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Abstract. We propose an axiomatization of fixpoint operators in typed call-by-
value programming languages, and give its justifications in two ways. First, it is
shown to be sound and complete for the notion of uniform T-fixpoint operators of
Simpson and Plotkin. Second, the axioms precisely account for Filinski’s fixpoint
operator derived from an iterator (infinite loop constructor) in the presence of first-
class continuations, provided that we define the uniformity principle on such an
iterator via a notion of effect-freeness (centrality). We then explain how these two
results are related in terms of the underlying categorical structures.
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1. Introduction

While the equational theories of fizpoint operators in call-by-name pro-
gramming languages and in domain theory have been extensively stud-
ied and now there are some canonical axiomatizations (including the
iteration theories [1] and Conway theories, equivalently traced cartesian
categories [12] — see [27] for the latest account), there seems no such
widely-accepted result in the context of call-by-value (cbv) programming
languages, possibly with side effects. Although the implementation of
recursion in “impure” programming language has been well-known, it
seems that the underlying semantic nature of recursive computation in
the presence of side-effects has not been studied at a sufficiently gen-
eral level. Regarding the widespread use of call-by-value programming
languages and the importance of recursion in real life programming, it
is desirable to have theoretically motivated and justified principles for
reasoning about recursive computation in a call-by-value setting.

In this paper we propose a candidate of such an axiomatization,
which consists of three simple axioms, including a uniformity principle
analogous to that in the call-by-name setting. Our axiomatization, of
stable uniform call-by-value fizpoint operators to be introduced below,
is justified by the following two main results:

¥ An extended abstract of this work appeared in Proc. Foundations of Software
Science and Computation Structures (FoSSaCS 2001), Springer LNCS Vol. 2030.
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1. The A -calculus (computational lambda calculus) [18] with a stable
uniform cbv fixpoint operator is sound and complete for the models
based on the notion of uniform T-fixpoint operators of Simpson and
Plotkin [27].

2. In the call-by-value Ap-calculus [25] (= the Ac-calculus plus first-
class continuations) there is a bijective correspondence between
stable uniform cbv fixpoint operators and wuniform iterators, via
Filinski’s construction of recursion from iteration [5].

The notion of uniform 7-fixpoint operators arose from the context of
Aziomatic Domain Theory [7, 26]. By letting T' be a lifting monad on
a category of predomains, a uniform 7T-fixpoint operator amounts to
a uniform fixpoint operator on domains (the least fixpoint operator in
the standard order-theoretic setting). In general, T can be any strong
monad on a category with finite products, thus a uniform 7-fixpoint
operator makes sense for any model of the computational lambda cal-
culus in terms of strong monads [18], and Simpson and Plotkin [27]
suggest the possibility of using uniform 7T-fixpoint operators for mod-
elling call-by-value recursion. This line of considerations leads us to
our first main result. In fact, we distill our axioms from the uniform
T-fixpoint operators.

A surprise is the second one, in that the axioms precisely account for
Filinski’s cbv fixpoint operator derived from an iterator (infinite loop
constructor) and first-class continuations, provided that we refine Filin-
ski’s notion of uniformity, for which the distinction between values and
effect-insensitive programs (characterised by the notion of centrality)
[22, 28, 10] is essential. Using our axioms, we establish the bijectivity
result between fixpoint operators and iterators. Therefore here is an
interesting coincidence of a category-theoretic axiomatics (of Simpson
and Plotkin) with a program construction (of Filinski).

However, we also show that, after sorting out the underlying categor-
ical semantics, Filinski’s construction combined with the Continuation-
Passing Style (CPS) transformation can be understood within the ab-
stract setting of Simpson and Plotkin. The story is summarised as
follows. As noted by Filinski, the CPS-transform of an iterator is a
usual (call-by-name) fixpoint operator on the types of the form R4 in
the target ABn-calculus, where R is the answer type. If we let T be the
continuation monad RR(_), then the uniform 7-fixpoint operator pre-
cisely amounts to the uniform fixpoint operator on the types R4. Since
our first main result is that the stable uniform cbv fixpoint operator is
sound and complete for such uniform T-fixpoint operators, it turns out
that Filinski’s construction combined with the CPS transformation can
be regarded as a consequence of the general categorical axiomatics; by
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specialising it to the setting with a continuation monad, we obtain a
semantic version of the second main result.

