
Linearly Used Effects:

Monadic and CPS Transformations into
the Linear Lambda Calculus

Masahito Hasegawa

Research Institute for Mathematical Sciences, Kyoto University
hassei@kurims.kyoto-u.ac.jp

Abstract. We propose a semantic and syntactic framework for mod-
elling linearly used effects, by giving the monadic transforms of the com-
putational lambda calculus (considered as the core calculus of typed
call-by-value programming languages) into the linear lambda calculus.
As an instance Berdine et al.’s work on linearly used continuations can
be put in this general picture. As a technical result we show the full
completeness of the CPS transform into the linear lambda calculus.

1 Introduction

1.1 Background: Linearly Used Effects

Many higher-order applicative programming languages like ML and Scheme en-
joy imperative features like states, exceptions and first-class continuations. They
are powerful ingredients and considered as big advantages in programming prac-
tice. However, it is also true that unrestricted use of these features (in particular
the combination of first-class continuations with other features) can be the source
of very complicated (“higher-order spaghetti”) programs. In fact, it has been ob-
served that only the styled use of these imperative features is what we actually
need in the “good” or “elegant” programming practice. There can be several
points to be considered as “stylish”, but in this work we shall concentrate on a
single (and simple) concept: linearity. To be more precise, we consider the linear
usage of effects (note that we do not say that the effects themselves should be
implemented in a linear manner – but they should be used linearly).

The leading examples come from the recent work on linearly used continua-
tions by Berdine, O’Hearn, Reddy and Thielecke [3]. They observe:

. . . in the many forms of control, continuations are used linearly. This
is true for a wide range of effects, including procedure call and return,
exceptions, goto statements, and coroutines.

They then propose linear type systems (based on a version of intuitionistic linear
logic [9, 1]) for capturing the linear usage of continuations. Note that the linear
types are used for typing the target codes of continuation passing style (CPS)
transforms, rather than the source (ML or Scheme) programs. Several “good”

Z. Hu and M. Rodŕıguez-Artalejo (Eds.): FLOPS 2002, LNCS 2441, pp. 167–182, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

168 Masahito Hasegawa

examples are shown to typecheck, while examples which duplicate continuations
do not.

There are several potential benefits of picking up the linearly used effects
using (linear) type systems. First, such type systems can be used to detect certain
ill-behaving programs at the compile time. Furthermore, if we only consider
the programs with linearly used effects, the linear type systems often capture
the nature of compiled codes very closely, as the following full completeness
result on the CPS transform suggests. Such tight typing on the compiled codes
should be useful for better analysis and optimisation. Also the verification of the
correctness of the compilation phase can be simplified.

1.2 A Framework for Linearly Used Effects

In the present paper, we propose a semantics-oriented framework for dealing with
linearly used effects in a coherent way. Specifically, we adopt Moggi’s monad-
based approach to computational effects [Mog88].

In Moggi’s work, a strong monad on a cartesian closed category (a model of
the simply typed lambda calculus) determines the semantics of computational
effects. If we concentrate on the syntactic case (monads syntactically defined
on the term model), this amounts to give a monadic transform (monad-based
compilation) of call-by-value programs into the simply typed lambda calculus.

Basically we follow this story, but in this work we consider cartesian closed
categories induced from models of intuitionistic linear logic (ILL) and, most im-
portantly, monads on these cartesian closed categories induced from the monads
on models of ILL. In this way we can make use of monads determined by prim-
itives of ILL like linear function type � to capture the linearity of the usage
of computational effects. Syntactically, this precisely amounts to give a monadic
transformation into the linear lambda calculus.

In summary, our proposal is to model linearly used effects by monads on
models of ILL, which, if presented syntactically (as will be done in this paper),
amounts to consider monadic transformations into the linear lambda calculus.

1.3 Fully Complete CPS Transformation

To show how this framework neatly captures the compiled codes of the linearly
used effects, we give a technical result which tells us a sort of ”no-junk” property
of the CPS transform: full completeness.

Though the standard call-by-value CPS transformation from the computa-
tional lambda calculus [14] (considered as the core calculus of typed call-by-value
programming languages) into the simply typed lambda calculus has been shown
to be equationally sound and complete (Sabry and Felleisen [16]), it is not full:
there are inhabitants of the interpreted types which are not in the image of the
transformation. As the case of the full abstraction problem of PCF, there are at
least two ways to obtain full completeness for the transformation: either

Linearly Used Effects 169

1. enrich the source calculus by adding first-class continuations, or
2. restrict the target calculus by some typing discipline.

The first approach is standard. In this paper we show how the second approach
can be carried out along the line of work by Berdine et al. [4], as mentioned
above. The basic idea is surprisingly simple (and old): since a continuation is used
precisely once (provided there is no controls), we can replace the interpretation
(Y → R)→ (X → R) of a (call-by-value) function type X → Y by (Y → R) �
(X → R) using the linear function type � – and it does work.

