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Abstract. We propose a semantic framework for modelling the linear
usage of continuations in typed call-by-name programming languages.
On the semantic side, we introduce a construction for categories of linear
continuations, which gives rise to cartesian closed categories with “lin-
ear classical disjunctions” from models of intuitionistic linear logic with
sums. On the syntactic side, we give a simply typed call-by-name λµ-
calculus in which the use of names (continuation variables) is restricted
to be linear. Its semantic interpretation into a category of linear con-
tinuations then amounts to the call-by-name continuation-passing style
(CPS) transformation into a linear lambda calculus with sum types. We
show that our calculus is sound for this CPS semantics, hence for models
given by the categories of linear continuations.

1 Introduction

1.1 Linearly Used Continuations

Recent work on linearly used continuations by Berdine, O’Hearn, Reddy and
Thielecke [7,8] points out the advantage of looking at the linear usage of contin-
uations in programming languages. They observe:

. . . in the many forms of control, continuations are used linearly. This
is true for a wide range of effects, including procedure call and return,
exceptions, goto statements, and coroutines.

They then propose linear type systems (based on a version of intuitionistic linear
logic [13,2,3]) for capturing the linear usage of continuations, where the linear
types are used for typing the target codes of continuation-passing style (CPS)
transforms, rather than the source (ML or Scheme, for example) programs. Sev-
eral “good” examples are shown to typecheck, while examples which duplicate
continuations do not. An instance of such situations is found in a recent work
on axiomatizing delimited continuations [19] where the linear usage of metacon-
tinuations is crucial.

Motivated by Berdine et al.’s work, in a previous paper [14] we have devel-
opped a semantic framework for linearly used continuations (and more generally
linearly used effects) in typed call-by-value (CBV) programming languages in
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terms of models of linear type theories. In particular, the CBV CPS transfor-
mation is naturally derived as an instance of general monadic transformation
into the linear lambda calculus in this framework, and we have shown that the
CPS transformation enjoys good properties, most notably the full completeness
(“no-junk property”). Further results including a fully abstract game semantics
have been given by Laird [20]. Thus the semantic analysis on linear CPS in the
CBV setting has been shown fruitful and successful to some extent.

The present paper proposes an analogous approach for linearly used contin-
uations in call-by-name setting. Thus we first seek for the semantic construction
which gives a model capturing the linearity of the usage of continuations from
a model of linear type theory, and then extract the call-by-name CPS transfor-
mation into the linear lambda calculus from the construction. In this way we
provide sound models of the call-by-name λµ-calculus [23] in which the use of
names (continuation variables) is restricted to be linear. Proof theoretically, this
restriction prohibits us to write programs (proofs) of many of “classical” types,
because the disjunction type is used only linearly. We still have the excluded
middle ¬A ∨ A (because it is isomorphic to A ⇒ A in this world), but not
the double-negation elimination ¬¬A⇒ A (equivalently ¬¬¬A ∨A) in general.
This means that the typing for linearly used continuations is placed somewhere
between the intuitionistic and classical ones [1].

1.2 Semantic Construction: Categories of Linear Continuations

The central semantic construction in this work, though rather simple and possi-
bly folklore among specialists, is that of categories of linear continuations, which
can be considered as a generalization of two well-known constructions of carte-
sian closed categories:

1. The semantic counterpart of the (call-by-name) double-negation translation
from classical logic to intuitionistic logic: we construct a cartesian closed
category from a cartesian closed category with sums as the opposite of the
Kleisli category of the “continuation monad” ((−) → R) → R, also known
as the category of continuations [16,26].

2. The semantic counterpart of the Girard translation from intuitionistic logic
to linear logic: we construct a cartesian closed category from a model of linear
logic as the co-Kleisli category of the comonad !(−) = ((−) → ⊥⊥) � ⊥⊥
(where we assume the presence of products) — equivalently as the opposite
of the Kleisli category of the monad ?(−) = ((−) � ⊥⊥) → ⊥⊥ (where we
need sums).