Construction of this paper

In Section 2 we recall the A.-calculus and the call-by-value Ay-calculus,
which will be used as our working languages in this paper. In Section
3 we introduce our axioms for fixpoint operators in these calculi (Defi-
nition 3) and give basic syntactic results. Section 4 demonstrates how
our axioms are used for establishing Filinski’s correspondence between
recursion and iteration (which in fact gives a syntactic proof of the
second main result). Up to this section, all results are presented in an
entirely syntactic manner. In Section 5 we start to look at the semantic
counterpart of our axiomatization, by recalling the categorical models
of the A.-calculus and the call-by-value Au-calculus. We then recall the
notion of uniform T-fixpoint operators on these models in Section 6,
and explain how our axioms are distilled from the uniform 7T-fixpoint
operators (Theorem 2, the first main result). In Section 7, we specialise
the result in the previous section to the models of the call-by-value Au-
calculus, and give a semantic proof of the second main result (Theorem
4). Section 8 gives some concluding remarks.

2. The Call-by-Value Calculi

The A.-calculus (computational lambda calculus) [18], an improvement
of the call-by-value A-calculus [21], is sound and complete for

1. categorical models based on strong monads (Moggi [18])

2. Continuation-Passing Style transformation into the AfBn-calculus
(Sabry and Felleisen [23])

and has proved useful for reasoning about call-by-value programs. In
particular, it can be seen as the theoretical backbone of (the typed
version of) the theory of A-normal forms [8], which enables us to
optimise call-by-value programs directly without performing the CPS
transformation.

For these reasons, we take the A.-calculus as a basic calculus for
typed call-by-value programming languages. We also use an exten-
sion of the A -calculus with first-class continuations, called the call-by-
value Ap-calculus, for which the soundness and completeness results
mentioned above have been extended by Selinger [25].
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2.1. THE A\.-CALCULUS

The syntax, typing rules and axioms on the well-typed terms of the
Ac-calculus are summarised in Figure 1. The types, terms and typing
judgements are those of the standard simply typed lambda calculus
(including the unit T and binary products x).! ¢’ ranges over the
constants of type 0. As an abbreviation, we write let % be M in N for
(Az?.N)M. FV(M) denotes the set of free variables in M. (As long as
there is no confusion, we may use italic small letters for both variables
and values. Capital letters usually range over terms, though we may
also use some capital letters like F', G, H for higher-order functional
values.) The crucial point is that we have the notion of values, and the
axioms are designed so that the above-mentioned completeness results
hold. Below we may call a term a value if it is provably equal to a value
defined by the grammar. We write g o f for the composition Az.g (f x)
of values f and g, and id, for the identity function \z?.z.

In the sequel, we are concerned not just about the pure A -calculus
but also about its extensions with additional constructs and axioms.
A Ac-theory is a typed equational theory on the well-typed expres-
sions of the A.-calculus (possibly with additional constructs) which is
a congruence on all term constructions and contains the axioms of the
Ac-calculus. A A.-theory can be typically specified by the additional
axioms (as the congruence generated from them), or as the equational
theory induced by a model in the sense of Section 5,i.e. ' M =N : o
iff [ [FM:o]=[FN:o].

Centre and focus

In call-by-value languages, we often regard values as representing effect-
free (finished or suspended) computations. While this intuition is valid,
the converse may not always be justified; in fact, the answer depends
on the computational effects under consideration.

DEFINITION 1 (centre, focus). In a A.-theory, we say that a term
M : o is central if it commutes with any other computational effect,
that is,

let 7 be M inlety" be NinL = lety" be Ninletz° be MinL : 0

holds for any N : 7 and L : 8, where x and y are not free in M and
N. In addition, we say that M : ¢ is focal if it is central and moreover
copyable and discardable, i.e., let 7 be M in (z,z) = (M,M) :0 X o
and let % be M in x =% : T hold.

! We do not include the “computation types” To and associated constructs, as
they can be defined by To = T —o, [M] = Au'.M and p(M) = M *.
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Types o,T bl|o—= 7| T|ox71 where b ranges over base types
Terms L,M,N = x| | XM | MN| = | {(M,N) | m M | ma M
Values VU u= z | | Xz M | * | (V,U) | mV | mV

Typing Rules:

le:obFM:7 TFM:0-7 THFN:o
T'Fe?:0 THEX2. M :0—>T T'FMN:7

I'-M:0 TEN:7 TFM:o0x7 TTHFM:oxrT
Phx*:T 'F(M,N):oxT1 F'trmM:o F-moM -7

m z:0€l

Axioms:

let 27 be Vin M = M[V/z]
A’V =V
\%4 = %
7TZ<‘/17‘/2) =V
(77'1 V,7T2 V> =V
let 7 be M inz =
let y™ be (let z7 be Lin M) in N = let 7 be Lin let y” be M in N
(z ¢ FV(N))