Our framework allows us to formulate this CPS transformation as an in-
stance of the monadic transformations into the linear lambda calculus arising
from a simple monad. The type soundness and equational soundness then follow
immediately, as they are true for any of our monadic transformations. On top
of this foundation, we show that this CPS transformation is fully complete.

Organization of This Paper. In Sec. 2 we recall the semantic background behind
our development, and explain how the considerations on the category-theoretic
models lead us to the monadic transformations into the linear lambda calculus.
Sec. 3 recalls the source and target calculi of our transformations. We then
present the monadic and CPS transformations and some basic results in Sec. 4.
Sec. 5 is devoted to the full completeness result of our CPS transformation.
Sec. 6 discusses a way to add recursion to our framework. Sec. 7 sketches a
generalisation of our approach for some “non-linearly used” effects. We conclude
the paper with some discussions in Sec. 8.

2 Semantics of Linearly Used Effects

2.1 Models of Linear Type Theory, and Monads

A model of propositional intuitionistic linear type theory (with multiplicatives I,
⊗, �, additives 1, & and the modality !) can be given as a symmetric monoidal
closed category D with finite products and a monoidal comonad ! (subject to
certain coherence conditions, see e.g. [6] for relevant category theoretic notions
and results). The symmetric monoidal closure is used for modelling multiplica-
tives, while products and the comonad for additive products and the modality
respectively.

Benton and Wadler [2] observe that such a structure is closely related to a
model of Moggi’s computational lambda calculus [14] described as a cartesian
closed category with a strong monad.1 The result below is well-known (and is
the semantic counterpart of Girard’s translation from intuitionistic logic to linear
logic):

1 To be minimal, for modelling the computational lambda calculus, it suffices to have
a category with finite products, Kleisli exponentials and a strong monad [14]; but in
this paper we do not make use of this full generality.

170 Masahito Hasegawa

Lemma 1. Suppose that D is a model of intuitionistic linear type theory with a
monoidal comonad !. Then the co-Kleisli category D! of the comonad ! on D is
cartesian closed. ��
Also general category theory tells us that the monoidal comonad ! on D induces
a strong monad on D!: the comonad ! gives rise to the co-Kleisli adjunction
F � U : D! → D

D!

✲F
✛

U
⊥ D

such that the composition FU is the comonad !, and the composition UF is a
strong monad on D!. We also note that this adjunction is symmetric monoidal,
which means that the cartesian products in D! and the tensor products in D are
naturally related by coherent natural transformations.

Therefore, from a model of intuitionistic linear type theory, we can derive
a model of computational lambda calculus for free. Benton and Wadler have
observed that this setting induces a call-by-value translation (A → B)◦ =!A◦ �
!B◦ into the linear lambda calculus [2]. However, they also observe that, since
the derived monad is commutative (which means that we cannot distinguish the
order of computational effects), this setting excludes many of the interesting
examples, including continuations as well as global states.

Now we add one more twist. Let us additionally suppose that our model
of intuitionistic linear type theory D has a strong monad T (on the symmetric
monoidal closed category D, rather than on the cartesian closed category D!).
We observe that

Lemma 2. Given a symmetric monoidal adjunction F � U : C → D together
with a strong monad T on D, the induced monad UTF on C is also a strong
monad. ��

C ✲F
✛

U
⊥ D ✛

�
✆T

As a special case, in our situation we have a strong monad T ! on the cartesian
closed category D! (by taking D! as C and the co-Kleisli adjunction between D!

and D as the symmetric monoidal adjunction):

Proposition 1. Given a model of intuitionistic linear type theory D with a
monoidal comonad ! and a strong monad T on D, the induced monad on D!

is also a strong monad. ��
Then we can model the computational lambda calculus using the derived monad.
The induced translation on arrow types takes the form (A → B)◦ =!A◦ �
T (!B◦). (Note that the Benton-Wadler translation can be understood as the case
of T being the identity monad.) The details of the translation will be described
in Section 4.1.

Linearly Used Effects 171

The merit of considering monads on the symmetric monoidal closed category
D instead of the cartesian closed category D! is that we can use linear type
constructors for describing the monads. We should warn that no extra generality
is obtained by this approach; we only claim that this can be a convenient way
to concentrate on the special form of effects (the linearly used ones), especially
on the situations like CPS transform, to be spelled out below.

2.2 A Monad for Linearly Used Continuations

The motivating example in this paper is the (linear) continuation monad TX =
(X � R) � R. As will be explained in detail in Section 4.2, the induced
translation is the call-by-value CPS transformation (of Plotkin [15]), regarded
as a translation from the computational lambda calculus to the linear lambda
calculus. The translation of arrow types is: (A → B)◦ =!A◦ � (!B◦ � R) �
R. This can be rewritten as A◦ → (B◦ → R) � R if we write X → Y for
!X � Y , which is of course isomorphic to (B◦ → R) � A◦ → R, the CPS
transformation (of Fischer) used by Berdine et al. for explaining the linear usage
of continuations [3]. (Another good example might be the state monad TX =
S � (X⊗S) which induces the translation (A → B)◦ =!A◦ � S � (!B◦⊗S) 	
(!A◦ ⊗ S) � (!B◦ ⊗ S), though in this paper we spell out only the case of
continuation monads – but see also the concluding remarks.)