The view of regarding modalities ! and ? as expressing “linearly used continua-
tions” and “linearly defined continuations” has been emphasized in our previous
work [15] (and also implicit in Filinski’s work [12]), and it helps us to understand
these two situations as instances of a single setting. Starting from a model of
linear logic with sums, we construct a cartesian closed category as the opposite
of the Kleisli category of the ?-like monad T (−) = ((−) � R)→ R.
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One technically interesting point is that monads of this form are in general
not strong — they only have “strength with respect to !” [10]. Thus they seem
less useful in the call-by-value setting (because a monad needs to be strong for
interpreting a reasonable “notion of computation” in the sense of Moggi [22]).
This also implies that the induced operators on objects for the “linear classical
disjunction” does not form a premonoidal structure [24] — the object function
A ∨ (−) does not extend to a functor.

1.3 Organization of This Paper

This article is organized as follows. In Sect. 2 we recall the semantics and syntax
of the linear lambda calculus which serves as the target of our CPS transforma-
tion. Sect. 3 introduces the construction of categories of linear continuations. In
Sect. 4 we consider the λµ-calculus with linear controls, and spell out the CPS
transformation derived from the semantic construction of the last section. Sect.
5 concludes the paper. Appendices summarize the linear lambda calculus DILL
and the notion of !-strong monads.

2 Preliminaries

2.1 Categorical Models of Linear Logic

We describe models of linear logic in terms of symmetric monoidal closed cate-
gories with additional structure – suitable comonad for modelling the modality
“of course” !, and finite products/coproducts for modelling additives, and a du-
alising object (hence ∗-autonomous structure [4,5,25]) for modelling the duality
of classical linear logic. For reference, we shall give a compact description of the
comonads to be used below, due to Hyland and Schalk (which is equivalent to
Bierman’s detailed definition [9], and also to the formulation based on symmetric
monoidal adjunctions [6,3]).

Definition 1 (linear exponential comonad [17]). A symmetric monoidal
comonad ! = (!, ε, δ, mA,B, mI) on a symmetric monoidal category C is called a
linear exponential comonad when the category of its coalgebras is a category of
commutative comonoids – that is:

– there are specified monoidal natural transformations eA :!A → I and dA :
!A→!A⊗!A which form a commutative comonoid (!A, eA, dA) in C and also
are coalgebra morphisms from (!A, δA) to (I, mI) and (!A⊗!A, m!A,!A ◦ (δA⊗
δA)) respectively, and

– any coalgebra morphism from (!A, δA) to (!B, δB) is also a comonoid mor-
phism from (!A, eA, dA) to (!B, eB , dB).

2.2 Dual Intuitionistic Linear Logic

The target calculus we will make use of is the multiplicative exponential fragment
of intuitionistic linear logic, formulated as a linear lambda calculus summarized
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in Appendix. Our presentation is based on a dual-context type system for in-
tuitionistic linear logic (called DILL) due to Barber and Plotkin [2,3]. In this
formulation of the linear lambda calculus, a typing judgement takes the form
Γ ; ∆ � M : τ in which Γ represents an intuitionistic (or additive) context
whereas ∆ is a linear (multiplicative) context. It has been shown that symmet-
ric monoidal closed categories with linear exponential comonad provide a sound
and complete class of categorical models of DILL [3].

In the sequel, it turns out to be convenient to introduce syntax sugars for
“intuitionistic” or “non-linear” function type

τ1 → τ2 ≡ !τ1 � τ2

λλxτ .M ≡ λy!τ .let !xτ be y in M
M τ1→τ2 @N τ1 ≡ M (!N)

which enjoy the following typing derivations.

Γ, x : τ1 ; ∆ �M : τ2

Γ ; ∆ � λλxτ1 .M : τ1 → τ2

Γ ; ∆ �M : τ1 → τ2 Γ ; ∅ � N : τ1

Γ ; ∆ �M @N : τ2

As one expects, the usual βη-equalities (λλx.M) @N = M [N/x] and λλx.M @x =
M (with x not free in M) are easily provable from the axioms of DILL. (In fact
it is possible to have them as primitives rather than derived constructs [7,8,15].)