=

S

MN = let f7" be M inlet z7 be N in fzx
(M:0-1,N:0)

(M, N) = let 2% be M in let y” be N in {(z,y)
(M:o,N:71)

m M = let2*" be Minmz (M:0XxT)

where let 2° be M in N stands for (Az”.N)M

Figure 1. The A.-calculus

It is worth emphasising that a value is always focal, but the converse
is not true (see Section 7.3). A detailed analysis of these concepts in
several A.-theories is found in [10]; see also discussions in Section 5.

2.2. THE CALL-BY-VALUE Au-CALCULUS

Our call-by-value Ap-calculus, summarised in Figure 2, is the version
due to Selinger [25]. We regard it as an extension of the A.-calculus
with first-class continuations and sum types (the empty type L and
binary sums +). We write —o for the type o — L (“negative type”).
The typing judgements take the form I' F M : o | A where A =
Q1 Ty,...,Qn ¢ Oq 18 & sequence of names (ranged over by «, f,...)
with their types. A judgement z1 : 01,...,Zm t o F M : 7 | a3 :
Ti,...,0p : T represents a well-typed term M with at most m free
variables x1,. .., Ty and n free names aq, ..., an. We write FN(M) for
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Types o,T = |L]lo+T
Terms L,M,N == --- |[a]M | pa® M | [, 5]M | p(a”,B7).M
Values V,U = - | w(a, B7).[a]V | (e, B7).[BIV

where o, ¢ FN(V)
Additional Typing Rules:

'tM:o| A A 'tM:L|a:0,A
TFlaM:L1|A %7€ TFpa® M:o| A

'YrM:1L|a:0,p:1,A
Fku(@®,p)M:o+71| A

'FM:o+7|A Bire A
TF[a,fM:L|A 70T

Additional Axioms:

V (ua?.M) = ppTM[BI(V(=))/[d(=)]  (V:ie—=7)

[ (e M) = Mla'/a]

pal Ja)M =M (a ¢ FN(M))
(o, 8)(u(a?, 87).M) = M’ /a, 8'/]

W F) o M = M (a, 8 ¢ FN(M))
[a] M =M (M: 1)

[a] M = let 7 be M in [a]z (M : o)

[a, BIM = let 2777 be M in [o, Bz (M:o+71)

Figure 2. The call-by-value Ap-calculus

the set of free names in M. In this judgement, M can be thought of
as a proof of the sequent o1,...,0,, - 7, 71,..., 7, or the proposition
(o1 ANeo.Now) = (TV T V...V 7,) in the classical propositional
logic. Among the additional axioms, the first one involves the mized
substitution M[C(—)/[a](—)] for a term M, a context C'(—) and a name
a, which is the result of recursively replacing any subterm of the form
[@]N by C(N) and any subterm of the form [a;,as]N (with a = a3
or @ = ag) by C(pa.[ar,as]N). See [25] for further details on these
syntactic conventions.

Remark 1. We have chosen the cbv Ap-calculus as our working lan-
guage firstly because we intend the results in this paper to be compat-
ible with the duality result of the second author [15] (see Section 7)
which is based on Selinger’s work on the Ap-calculus [25], and secondly
because it has a well-established categorical semantics, again thanks to
Selinger. However our results are not specific to the Au-calculus; they
apply also to any other language with similar semantics — for example,
we could have used Hofmann’s axiomatization of control operators [13].
Also, strictly speaking, the inclusion of sum types (coproducts) is not
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necessary in the main development of this paper, though they enable
us to describe iterators more naturally (as general feedback operators,
see Remark 3 in Section 4) and are also used in some principles on
iterators like diagonal property (see Section 8), and crucially needed
for the duality result in [25, 15].

Ezxample 1. As an example, we can define terms for the “double-
negation elimination” and the “initial map”:

Co = Am 7. pa®.m (Az?.[a]z) : =m0 — o
Ay = Maztpa®z: 1l =0

One can check that these combinators satisfy Hofmann’s axioms in [13].
Also, we can use C, (A7 M[k(—)/[a](—)]) for pa?.M (as will be done
in the programming example in SML/NJ in Section 4).

Centre and focus
In the presence of first-class continuations, central and focal terms
coincide [28, 25], and enjoy a simple characterisation (thunkability [28]).