It follows that Plotkin’s CPS transformation from the computational lambda
calculus to the linear lambda calculus is type sound (straightforward), and
equationally complete (by modifying Sabry and Felleisen’s equational complete-
ness [16]). As mentioned in the introduction, following the work by Berdine et
al. [4], we show that this CPS transformation is fully complete, meaning that each
term of an interpreted type is provably equal to an interpreted term (Section 5).
Although the present proof is a mixture of syntactic and semantic techniques,
we expect that a fully semantic (and transparent) proof will be available by
axiomatic considerations on the semantic structures described in this section.

3 The Calculi

We shall consider the minimal setting for discussing the monadic and CPS trans-
formations, thus that involving only the (call-by-value) function type, linear
function type and the modality !. (For ease of presentation we omit the product
types which, however, can be routinely added.) We use the (simply typed) com-
putational lambda calculus [14] as the source language. The target language is
the fragment of intuitionistic linear logic with � and !, formulated as a linear
lambda calculus below. Our presentation is based on a dual-context type system
for intuitionistic linear logic (called DILL) due to Barber and Plotkin [1].

A set of base types (b ranges over them) is fixed throughout this paper.

3.1 The Computational Lambda Calculus

We employ a fairly standard syntax:

172 Masahito Hasegawa

Types, Terms and Values

σ ::= b | σ → σ
M ::= x | λxσ.M | MM
V ::= x | λxσ.M

We may omit the type superscripts of the lambda abstraction for ease of presen-
tation. As an abbreviation, we write let xσ be M in N for (λxσ .N)M . FV(M)
denotes the set of free variables in M .

Typing

Γ1, x : σ, Γ2 � x : σ
Γ, x : σ1 � M : σ2

Γ � λxσ1 .M : σ1 → σ2

Γ � M : σ1 → σ2 Γ � N : σ1

Γ � MN : σ2

where Γ is a context, i.e. a finite list of variables annotated with types, in which
a variable occurs at most once. We note that any typing judgement has a unique
derivation.

Axioms

let xσ be V in M =M [V/x]
λxσ .V x = V (x �∈ FV(V))
let xσ be M in x =M
let yσ2 be (let xσ1 be L in M) in N = let xσ1 be L in let yσ2 be M in N

(x �∈ FV(N))
M N = let fσ1→σ2 be M in let xσ1 be N in f x (M : σ1→σ2, N : σ1)

We assume usual conditions on variables for avoiding undesirable captures. The
equality judgement Γ � M = N : σ, where Γ � M : σ and Γ � N : σ, is defined
as the congruence relation on well-typed terms of the same type under the same
context, generated from these axioms.

3.2 The Linear Lambda Calculus

In this formulation of the linear lambda calculus, a typing judgement takes the
form Γ ; ∆ � M : τ in which Γ represents an intuitionistic (or additive) context
whereas ∆ is a linear (multiplicative) context.

Types and Terms

τ ::= b | τ � τ | !τ
M ::= x | λxτ .M | MM | !M | let !xτ be M in M

Linearly Used Effects 173

Typing

Γ ; x : τ � x : τ Γ1, x : τ, Γ2 ; ∅ � x : τ

Γ ; ∆,x : τ1 � M : τ2
Γ ; ∆ � λxτ1 .M : τ1 � τ2

Γ ; ∆1 � M : τ1 � τ2 Γ ; ∆2 � N : τ1
Γ ; ∆1�∆2 � MN : τ2

Γ ; ∅ � M : τ
Γ ; ∅ �!M :!τ

Γ ; ∆1 � M :!τ1 Γ, x : τ1 ; ∆2 � N : τ2
Γ ; ∆1�∆2 � let !xτ1 be M in N : τ2

where∆1�∆2 is a merge of∆1 and∆2 [1]. Thus,∆1�∆2 represents one of possible
merges of ∆1 and ∆2 as finite lists. We assume that, when we introduce ∆1�∆2,
there is no variable occurring both in ∆1 and in ∆2. We write ∅ for the empty
context. Again we note that any typing judgement has a unique derivation.

Axioms
(λx.M)N =M [N/x]
λx.Mx =M
let !x be !M in N = N [M/x]
let !x be M in !x =M
C[let !x be M in N] = let !x be M in C[N]

where C[−] is a linear context (no ! binds [−]); formally it is generated from the
following grammar.

C ::= [−] | λx.C | CM | MC | let !x be C in M | let !x be M in C

The equality judgement Γ ; ∆ � M = N : τ is defined in the same way as the
case of the computational lambda calculus.

It is convenient to introduce syntax sugars for “intuitionistic” or “non-linear”
function type

τ1 → τ2 ≡ !τ1 � τ2
λλxτ .M ≡ λy!τ .let !xτ be y in M

M τ1→τ2 @N τ1 ≡ M (!N)
which enjoy the following typing derivations.