In addition to the constructs of DILL, we need to deal with (additive) sum
types. Here we employ the fairly standard syntax:

Γ ; ∆ �M : 0
Γ ; ∆ � abortσ M : σ

(0 E)

Γ ; ∆ �M : σ

Γ ; ∆ � inlσ,τ M : σ ⊕ τ
(⊕ IL)

Γ ; ∆ � N : τ

Γ ; ∆ � inrσ,τ N : σ ⊕ τ
(⊕ IR)

Γ ; ∆1 � L : σ ⊕ τ Γ ; ∆2, x : σ �M : θ Γ ; ∆2, y : τ � N : θ

Γ ; ∆1�∆2 � case L of inl xσ �→M ‖ inr yτ �→ N : θ
(⊕E)

3 Categories of Linear Continuations

Let C be a symmetric monoidal closed category with a linear exponential comonad
! and finite coproducts (we write 0 for an initial object and ⊕ for binary coprod-
ucts). Fix an object R, and define a category RC as follows: RC’s objects are the
same as those of C, and arrows are given by

RC(A, B) = C(!(A � R), B � R).

The identities and compositions in RC are inherited from the co-Kleisli category
C! of the comonad ! (so, up to equivalence, RC can be considered as the full
subcategory of C! whose objects are of the form A � R).
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As easily seen, RC(A, B) 
 C(B, !(A � R) � R), thus RC is isomorphic to
the opposite of the Kleisli category of the monad TX =!(X � R) � R on C.
Note that this monad is not necessarily strong – but it is strong with respect to
! (i.e., has a restricted form of strength !A⊗ TX → T (!A⊗X)) – see Appendix
for the definition of !-strong monads. This notion is introduced by Blute et al.
[10] for axiomatising the exponential “why not” ?. A !-strong monad may not
be strong, though it induces a strong monad on the co-Kleisli category C! [14].

Proposition 1. The monad TX =!(X � R) � R on C is !-strong.

In terms of DILL, the !-strength is represented as follows.

a : A ; m : (X � R)→ R � λλk(!A⊗X)�R.m @ (λxX .k (!a⊗ x))
: ((!A⊗X) � R)→ R

We shall note the non-linear use of the variable a : A.
Note that the exponential ?(−) =!((−) � ⊥⊥) � ⊥⊥ is a particular instance

of this — see Example 2 below. Another typical example of !-strong (but not
necessarily strong) monads is the exception monad X �→ X ⊕ E.

3.1 Cartesian Closure

A category of linear continuations has sufficient structures for modelling the
simply typed lambda calculus [21]:

Proposition 2. RC is a cartesian closed category.

Proof: Define

� = 0 A ∧B = A⊕B A⇒ B = !(A � R)⊗B

We shall see that � is a terminal object, A∧B is a binary product of A and B,
and A⇒ B is an exponential of B by A in RC .

RC(A,�) = C(!(A � R), 0 � R)

 C(0, !(A � R) � R)

 1

RC(A, B ∧ C) = C(!(A � R), (B ⊕ C) � R)

 C(B ⊕ C, !(A � R) � R)

 C(B, !(A � R) � R)× C(C, !(A � R) � R)

 C(!(A � R), B � R)× C(!(A � R), C � R)
= RC(A, B)×RC(A, C)

RC(A ∧B, C) = C(!((A⊕B) � R), C � R)

 C(!(A � R)⊗!(B � R), C � R)

 C(!(A � R), (!(B � R)⊗ C) � R)
= RC(A, B ⇒ C)
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Here we use an isomorphism !((A⊕B) � R) 
 !(A � R)⊗!(B � R) which can
be thought as an instance of the “Seely isomorphism” !(X&Y ) 
 !X⊗!Y [25,9]

as we have a product diagram A � R
inl�R←−− (A⊕B) � R

inr�R−−→ B � R. Since a
linear exponential comonad ! arises from a symmetric monoidal adjunction from
a category with finite products [9,6,3], it follows that ! sends a product of X and
Y (if exists) to !X⊗!Y up to coherent isomorphism. ��

3.2 Disjunctions

It is natural to define the (linear) disjunctions on RC as

⊥ = I A ∨B = A⊗B

which satisfy the isomorphisms one would expect for “classical” disjunctions:

Proposition 3. The following isomorphisms exist:

A⇒ B 
 (A⇒ ⊥) ∨B
A⇒ (B ∨ C) 
 (A⇒ B) ∨ C

However, they are not even premonoidal (because the monad T is not strong).
The functor A⊗ (−) on C does not give rise to a functor on RC .