LEMMA 1. In a cbv Au-theory, the following conditions on a term
M : o are equivalent.

1. M is central.

2. M is focal.

3. (thunkability) let x° be M in Au".x = M. M : T — o holds.?
We also note that central terms and values agree at function types [25].

LEMMA 2. In a cbv Au-theory, a term M : o — 7 is central if and
only if it is a value, i.e., M = A\z° .M z (with x not free in M) holds.

3. Axioms for Recursion
Throughout this section, we work in a A.-theory.

3.1. RIGID FUNCTIONALS

The key in our axiomatization of call-by-value fixpoint operators is
the notion of uniformity. In the call-by-name setting, we define the

2 Equivalently: let z° be M in Ak .kz = Ak™°.k M : ~—o.
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8 Hasegawa and Kakutani

uniformity for fixpoint operators with respect to the strict maps, i.e.,
those that preserve the bottom element (divergence). In a call-by-value
setting, however, we cannot define uniformity via this particular notion
of strict maps, simply because everything is strict — if an input does not
terminate, the whole program cannot terminate. Instead we propose to
define the uniformity principle with respect to a class of functionals
that use their argument functions in a constrained way.

DEFINITION 2 (rigid functional). A value H : (o0 — 7) = o' — 7' is
called rigid if H (Az.M z) = Ay.H M y holds for any M : 0 — 7, where
z and y are not free in H and M.

The word “rigid” was coined by Filinski in [5] (see discussions in Section
7.3). Intuitively, a rigid functional uses its argument exactly once, and
it does not matter whether the argument is evaluated beforehand or
evaluated at its actual use.

LEMMA 3. idsyr : (0 = 7) = 0 — 7 is rigid. Also, if H : (0 —
7) =o' =7 and H : (¢' - ') = o" — 7" are rigid, so is H o H :
(c=71)—>d"— 7"

LEMMA 4. IfH: (0 = 1) = o — 7' is rigid, H = \f°" \y? .H fy
holds (where f and y are not free in H).

Example 2. The reader may want to see rigid functionals in more
concrete ways. In the case of settings with first-class continuations, we
have such a characterisation of rigid functionals, see Section 7.3. In
general cases, a rigid functional typically takes the following form:

H = M7\ letzbe f(hy)inN:(c—>7)—>0d =1

where the variable f cannot be free in N, and the value h : ¢/ — o
satisfies the following property: hwv is central for any value v : o’ —
later, such an h will be called “total” (Definition 4). N can be any
term, possibly with side effects. It is easily seen that such an H satisfies
H(MAz.Mz) = Ay.H My in any A -theory. On the other hand, in the
presence of side effects, many purely functional terms fail to be rigid —
e.g., constant functionals, as well as functionals like Af.f o f.

3.2. AXIOMS FOR RECURSION

Now we are ready to state the main definition of this paper: our ax-
iomatization of the call-by-value fixpoint operators.
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DEFINITION 3 (stable uniform call-by-value fixpoint operator). A type-

indezed family of closed values fixy,_,, : ((c > 7) 20 —>7T) 20 —>7T
1s called a stable uniform call-by-value fixpoint operator if the following
conditions are satisfied:

1. (cbv fizpoint) For any value F : (6 - 7) >0 = T
fix,_,, F = Mg .F (fix,_,, F)x
(where z is not free in F)

2. (stability) For any value F : (0 - 7) >0 — T
fix,_,. F = fixp_,. (AfO7" .\ . F f z)
(where f, x are not free in F)

3. (uniformity) For values F : (0 - 1) >0 =71, G: (¢! = 1) —
o -1 and arigid H: (0 > 7) >0 -1, if HoF =GoH
holds, then H (fix},_,, F') = fixpr_, G

P R N
Hl \H = H(®x'F) = fix'G

/ / / !
o =T —G>O'—>T

The first axiom is known as the call-by-value fixpoint equation; the
eta-expansion in the right-hand-side means that fix},_, F' is equal to
a value. The second axiom says that, though the functionals F' and
AfAz.F f z may behave differently, their fixpoints, when applied to
values, satisfy the same fixpoint equation and cannot be distinguished.
The last axiom is a call-by-value variant of Plotkin’s uniformity prin-
ciple; here the rigid functionals play the role of strict functions in the
uniformity principle for the call-by-name fixpoint operators. Our uni-
formity axiom can be justified by the fact that H (fix!_, F) satisfies the
same fixpoint equation as fix},_,» G when H is rigid and HoF = GoH
holds:

H (fixt_,, F)

= H(M\z?.F(fix}_,, F)z) cbv fixpoint equation for fix}_, F
My H (F (fix\_,, F))y H is rigid

= M .G(H (X, F))y HoF=GoH

aT—T
The following consideration confirms that the rigidness assumption can-
not be dropped from the uniformity axiom. Let H : (c = 7) = o’ — 7'
be any value so that H = Af.\y.H f y holds. Take any term M of type
oc—71.Define F:(c >7)>0—=>7and G: (¢! > 7)o = 7
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10 Hasegawa and Kakutani

by F = Af.M and G = Ag.let f be M in A\y.H fy (with f, g not free
in M). Then we have H o F = G o H, and the uniformity would ask
H (fixY F) = fixY G to be hold; it is easily seen that fix' F = \z.M z
and fix¥ G = Ay.H M y, hence H must be rigid.

Remark 2. As easily seen, the uniformity implies that any rigid func-
tional preserves the fixpoints of the identity maps: H (fix)_,, idy_;) =
fixys_, . idy 0 for any rigid H : (o0 — 7) — o' — 7'. It is tempting to
define a notion of “call-by-value strictness” as this preservation of the
fixpoints of identities. In the pure functional settings (like the call-by-
value PCF) where the divergence is the only effect, this call-by-value
strictness actually coincides with the rigidness (this can be verified by
inspecting the standard domain-theoretic model; see also Section 6).
However, in the presence of other effects (in particular the case with
first-class continuations which we will study in Section 4), rigidness
is a much stronger requirement than this call-by-value strictness; for
instance, the constant functional Af.fix"id as well as the “twice” func-
tional A\f.f o f are call-by-value strict (hence rigid in a pure functional
setting), but they are not rigid in many A.-theories and cannot be used
in the uniformity principle.

3.3. ON THE AXIOMATIZATIONS OF UNIFORMITY

There are some alternative ways of presenting the axioms of stable
uniform cbv fixpoint operators. In particular, in [5] Filinski proposed a
single uniformity axiom which amounts to our stability and uniformity
axioms.

LEMMA 5. For values F : (6 - 717) >0 = 7,G: (¢! > 1) =
o' =7 and a rigid H: (0 - 7) >0 — 7', Ho F = G o H implies
Ho (AfAx.F fz) = (A\g.A\y.Ggy) o H (where f, x are not free in F
and g, y are not free in G).

F Moz Ffx
O—=>T —— 0T O—T —>0—T
! ! ! / / ! ! !
O ST Tt 0 T o —>T>\g—>_)\y.Ggya =T

Proof.

Ho(\fAe.Ffz) = \.H(\e.F f z)

= M. y.H(F f)y H isrigid

= MMN.GHf)ly HoF=GoH
(Mg Ay.Ggy)o H O
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PROPOSITION 1. The stability axiom and uniformity aziom are equiv-
alent to the following Filinski’s uniformity axiom [5/:
For values F : (0 - 7) 20 —=71,G:(c/ =5 7) >0 =7 and a
rigid H: (0 > 1) > 0o = 7', if Ho (AfAz.F fz) = G o H holds
(with =, f not free in F'), then H (fix'F) = fix'G.
Az .F fx

O—>T —> 0 —T

Hl \H = H(fix'F) = fix'G

! ! ! !
o =T ToT0 2T

Proof. Stability and uniformity imply Filingki’s uniformity, because,
if Ho(Afo7" \z°.F fz)=GoH,

H(fix! . F) = H(fix\_,, (A\f°T.Az°.F fz)) stability

= fix}y_,. G uniformity

Conversely, Filinski’s uniformity implies stability and uniformity. First,
foravalue F' : (0 = 7) = 0 — 7, we have id,,, 0o (Af77". 2’ . F f x) =
(Af?7" Xx?.F f x)oids—;. Since id,_,, is rigid, by Filinski’s uniformity
we have the stability fix}_,, F' = fix,_,  (Af°77. 2 .F f x).