Γ, x : τ1 ; ∆ � M : τ2
Γ ; ∆ � λλxτ1 .M : τ1 → τ2

Γ ; ∆ � M : τ1 → τ2 Γ ; ∅ � N : τ1
Γ ; ∆ � M @N : τ2

As one expects, the usual βη-equalities (λλx.M) @N = M [N/x] and λλx.M @x =
M (with x not free in M) are easily provable from the axioms above.

4 Monadic and CPS Transformations

4.1 Monadic Transformations

By a (linearly strong) monad on the linear lambda calculus, we mean a tuple
of a type constructor T , type-indexed terms ητ : τ � Tτ and (−)∗τ1,τ2

: (τ1 �

174 Masahito Hasegawa

Tτ2) � Tτ1 � Tτ2 satisfying the monad laws:

η∗τ = λxTτ .x : Tτ � Tτ
f∗ ◦ ητ1 = f : τ1 � Tτ2
(g∗ ◦ f)∗ = g∗ ◦ f∗ : Tτ1 � Tτ3 (f : τ1 � Tτ2, g : τ2 � Tτ3)

For a monad T = (T, η, (−)∗), the monadic transformation (−)◦ from the com-
putational lambda calculus to the linear lambda calculus sends a typing judge-
ment Γ � M : σ to Γ ◦ ; ∅ � M◦ : T (!σ◦), where Γ ◦ is defined by ∅◦ = ∅ and
(Γ, x : σ)◦ = Γ ◦, x : σ◦.

b◦ = b
(σ1 → σ2)◦ = !σ◦

1 � T (!σ◦
2)

= σ◦
1 → T (!σ◦

2)

x◦ ≡ η (!x)
= η @x

(λxσ .M)◦ ≡ η (!(λa!σ◦
.let !xσ◦

be a in M◦))
= η @ (λλxσ◦

.M◦)
(Mσ1→σ2 Nσ1)◦ ≡ (λh!(σ1→σ2)◦ .let !f (σ1→σ2)◦ be h in f∗N◦)∗M◦

= (λλf (σ1→σ2)◦ .f∗N◦)∗M◦

We shall note that (let x be M in N)◦ = (λλx.N◦)∗M◦ holds.

Proposition 2 (type soundness). If Γ � M : σ is derivable in the compu-
tational lambda calculus, then Γ ◦ ; ∅ � M◦ : T (!σ◦) is derivable in the linear
lambda calculus. ��
Proposition 3 (equational soundness). If Γ � M = N : σ holds in the
computational lambda calculus, so is Γ ◦ ; ∅ � M◦ = N◦ : T (!σ◦) in the linear
lambda calculus. ��
As an easiest example, one may consider the identity monad (Tτ = τ , η = λx.x
and f∗ = f). In this case we have (σ1 → σ2)◦ =!σ◦

1 �!σ◦
2 = σ◦

1 →!σ◦
2 and

x◦ = !x
(λx.M)◦ = !(λλx.M◦)
(M N)◦ = (λλf.f N◦)M◦

(let x be M in N)◦ = let !x be M◦ in N◦

This translation is not equationally complete – it validates the commutativity
axiom let x be M in let y be N in L = let y be N in let x be M in L (with x, y not
free inM,N) which is not provable in the computational lambda calculus. Also it
is not full, as there is a term f : (σ1 → σ2)◦ ; ∅ �!(λλxσ◦

1 .!(let !yσ◦
2 be f @x in y)) :

!(σ1 → σ2)◦ which does not stay in the image of the translation if σ2 is a base
type (note that !(let !y be M in y) = M does not hold in general, cf. Note 3.6
of [1]).

Linearly Used Effects 175

Remark 1. The reason of the failure of fullness of this translation can be ex-
plained as follows. In the source language, we can turn a computation at the
function types to a value via the η-expansion – but not at the base types. On the
other hand, in the target language, we can do essentially the same thing at every
types of the form !τ (by turning Γ ; ∅ � M :!τ to Γ ; ∅ �!(let !yτ be M in y) :!τ)
which are strictly more general than the translations of function types. This mis-
match does create junks which cannot stay in the image of the translation. (In
terms of monads and their algebras: while the base types of the term model of
the (commutative) computational lambda calculus do not have an algebra struc-
ture, all objects of the Kleisli category of the term model of DILL are equipped
with an algebra structure given by the term x :!τ ; ∅ � let !yτ be x in y : τ for
the monad induced by the monoidal comonad.) We conjecture that, if we enrich
the commutative computational lambda calculus with the construct valb(M) : b
for base type b and M : b, with axioms let xb be valb(M) in N = N [valb(M)/x]
(i.e. valb(M) is a value) and valb(valb(M)) = valb(M), then the translation ex-
tended with (valb(M))◦ =!(let !xb be M◦ in x) is fully complete. For example,
for f : σ → b we have (λxσ .valb(f x))◦ =!(λλxσ◦

.!(let !yb be f @x in y)). ��

4.2 The CPS Transformation

By specialising the monadic transformation to that of the continuation monad,
we obtain Plotkin’s CPS transformation [15] from the computational lambda
calculus to the linear lambda calculus. Let o be a type of the linear lambda
calculus. Define a monad (T, η, (−)∗) by