We also note that these linear disjunctions do not give weak coproducts in
general. For instance ⊥ is not a weak initial object:

RC(⊥, X) = C(!(I � R), X � R) 
 C(X, !R � R) = C(X, R→ R)

Hence we can define the canonical map from ⊥ to only objects of the form !X .

3.3 Examples

As mentioned in the introduction, the categories of linear continuations subsume
two well-known constructions of cartesian closed categories: one for the call-by-
name double-negation translation from classical logic to intuitionistic logic, and
the other for (the dual of) the Girard translation from intuitionistic logic to linear
logic. For the former, it suffices to simply trivialize the linearity. For the latter,
we let the response object R be the dualising object (linear falsity type) ⊥⊥.3

Example 1 (Categories of continuations). Let C be a cartesian closed category
with finite coproducts and an object R. By taking the identity comonad as
the linear exponential comonad, we have a sufficient structure for constructing
a category RC of (linear) continuations. Its objects are the same as C, with
RC(A, B) = (RA, RB), together with the terminal object 0, binary product A⊕B
and exponential RA × B. This is exactly the category of continuations [16,26].
Note that, in this case, the monad T is the standard continuation monad and is
strong, hence the classical disjunction is premonoidal.
3 This should not be confused with the classical falsity ⊥ introduced in the last section.

In this paper we use ⊥ and ⊥⊥ for the classical falsity and linear falsity (dualising
object) respectively.
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Example 2 (Girard translation). Suppose that C is ∗-autonomous [4], thus has
a dualising object ⊥⊥ and can model classical linear logic [25,5]. We note that
its opposite Cop is also ∗-autonomous, with a linear exponential comonad ?X =
!(X � ⊥⊥) � ⊥⊥. By letting R be ⊥⊥, we have

⊥⊥Cop
(A, B) 
 Cop(?(A � ⊥⊥), B � ⊥⊥) 
 Cop(B, !A) = C(!A, B) = C!(A, B).

Thus the derivation of the cartesian closure of ⊥⊥Cop
is exactly the well-known

“decomposition” A⇒ B = !A � B (given a symmetric monoidal closed category
C with a linear exponential comonad ! and finite products, the co-Kleisli category
C! is cartesian closed). Sec.4.5 gives a syntactic interpretation of this observation.

Of course, there are many categories of linear continuations which do not fall
into these two extreme cases. For instance:

Example 3. Let C be the category of ω-cpo’s (with bottom) and strict continuous
functions, ! be the lifting, and R be any object. The category RC has the same
objects as C, but its morphism from A to B is a (possibly non-strict) continuous
function between the strict-function spaces A � R and B � R.

3.4 Discussion: Towards Direct-Style Models

Ideally, we would like to find a direct axiomatization of the categories of linear
continuations as cartesian closed categories with extra structure — as neatly
demonstrated in the non-linear case by Selinger as control categories and its
structural theorem with respect to categories of continuations [26]. The main
difficulty in our linear case is that the linear classical disjunction is no longer
premonoidal, and we do not know how to axiomatize them. So there seems
no obvious way to adopt Selinger’s work to define a notion of “linear control
categories”.

But there still are some hope: we can consider the category RC lin defined by
RC lin(A, B) = C(A � R, B � R), which can be regarded as a lluf subcategory
of linear maps in RC (provided the counit is epi). The disjunctions do form
a symmetric premonoidal structure on RC lin. Moreover, the category RC lin has
finite products and the inclusion from RC lin to RC preserves them.

So it might be natural to formulate the structure directly as a cartesian
closed category together with a lluf subcategory with finite products (preserved
by the inclusion) and distributive symmetric premonoidal products (but not
with codiagonals as required for control categories), satisfying certain coherence
conditions — e.g. on the isomorphism A⇒ (B ∨ C) 
 (A⇒ B) ∨ C.

4 The λµ-Calculus with Linear Controls

We formulate the calculus for expressing “linearly used continuations” as a con-
strained λµ-calculus where names (continuation variables) are used and bound
just linearly. Here we make use of the syntax for the simply typed λµ-calculus
with disjunctions [26], together with a typing system which represents this lin-
earity constraint on names.
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4.1 The Calculus

Types and Terms

σ ::= b | σ ⇒ σ | � | σ ∧ σ | ⊥ | σ ∨ σ
M ::= x | λxσ .M | M M | ∗ | 〈M, M〉 | π1 M | π2 M |

[α]M | µασ.M | [α, α]M | µ(ασ , ασ).M

where b ranges over base types.

