an endofunctor F' on this category has its tensorial strength
65(714 = (ka® F(1ifta(2))) : X x F(A)— F(X x A) if the completeness respects
F', whereas the category generated from strong data types is contextually com-
plete w.r.t. structures of data types [Has94]. Similar relation is also discussed in
[Jac93]. It seems interesting to unify Charity and our calculi, in both theoretical
and practical levels.
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A Compilation of Ky,

Here we give an outline of compiling Kya¢ into the cartesian category with
“parameterized” natural numbers object. This method can be extended to other
categorical data types in [Hag87], assuming their tensorial strength [CS91] (in
other words, parameterizing data types [Jac93]); see [Has94] for more detail.

A parameterized natural numbers object Nat in a cartesian category is given
by the following data.

— 0 and succ are same as those of usual natural numbers object,

— the iterator is modified as follows: for any object X and arrows a : X — C,
f X x C — C, there exists a unique arrow it’x c(a, f) : X x Nat — C
such that

(idx,oolx) idxXSuCC

X X x Nat <—— X x Nat

PAitxc(af)  HPOitxc(af)
' v

C XxC

f
If one writes a; = a(z) and fy(n) = f(z,n), he has it’(a, f)(z,n) = f:"(az).

A parameterized natural numbers object is a natural numbers object, since we
have it(a, f) : Nat — C fora:1— C and f:C — C by it(a, f) = it’(a, fo
p1) o (!jat, idyat)-

We shall denote Cy,¢ for the free cartesian category with parameterized
natural numbers object Nat.
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Proposition 13. Cya¢ enjoys contextual completeness, with respect to the struc-
ture of cartesian products and parameterized natural numbers object.

Sketch of proof: For any f : A — B which may contain a variable z : 1 —
C, we give an arrow [f]. : C x A — B which contains no z and satisfies
[f]z 0o 1ifta(z) = f where 1ift4(z) = (wols,ids) : A — (C' x A).

— [fle = foptlif f contains no z,

- [[z]]f = poa

= [go fl= = [9]= o (p0, [f]),

[{f,9)]= = ([f]= [9]=), _ .
[it’(a, f)]s = it’([a]s, [[f]]xoass_l)oass, assapc: AxX(BxC)— (AxB)xC.

The uniqueness can be shown easily. O

Now the compilation from Kyat to Cyat follows from the proposition: re-

place (fw:c.f) by [f]z. Applying the [—]-translation repeatedly, we obtain a
categorical combinator of Cy,¢ from a closed program of Kyt . For instance:

(HzNat.it(z, succ)) = [it(z, succ)]s
= [it’(z,succopl)o (!, id)].
= [it’(z, succop1)]s o (p0, [(!, id)]=)
= it ([#]s, [succopi]s 0 ass™') o ass o (p0, (!, id) o p1)
= it’(p0,succoploploass™)oasso(po,(!,id) o p1)
= it’(p0, succopl) o ({(id,!) o p0,p1)
This compilation is a bit inefficient, as there is a more economical combinator
it’(id, succop1) which is equivalent to the result above; one may find such an
efficient compilation in [Has94].

As an application we obtain a categorical implementation of Kya¢.

Definition14 (reduction rules). We define the reduction rules for Cy¢.
idaoa~a laoa~Y aoly ~ a
pOA’Bo(a,b>«»a plA’Bo(a,b)«»b (f,g)oa~ (foa,goa)
wherea:1—A,b:1—= B, f:A— C and g: A — D. For iteration,
it’(a, f)o(z,0)~aoz it’(a, f) o (z,succon) ~ fo(z,it’(a, f) o (z,n))

wherea: X — A, f: X x(C—C,z:1— X and n:1— Nat.
An example: “1 + 1~ 27,

it’(id, succopl) o {succo 0,succo 0)
~+ succoplo(succo0,it’(id, succopl)o (succo0,0))
~+ succo it’(id, succopl) o (succo 0,0)
~+ succo idosucco 0
~+ succ o succo0

Proposition15 (termination and confluency). The reduction in Cpyy ter-
minates and is confluent.

Such a reduction can be implemented on a simple abstract machine, as used in
Charity [CT92].