Tτ = (τ � o) � o
η = λx.λk.k x

f∗ = λh.λk.h (λx.f x k)

Lemma 3. The data given above specify a monad. ��
Now we have the monadic transformation of this monad as follows:

b◦ = b
(σ1 → σ2)◦ = !σ◦

1 � (!σ◦
2 � o) � o

= σ◦
1 → (σ◦

2 → o) � o

x◦ ≡ λk.k (!x)
= λk.k @x

(λxσ .M)◦ ≡ λk.k (!(λa!σ◦
.let !xσ◦

be a in M◦))
= λk.k @ (λλxσ◦

.M◦)
(Mσ1→σ2 Nσ1)◦ ≡ λk.M◦ (λh!(σ1→σ2)◦ .let !f (σ1→σ2)◦ be h in N◦ (λa!σ◦

1 .f a k))
= λk.M◦ (λλf (σ1→σ2)◦ .N◦ (λλaσ◦

1 .f @ a k))

This is no other than the call-by-value CPS transformation of Plotkin. Note that
(let x be M in N)◦ = λk.M◦ (λλx.N◦ k) holds (as expected).

176 Masahito Hasegawa

Proposition 4 (type soundness). If Γ � M : σ is derivable in the compu-
tational lambda calculus, then Γ ◦ ; ∅ � M◦ : (σ◦ → o) � o is derivable in the
linear lambda calculus. ��
Proposition 5 (equational completeness of Sabry and Felleisen [16]).
Γ � M = N : σ holds in the computational lambda calculus if and only if
Γ ◦ ; ∅ � M◦ = N◦ : (σ◦ → o) � o holds in the linear lambda calculus. ��

5 Full Completeness

Following the work by Berdine et al. [4], we show that this CPS transformation
is in fact fully complete: supposing that o is a base type of the linear lambda
calculus but not of the computational lambda calculus, we claim

If Γ ◦ ; ∅ � N : (σ◦ → o) � o is derivable in the linear lambda calculus,
then there exists Γ � M : σ in the computational lambda calculus such
that Γ ◦ ; ∅ � M◦ = N : (σ◦ → o) � o holds in the linear lambda
calculus.

The proof is done as follows. First, we note that the image of the CPS transform
involves only the types of the form b, τ1 � τ2 and τ1 → τ2, but no !τ – in
contrast to the case of the identity monad or the state monad. By modifying the
full completeness proof for the Girard translation in [10] (via a Kripke logical
relation), we are able to show that the inhabitants of these types are provably
equal to terms constructed from x, λx.M , M N , λλx.M and M @N .

Proposition 6 (fullness of Girard translation, extended version).
Given Γ ; ∆ � M : σ in the linear lambda calculus such that types in Γ , ∆
and σ are constructed from base types, linear function type � and intuitionistic
function type →, M is provably equal to a term constructed from variables x,
linear lambda abstraction λx.N , linear application N1 N2, intuitionistic lambda
abstraction λλx.N and intuitionistic application N1 @N2. ��
Then we have only to consider the long βη-normal forms of the types o (an-
swers), σ◦ (values), σ◦ → o (continuations) and (σ◦ → o) � o (programs) (with
intuitionistic free variables of σ◦’s, and one linear free variable of σ◦ → o in
the cases of answers and continuations), and define the inversion function on
them, as done in [16, 4]. This inversion function (−)∗ for the long βη-normal
forms of the answers, values, continuations and programs are given as follows
(see Appendix for the typing).

types
answers o A ::= k @V | x @ V C
values σ◦ V ::= x | λλx.P
continuations σ◦ → o C ::= k | λλx.A
programs (σ◦ → o) � o P ::= λk.A | x @ V

Linearly Used Effects 177

answers (k @V)∗ = V ∗ (x @ V C)∗ = C∗ (xV ∗)
values x∗ = x (λλx.P)∗ = λx.P ∗

continuations k∗ = λx.x (λλx.A)∗ = λx.A∗

programs (λk.A)∗ = A∗ (x @ V)∗ = xV ∗

Lemma 4.

– For Γ ◦ ; k : θ◦ → o � A : o we have Γ � A∗ : θ.
– For Γ ◦ ; ∅ � V : σ◦ we have Γ � V ∗ : σ.
– For Γ ◦ ; k : θ◦ → o � C : σ◦ → o we have Γ � C∗ : σ → θ.
– For Γ ◦ ; ∅ � P : (σ◦ → o) � o we have Γ � P ∗ : σ. ��
Proposition 7. For Γ � M : σ in the computational lambda calculus, we have
Γ � M◦∗ =M : σ. ��
Lemma 5.