Typing

Γ � x : σ | ∅ x : σ ∈ Γ

Γ, x : σ �M : τ | ∆
Γ � λxσ.M : σ⇒τ | ∆

Γ �M : σ⇒τ | ∆ Γ � N : σ | ∅
Γ �M N : τ | ∆

Γ � ∗ : � | ∅
Γ �M : σ | ∆1 Γ � N : τ | ∆2

Γ � 〈M, N〉 : σ ∧ τ | ∆1�∆2

Γ �M : σ ∧ τ | ∅
Γ � π1 M : σ | ∅

Γ �M : σ ∧ τ | ∅
Γ � π2 M : τ | ∅

Γ �M : σ | ∆
Γ � [α]M : ⊥ | {α : σ}�∆

Γ �M : ⊥ | α : σ, ∆

Γ � µασ.M : σ | ∆

Γ �M : σ ∨ τ | ∆
Γ � [α, β]M : ⊥ | {α : σ, β : τ}�∆

Γ �M : ⊥ | α : σ, β : τ, ∆

Γ � µ(ασ, βτ ).M : σ ∨ τ | ∆
where ∆1�∆2 represents one of possible merges of ∆1 and ∆2 as finite lists. We
assume that, when we introduce ∆1�∆2, there is no name occurring both in ∆1

and in ∆2. We write ∅ for the empty context. Note that names cannot be free
in the argument of a function application.

Example 4. The reader is invited to verify that

µ(κσ⇒⊥, ασ).[κ](λxσ .[α]x) : (σ ⇒ ⊥) ∨ σ

typechecks, while

λm(σ⇒⊥)⇒⊥.µασ.m (λxσ .[α]x) : ((σ ⇒ ⊥)⇒ ⊥)⇒ σ

does not — the name α occurs in the argument of a function m which may
duplicate or discard α.

Example 5. The disjunction (−)∨ τ fails to be functorial: given a term M : σ ⇒
σ′, one might expect to have

M ∨ τ = λzσ∨τ .µ(α′σ′
, βτ ).[α′](M (µασ.[α, β]z)) : σ ∨ τ ⇒ σ′ ∨ τ

which is illegal because M may not use β linearly.
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4.2 The Call-by-Name CPS Interpretation

The cartesian closed structure of the category of linear continuations motivates
the following interpretation of the arrow type

[[σ ⇒ τ ]] 
 !([[σ]] � R)⊗ [[τ ]]

which leads us to interpret a typing judgement as follows.

[[x1 : σ1, . . . , xm : σm �M : σ | α1 : τ1, . . . , αn : τn]] :
!([[σ1]] � R)⊗ . . .⊗!([[σm]] � R)⊗ [[τ1]]⊗ . . .⊗ [[τn]] −−→ [[σ]] � R

Rather than describing the translation in terms of categorical combinators, below
we shall give it as a CPS transform into DILL with sums. For types we have

b◦ = b �◦ = 0 ⊥◦ = I
(σ ⇒ τ)◦ = !(σ◦�R)⊗ τ◦ (σ ∧ τ)◦ = σ◦ ⊕ τ◦ (σ ∨ τ)◦ = σ◦ ⊗ τ◦

and for terms

x◦ = x

(λxσ .M τ )◦ = λ(!xσ◦�R ⊗ kτ◦
).M◦ k

(Mσ⇒τ Nσ)◦ = λkτ◦
.M◦ (!N◦ ⊗ k)

∗◦ = λk0.abortR k

〈Mσ, N τ 〉◦ = λkσ◦⊕τ◦
.case k of inl(x) �→M◦ x ‖ inr(y) �→ N◦ y

(π1 Mσ∧τ )◦ = λkσ◦
.M◦ (inl k)

(π2 Mσ∧τ )◦ = λkτ◦
.M◦ (inr k)

([α]M)◦ = λ ∗I .M◦ α

(µασ.M)◦ = λασ◦
.M◦ ∗

([α, β]M)◦ = λ ∗I .M◦ (α⊗ β)
(µ(ασ, βτ ).M)◦ = λ(ασ◦ ⊗ βτ◦

).M◦ ∗
Also we use some “pattern matching binding”, e.g. λ(xσ⊗yτ ).M as a shorthand
for λzσ⊗τ .let xσ ⊗ yτ be z in M , and λ ∗I .M for λzI .let ∗ be z in M . A typing
judgement

x1 : σ1, . . . , xm : σm �M : σ | α1 : τ1, . . . , αn : τn

is sent to

x1 : σ◦
1 � R, . . . , xm : σ◦

m � R ; α1 : τ◦
1 , . . . , αn : τ◦

n �M◦ : σ◦ � R.