– For Γ ◦ ; k : θ◦ → o � A : o we have Γ ◦ ; ∅ � A∗◦ = λk.A : (θ◦ → o) � o.
– For Γ ◦ ; ∅ � V : σ◦ we have Γ ◦ ; ∅ � V ∗◦ = λk.k @V : (σ◦ → o) � o.
– For Γ ◦ ; k : θ◦ → o � C : σ◦ → o we have

Γ ◦ ; ∅ � C∗◦ = λm.m @ (λλx.λk.C @x) : ((σ → θ)◦ → o) � o.
– For Γ ◦ ; ∅ � P : (σ◦ → o) � o we have Γ ◦ ; ∅ � P ∗◦ = P : (σ◦ → o) � o.

��
Theorem 1 (full completeness of the CPS transform). Given Γ ◦ ; ∅ �
N : (σ◦ → o) � o in the linear lambda calculus, we have Γ � M : σ in the
computational lambda calculus such that Γ ◦ ; ∅ � N =M◦ : (σ◦ → o) � o. ��

6 Adding Recursion

Following the results in [12], we can enrich our transformations with recursion
while keeping the type-soundness and equational soundness valid. For interpret-
ing a call-by-value fixpoint operator on function types

fixv
σ1→σ2

: ((σ1 → σ2)→ σ1 → σ2)→ σ1 → σ2

it suffices to add a fixpoint operator on types of the form T !τ

fixL
τ : (T !τ → T !τ)→ T !τ

to the linear lambda calculus.

(fixv
σ1→σ2

)◦ =
η @ (λλF.η @ (α @ (fixL

(σ1→σ2)◦ @ (λλg
T !(σ1→σ2)◦ .η @ (α @ (F @ (α @ g)))))))

: T !(((σ1 → σ2)◦ → T !(σ1 → σ2)◦)→ T !(σ1 → σ2)◦)

where α = λλgT !(σ1→σ2)◦ .λλxσ◦
1 .(λf (σ1→σ2)◦ .f @x)∗ g

: T !(σ1 → σ2)◦ → (σ1 → σ2)◦

178 Masahito Hasegawa

The fixpoint equation fixL
@M = M @ (fixL

@M) is necessary and sufficient for
justifying the call-by-value fixpoint equation fixv F = λx.F (fixv F)x as well as
the stability axiom fixv F = fixv (λf.λx.F f x) where F is a value [12]. Moreover,
if fixL satisfies a suitable uniformity principle (cf. [17]), the uniformity of fixv

with respect to the rigid functionals [12] is validated by this interpretation. We
expect that this extension does not break the full completeness, but this remains
an open issue.

Another related issue we do not discuss here is the extension with recursive
types which are extensively used in [3]. Again the type soundness and equational
soundness are straightforward, but we do not know if there is a general criteria
for ensuring the full completeness for such extensions with recursive types.

7 Classifying Effects via Linearity

One may wonder if we can also study the “non-linearly used effects” in this
framework. In fact this is the case for some interesting ones, including the usual
(non-linearly used) continuations. The crucial point is that they can be derived
from monads which are not strong – the typing of (−)∗ must be changed to
(τ1 � Tτ2) → Tτ1 � Tτ2 (note the use of →); this exactly amounts to have
a limited form of strength whose parameter is restricted on objects of the form
!X , also called strength with respect to ! in [8]. Prop. 1 can be strengthened as:

Proposition 8. Given a model of intuitionistic linear type theory D with a
monoidal comonad ! and a monad T on D with a strength w.r.t. !, the induced
monad on D! is a strong monad. ��
This ensures that our derivation of monadic transformations for strong monads
is also applicable without any change for monads which are strong w.r.t. !. For
instance, a triple Tτ = (τ � o)→ o, η = λx.λk.k x and f∗ = λh.λk.h (λx.f x k)
forms such a monad which is strong w.r.t. !, from which we obtain the standard
continuation monad T !τ = (τ → o)→ o and the CPS transformation.

Yet not all the strong monads on D! arise from such monads on D in this way.
It seems that there exists an interesting classification of computational effects:
linearly used effects (for linearly strong monads on D), linearly definable effects
(for monads on D with strength w.r.t. !) and more general effects (for general
strong monads on D!). We hope to report the detail of this classification and its
implications elsewhere.

8 Concluding Remarks

In this paper we have proposed a framework for describing “linearly used effects”
in terms of strong monads on models of intuitionistic linear type theories, and
derived the monadic transformations from the computational lambda calculus
into the linear lambda calculus. The case of CPS transformation, motivated by
the work by Berdine et al. [3], is studied in some detail, and we have shown

Linearly Used Effects 179

its full completeness. we believe that these preliminary results show that our
framework is useful in capturing and generalizing the ideas proposed in ibid.:
linearity on the use of computational effects.

However, there remain many open issues on this approach. Most importantly,
we are yet to see if this approach is applicable to many interesting computational
effects. In particular, in this paper we have considered only the pure computa-
tional lambda calculus as the source language. An obvious question is how to
deal with extensions with several computational effects – we have only considered
the core part of [3], and it is still open if several computational effects discussed
in ibid. can be accommodated within our framework. More generally, we want
to know a general characterization of effects which can be captured by strong
monads on linear type theories (this is related to the consideration in Sec. 7).

There also remain several interesting issues related to the approach given
here; we shall conclude this paper by giving remarks on some of them.

Linear Computational Lambda Calculus. Although in this paper we described
our transformations as the translations from the computational lambda calculus
to the linear lambda calculus, there is an obvious way to factor the transfor-
mations through yet another intermediate type theory: the linear computational
lambda calculus, which is the !- (and ⊗-) fragment of intuitionistic linear logic
enriched with computational function types (which should not be confused with
linear or intuitionistic function types). While the semantics of this new calculus
is easily described (as a symmetric monoidal category with a suitable monoidal
comonad ! and Kleisli exponentials), we do not know if the calculus allows a rea-
sonably simple axiomatization, which would be necessary for using the calculus
in practice (e.g. as a foundation of “linearized” A-normal forms which could be
used for the direct-style reasoning about linearly used effects).

Linearly Used Continuations vs. Linearly Used Global States. If we have cho-
sen a classical linear type theory as the target language, the distinction between
continuation-passing style and state-passing style no longer exists: since we have
τ 	 τ⊥⊥ in classical linear logic (CLL), a linear continuation monad is isomor-
phic to a linear state monad: (τ � o)� o 	 o⊥ � (τ ⊗ o⊥). Thus there is no
reason to deal with the effects induced by these monads separately, if we take the
transformations into CLL as their semantics. In fact the usual (non-linear) state
monad fits in this scheme, as we have S → (τ ⊗ !S) 	 (τ � (!S)⊥) � (!S)⊥,
so at least we can deal with global states as a special instance of linearly used
continuations. Is this the case for the transformations into intuitionistic linear
logic (as we considered in this paper) too?

We are currently studying these issues using a term calculus for CLL proposed
in [11] as the target language of the transformations. In particular, if a conjecture
on the fullness of CLL over ILL stated in ibid. is positively solved, it follows
that the linear state-passing-style transformation (derived from the linear state
monad) is also fully complete, by applying the correspondence between linear
continuation monads and linear state monads as noted above.

180 Masahito Hasegawa

Full Abstraction Result of Berger, Honda and Yoshida. In a recent work [5],
Berger, Honda and Yoshida have shown that the translation from PCF into a
linearly typed π-calculus is fully abstract. Since the translation (“functions as
processes” [13]) can be seen a variant of the CPS transform (as emphasized
by Thielecke) and the linear typing is used for capturing the linear usage of
continuations, it should be possible to identify the common semantic structure
behind their work and our approach.

Lily. The Lily project [7] considers the theory of polymorphic linear lambda
calculi and their use as appropriate typed intermediate languages for compilers.
It would be fruitful to combine their ideas and results with ours.

Acknowledgements

I thank Josh Berdine, Peter O’Hearn, Uday Reddy, Hayo Thielecke and Hongseok
Yang for helpful discussions, and Jacques Garrigue and Susumu Nishimura for
comments on an early version. Thanks also to anonymous reviewers for help-
ful comments. Part of this work was carried out while the author was visiting
Laboratory for Foundations of Computer Science, University of Edinburgh.

References

[1] Barber, A. and Plotkin, G. (1997) Dual intuitionistic linear logic. Submitted. An
earlier version available as Technical Report ECS-LFCS-96-347, LFCS, University
of Edinburgh. 167, 171, 173, 174

[2] Benton, N. and Wadler, P. (1996) Linear logic, monads, and the lambda calculus.
In Proc. 11th Annual Symposium on Logic in Computer Science, pp. 420–431.
169, 170

[3] Berdine, J., O’Hearn, P.W., Reddy, U. S. and Thielecke, H. (2001) Linearly used
continuations. In Proc. ACM SIGPLAN Workshop on Continuations (CW’01),
Technical Report No. 545, Computer Science Department, Indiana University.
167, 171, 178, 179

[4] Berdine, J., O’Hearn, P.W. and Thielecke, H. (2000) On affine typing and com-
pleteness of CPS. Manuscript. 169, 171, 176

[5] Berger, M., Honda, K. and Yoshida, N. (2001) Sequentiality for the π-calculus.
In Proc. Typed Lambda Calculi and Applications (TLCA 2001), Springer Lecture
Notes in Computer Science 2044, pp. 29–45. 180

[6] Bierman, G.M. (1995) What is a categorical model of intuitionistic linear logic?
In Proc. Typed Lambda Calculi and Applications (TLCA’95), Springer Lecture
Notes in Computer Science 902, pp. 78–93. 169

[7] Bierman, G.M., Pitts, A.M. and Russo, C. V. (2000) Operational properties of
Lily, a polymorphic linear lambda calculus with recursion. In Proc. Higher Order
Operational Techniques in Semantics (HOOTS 2000), Electronic Notes in Theo-
retical Computer Science 41. 180

[8] Blute, R., Cockett, J. R.B. and Seely, R.A.G. (1996) ! and ? - Storage as tensorial
strength. Math. Structures Comput. Sci. 6(4), 313–351. 178

[9] Girard, J.-Y. (1987) Linear logic. Theoret. Comp. Sci. 50, 1–102. 167

Linearly Used Effects 181

[10] Hasegawa, M. (2000) Girard translation and logical predicates. J. Functional Pro-
gramming 10(1), 77–89. 176