Note that, if we ignore all the linearity information, this is precisely the same as
the call-by-name CPS transformation of Selinger [26].

Example 6. The well-typed term

µ(κσ⇒⊥, ασ).[κ](λxσ .[α]x) : (σ ⇒ ⊥) ∨ σ

is sent to

λ((!xσ◦�R ⊗ ∗I)⊗ ασ◦
).x α : ((!(σ◦ � R)⊗ I)⊗ σ◦) � R

which essentially agrees with the transform of the identity function

(λxσ .x)◦ = λ(!xσ◦�R ⊗ kσ◦
).x k : (!(σ◦ � R)⊗ σ◦) � R.
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4.3 Axioms and Soundness

It is routine to see that this CPS transform validates the βη-equalities of the
simply typed lambda calculus with products (this is a consequence of the carte-
sian closedness of the categories of linear continuations). In fact all axioms for
the call-by-name λµ-calculus (as given by Selinger [26]) are valid, except the
non-linear axiom (β⊥) : [α⊥]M = M which is replaced by its linear variant
µα⊥.C[[α]M ] = C[M ] below.

Axioms

(β⇒) (λx.M)N = M [N/x]
(η⇒) λx.M x = M [N/x] (x �∈ FV (M))
(β∧) πi 〈M1, M2〉 = Mi

(η∧) 〈π1 M, π2 M〉 = M
(η�) ∗ = M

(βµ) [α′](µα.M) = M [α′/α]
(ηµ) µα.[α]M = M
(β∨) [α′, β′](µ(α, β).M) = M [α′/α, β′/β]
(η∨) µ(α, β).[α, β]M = M
(β⊥) µα⊥.C[[α]M ] = C[M ]
(ζ⇒) (µασ⇒τ .C[[α]M ])N = µβτ .C[[β](M N)]
(ζ∧) πi (µασ1∧σ2 .C[[α]M ]) = µβσi .C[[β](πi M)]
(ζ∨) [α, β](µδ.C[[δ]M ]) = C[[α, β]M ]

Theorem 1. The CPS translation is sound: Γ � M = N : σ | ∆ implies
Γ ◦ � R ; ∆◦ �M◦ = N◦ : σ◦ � R.

Corollary 1. The interpretation of the calculus into any symmetric monoidal
closed category with linear exponential comonad and sums is sound: Γ � M =
N : σ | ∆ implies [[Γ �M : σ | ∆]] = [[Γ � N : σ | ∆]].

4.4 Discussion: Completeness

We conjecture that the equational theory of the calculus given above is not just
sound but also complete for the CPS semantics, hence also the models given by
categories of linear continuations. (This should be the case, as the usual (non-
linear) λµ-calculus is likely to be a conservative extension of our calculus and its
term model gives rise to a category of continuations [16,26], hence a complete
model.)

The main problem for showing the completeness, however, is that the types
and terms are not sufficiently rich to give rise to a category of linear contin-
uations as the term model; it is not very clear how to derive a base category
and the response object R, as well as the linear exponential comonad !. This
also suggests that the calculus may not be sufficient for explaining the nature of
linear continuation-passing — there seem some room for further improvement.
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4.5 Girard Translation as a CPS Transformation

In Example 2, we have noted that the standard construction of cartesian closed
categories from models of linear logic can be regarded as an instance of our
construction of categories of linear continuations. This means that Girard trans-
lation from intuitionistic logic into the (classical) linear logic can also be derived
as an instance of our CPS transformation and extends to our λµ-calculus —
in this reading, it really is a simply typed lambda calculus enriched with par’s.
The derived translation (obtained by taking the opposite of the term model of
the linear lambda calculus and then letting R be ⊥⊥) is straightforwardly de-
scribed as follows, using the linear lambda calculus DCLL [15] as the target.
For types: b◦ = b, �◦ = �, (σ ∧ τ)◦ = σ◦ & τ◦, (σ ⇒ τ)◦ = σ◦ → τ◦, ⊥◦ = ⊥⊥
and (σ ∨ τ)◦ = σ◦ &

τ◦ = (σ◦ � ⊥⊥) � (τ◦ � ⊥⊥) � ⊥⊥. For terms, we have
x◦ = x, (λx.M)◦ = λλx.M◦, (M N)◦ = M◦ @N◦, ∗◦ = 〈 〉, 〈M, N〉◦ = 〈M◦, N◦〉,
(π1 M)◦ = fst M◦, (π2 M)◦ = sndM◦, ([α]M)◦ = α M◦, (µα.M)◦ = C (λα.M◦),
([α, β]M)◦ = M◦ α β and (µ(α, β).M)◦ = λα.λβ.M◦, where the combinator
Cσ : ((σ � ⊥⊥) � ⊥⊥) � σ expresses the isomorphism from (σ � ⊥⊥) � ⊥⊥ to σ.
A judgement Γ �M : σ | ∆ is sent to Γ ◦ ; ∆◦ � ⊥⊥ � M◦ : σ◦. The soundness
of this translation is just an instance of Corollary 1.

5 Concluding Remarks

In this paper we proposed a semantic approach for linearly used continuations in
call-by-name setting, and developped a relevant semantic construction and also a
syntactic calculus for such linear controls, together with its CPS transformation.

However, we must say that this work is still premature — at least not as
successful as the case of the call-by-value setting for now — and there remain
many important issues to be addressed. Among them, we already mentioned two
major problems (which are related each other): (1) the lack of direct-style models,
and (2) the completeness problem. This situation is really frustrating, compared
with the call-by-value setting for which we have satisfactory answers for them
[14]. The non-premonoidal disjunction in particular rises serious obstacles for a
direct/complete axiomatization.

Another issue which we wish to understand is how the Filinski duality
[11,26,27] between call-by-name and call-by-value languages with first-class con-
tinuations can be related to our approach on linear controls. To sketch the overall
picture, below we shall list up the interpretations of the function type A ⇒ B
in the possible combinations of linearity and non-linearity:

call-by-name call-by-value
non-linear lang. with non-linear control (A → R) × B (B → R) → (A → R)
non-linear lang. with linear control !(A � R) ⊗ B (B → R) � (A → R)
linear lang. with non-linear control (A → R)⊗ !B (B � R) → (A � R)
linear lang. with linear control (A � R) ⊗ B (B � R) � (A � R)

The top row was studied in detail by Selinger [26]. The bottom row (purely linear
setting) is more or less trivial. We are most interested in the second row, but also
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in the third, as there seem to exist certain dualities between the call-by-name
non-linear language with linear control and the call-by-value linear language with
non-linear control

(!(A � R)⊗B) � R 
 (A � R)→ (B � R),

and also between the call-by-value non-linear language with linear control and
the call-by-name linear language with non-linear control

((A→ R)⊗ !B)→ R 
 (A→ R) � (B → R).

The practical interest on the third row may be rather limited, but we still hope
that this duality-based view provides some good insights on the nature of linear
controls in call-by-name and call-by-value settings, potentially with some tie-up
with other computational features such as recursion and iteration [18].

For more practical side, we have not yet demonstrated the usefulness of
this approach for reasoning about call-by-name programs with first-class (lin-
ear) controls. Perhaps this also reflects our lack of experience with call-by-name
programming languages with first-class control primitives whose practical ad-
vantage is, we believe, yet to be understood.