[11] Hasegawa, M. (2002) Classical linear logic of implications. In Proc. Computer
Science Logic (CSL’02), Springer Lecture Notes in Computer Science. 179

[12] Hasegawa, M. and Kakutani, Y. (2001) Axioms for recursion in call-by-value
(extended abstract). In Proc. Foundations of Software Science and Computation
Structures (FoSSaCS 2001), Springer Lecture Notes in Computer Science 2030,
pp. 246–260. 177, 178

[13] Milner, R. (1992) Functions as processes. Math. Structures Compt. Sci. 2(2), 119–
141. 180

[14] Moggi, E. (1989) Computational lambda-calculus and monads. In Proc. 4th An-
nual Symposium on Logic in Computer Science, pp. 14–23; a different version
available as Technical Report ECS-LFCS-88-86, University of Edinburgh, 1988.
168, 169, 171

[15] Plotkin, G.D. (1975) Call-by-name, call-by-value, and the λ-calculus. Theoret.
Comput. Sci. 1(1), 125–159. 171, 175

[16] Sabry, A. and Felleisen, M. (1992) Reasoning about programs in continuation-
passing style. In Proc. ACM Conference on Lisp and Functional Programming,
pp. 288–298; extended version in Lisp and Symbolic Comput. 6(3/4), 289–360,
1993. 168, 171, 176

[17] Simpson, A.K. and Plotkin, G.D. (2000) Complete axioms for categorical fixed-
point operators. In Proc. 15th Annual Symposium on Logic in Computer Science
(LICS 2000), pp. 30–41. 178

182 Masahito Hasegawa

A The Inversion Function
Answers : Γ ◦ ; k : θ◦ → o � A : o =⇒ Γ � A∗ : θ

Γ ◦ ; k : θ◦ → o � k : θ◦ → o

....
Γ ◦ ; ∅ � V : θ◦

Γ ◦ ; k : θ◦ → o � k @V : o �→

....
Γ � V ∗ : θ

....
Γ ◦ ; ∅ � P : (σ◦

2 → o)(o

....
Γ ◦ ; k : θ◦ → o � C : σ◦

2 → o

Γ ◦ ; k : θ◦ → o � P C : o

�→

....
Γ � C∗ : σ2 → θ

....
Γ � P ∗ : σ2

Γ � C∗ P ∗ : θ

where Γ = Γ1, x : σ1 → σ2, Γ2 and P = x @V with Γ ◦ ; ∅ � V : σ◦
1

(see the last case of Programs)

Values : Γ ◦ ; ∅ � V : σ◦ =⇒ Γ � V ∗ : σ

Γ ◦
1 , x : σ◦, Γ ◦

2 ; ∅ � x : σ◦ �→ Γ1, x : σ, Γ2 � x : σ

....
Γ ◦, x : σ◦

1 ; ∅ � P : (σ◦
2 → o)(o

Γ ◦ ; ∅ � λλxσ◦
1 .P : (σ1 → σ2)

◦ �→

....
Γ, x : σ1 � P ∗ : σ2

Γ � λxσ1 .P ∗ : σ1 → σ2

Continuations : Γ ◦ ; k : θ◦ → o � C : σ◦ → o =⇒ Γ � C∗ : σ → θ

Γ ◦ ; k : θ◦ → o � k : θ◦ → o �→
Γ, x : θ � x : θ

Γ � λxθ.x : θ → θ

....
Γ ◦, x : σ◦ ; k : θ◦ → o � A : o

Γ ◦ ; k : θ◦ → o � λλxσ◦
.A : σ◦ → o �→

....
Γ, x : σ � A∗ : θ

Γ � λxσ.A∗ : σ → θ

Programs : Γ ◦ ; ∅ � P : (σ◦ → o)(o =⇒ Γ � P ∗ : σ

....
Γ ◦ ; k : θ◦ → o � A : o

Γ ◦ ; ∅ � λkθ◦→o.A : (θ◦ → o)(o �→

....
Γ � A∗ : θ

Γ ◦ ; ∅ � x : (σ1 → σ2)
◦

....
Γ ◦ ; ∅ � V : σ◦

1

Γ ◦ ; ∅ � x @V : (σ◦
2 → o)(o �→

Γ � x : σ1 → σ2

....
Γ � V ∗ : σ1

Γ � x V ∗ : σ2

where Γ = Γ1, x : σ1 → σ2, Γ2

	Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus
	Introduction
	Background: Linearly Used Effects
	A Framework for Linearly Used Effects
	Fully Complete CPS Transformation

	Semantics of Linearly Used Effects
	Models of Linear Type Theory, and Monads
	A Monad for Linearly Used Continuations

	The Calculi
	The Computational Lambda Calculus
	The Linear Lambda Calculus

	Monadic and CPS Transformations
	Monadic Transformations
	The CPS Transformation

	Full Completeness
	Adding Recursion
	Classifying Effects via Linearity
	Concluding Remarks
	The Inversion Function