Acknowledgements I thank Oliver Danvy for asking me how linear CPS for call-
by-name can be semantically understood, and anonymous reviewers for helpful
comments.
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A Dual Intuitionistic Linear Logic

Types and Terms

σ ::= b | I | σ ⊗ σ | σ � σ | !σ
M ::= x | ∗ | let ∗ be M in M | M ⊗ M | let xσ ⊗ xσ be M in M |

λxσ.M | MM | !M | let !xσ be M in M

Typing

Γ1, x : σ, Γ2 ; ∅ � x : σ
(Int-Ax)

Γ ; x : σ � x : σ
(Lin-Ax)

Γ ; ∅ � ∗ : I
(I I)

Γ ; ∆1 � M : I Γ ; ∆2 � N : σ

Γ ; ∆1�∆2 � let ∗ be M in N : σ
(I E)

Γ ; ∆1 � M : σ1 Γ ; ∆2 � N : σ2

Γ ; ∆1�∆2 � M ⊗ N : σ1 ⊗ σ2
(⊗ I)

Γ ; ∆1 � M : σ1 ⊗ σ2

Γ ; ∆2, x : σ1, y : σ2 � N : τ

Γ ; ∆1�∆2 � let xσ1⊗yσ2 be M in N : τ
(⊗E)

Γ ; ∆, x : σ1 � M : σ2

Γ ; ∆ � λxσ1 .M : σ1 � σ2
(� I)

Γ ; ∆1 � M : σ1 � σ2 Γ ; ∆2 � N : σ1

Γ ; ∆1�∆2 � M N : σ2
(�E)

Γ ; ∅ � M : σ

Γ ; ∅ �!M :!σ
(! I)

Γ ; ∆1 � M :!σ Γ, x : σ ; ∆2 � N : τ

Γ ; ∆1�∆2 � let !x be M in N : τ
(! E)

where ∆1�∆2 represents one of possible merges of ∆1 and ∆2 as finite lists.

Axioms
let ∗ be ∗ in M = M let ∗ be M in ∗ = M

let x ⊗ y be M ⊗ N in L = L[M/x, N/y] let x ⊗ y be M in x ⊗ y = M
(λx.M) N = M [N/x] λx.M x = M

let !x be !M in N = N [M/x] let !x be M in !x = M

C[let ∗ be M in N ] = let ∗ be M in C[N ]
C[let x ⊗ y be M in N ] = let x ⊗ y be M in C[N ]

C[let !x be M in N ] = let !x be M in C[N ]

where C[−] is a linear context (no ! binds [−]).

Semantics A typing judgement

x1 : σ1, . . . , xm : σm ; y1 : τ1, . . . , yn : τn �M : σ

is inductively interpreted as a morphism [[x1 : σ1, . . . ; y1 : τ1, . . . � M : σ]]
from ![[σ1]]⊗ . . .⊗![[σm]]⊗ [[τ1]]⊗ . . .⊗ [[τn]] to [[σ]] in a symmetric monoidal closed
category with a linear exponential comonad !.

Proposition 4 (categorical completeness). The equational theory of DILL
is sound and complete for categorical models given by symmetric monoidal closed
categories with linear exponential comonads: Γ ; ∆ � M = N : σ is provable if
and only if [[Γ ; ∆ �M : σ]] = [[Γ ; ∆ � N : σ]] holds for every such models.
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B !-Strong Monads

Let D be a symmetric monoidal category with a linear exponential comonad !. A
monad (T, η, µ) on D is !-strong (or: strong with respect to ! [10]) if it is equipped
with a natural transformation called !-strength (strength with respect to !)

θA,X : !A⊗ TX −→ T (!A⊗X)

subject to the following axioms.

I ⊗ TX TX T (I ⊗ X)

!I ⊗ TX T (!I ⊗ X)

!A ⊗ (!B ⊗ TX) !A ⊗ T (!B ⊗ X) T (!A ⊗ (!B ⊗ X))

(!A⊗!B) ⊗ TX T ((!A⊗!B) ⊗ X)

!(A ⊗ B) ⊗ TX T (!(A ⊗ B) ⊗ X)

!A ⊗ X

!A ⊗ TX T (!A ⊗ X)

!A ⊗ T 2X T (!A ⊗ TX) T 2(!A ⊗ X)

!A ⊗ TX T (!A ⊗ X)

�

mI⊗TX

�iso. �iso.

�

T (mI⊗X)

�
θI,X

�!A⊗θB,X

�

iso.

�θA,!B⊗X

�

iso.

�

mA,B⊗TX

�

T (mA,B⊗X)

�
θA⊗B,X

��������

η!A⊗X

���������

!A⊗ηX

�
θA,X

�θA,T X

�

!A⊗µX

�TθA,X

�

µ!A⊗X

�
θA,X
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