For uniformity, suppose that we have values F : (60 — 7) = 0 — T,
G:(¢' >7)—> 0o = 7" and arigid H : (6 - 7) = ¢’ — 7' such that
HoF = GoH holds. Then, by Lemma 5, we have H o (Af.\z.F f x) =
(Ag-Ay.G gy) o H. By applying Filinski’s uniformity axiom, we obtain

H (X F) = fixa . (Ag® " Ay .Ggy)

Since we have already seen that stability follows from Filinski’s unifor-
mity, it follows that fix’, , » (Ag” 27 .\y? .G gy) = fix%s_, . G, therefore
we have H (fix)_,, F) = fixp,_,.G. O

4. Recursion from Iteration

For grasping the role of our axioms, it is best to look at the actual
construction in the second main result: the correspondence of recursors
and iterators in the presence of first-class continuations due to Filinski
[5]. So we shall describe this syntactic development before going into
the semantic investigation which is the main issue of this paper. In this
section we work in a call-by-value Au-theory, unless otherwise stated.
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12 Hasegawa and Kakutani

4.1. AXIOMS FOR ITERATION

As in the case of recursion, we introduce a class of functions for deter-
mining the uniformity principle for an iterator.

DEFINITION 4 (total value). In a A.-theory, a value h : 0 — T is
called total if hv : 7 is central for any value v : o.

The word “total” is due to Filinski [5], though in his original definition
hw is asked to be a value rather than a central term.?

DEFINITION 5 (uniform iterator). A type-indexed family of closed val-
ues loop, : (6 — o) — —o is called a uniform iterator if the following
conditions are satisfied:

1. (iteration) For any value f : 0 — o, loop, f = Az®.loop, f (f z)

(i.e. loop, f = (loop, f)o f)

2. (uniformity) For values f :0 - 0,g:0' = c' andh:0 — o', if h
is total and ho f = g o h holds, then (loop,: g) o h = loop, f

|

h
—_
g g

f
— >0

lh = (loopg) o h =loop f
O_I

~

If hof = goh, we have (loopg)oh = (loopg)ogoh = (loopg)oho f.
So it is natural to expect that (loop g) o h behaves in the same way as
loop f for “well-behaved” h. The uniformity axiom claims that this is
the case when h is total.

It seems that this totality assumption is necessary. For example, let
f=g=id, and h = Az?.ua’.[3%]z (an always-jumping function which
is not total); then (loop g) o h = Az.[]z performs the jump to the label
B, while loop f just diverges.

3 We shall warn that there is yet another use of the word “total” by Filinski [4]
where a term is called total when it is discardable (in the sense of Definition 1); see
[29] for a detailed analysis on this concept. Another possible source of confusion is
that our notion of totality does not correspond to the standard notions of “total
relations” or “total maps (in domain theory)”. However, in this paper we put our
priority on the compatibility with Filinski’s development in [5].
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Remark 3. Despite of its very limited form, the expressive power of
an iterator is not so weak, as we can derive a general feedback operator

feedback, » = Af777F7 . Aa?.uf7 Joop (Az?.pua?.[a, B](f z)) a
(o= o+T7)>0—oT

from an iterator using sums and first-class continuations, which satisfies
(with a syntax sugar for sums)

feedback, ; fa = case fa of (in; 2° = feedbacky fz |ingy” = y)

for values f : 0 o+ 7 and a: 0.

4.2. THE CONSTRUCTION

Surprisingly, in the presence of first-class continuations, there is a bi-
jective correspondence between the stable uniform cbv fixpoint oper-
ators and the uniform iterators. We recall the construction which is
essentially the same as that in [5].

The construction is divided into two parts. For the first part, we
introduce a pair of contravariant constructions:

step,, = AF 770 % ufT.F Ay [Bly)z ¢ (-7 = —0) 20— T
pets, , = Af77TAETT A%k (fx) 1 (0= T) = T = -0

Note that here we need first-class continuations to implement step, ,
(it has “classical” type). One can easily verify that

LEMMA 6.

— step, , o pets, . = ids—+ holds.

— pets, ; ostep, , = AF 779Nk \z? . F kx holds.
LEMMA 7.

— For values F : =" — =o' and G : =0’ — -0, step, ,n (Go F) =
(stepys o F) o (step, ,» G) holds if either G is rigid or F is total.

— pets, i (g o f) = (pets, o f) o (pets,s ,n g) holds for values f :
oc—o andg:o0 — o".

The following observation implies that the two notions of uniformity

for recursors and iterators are intimately related by this contravariant
correspondence.
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14 Hasegawa and Kakutani

LEMMA 8. step, . (—) and pets, , (—) give a bijective correspondence
between rigid functionals of -7 — —o and total functions of o — T.

Proof. The only non-trivial part is that step,, (—) sends a rigid
functional to a total function (the other direction and the bijectivity
follow immediately from Lemma 4 and Lemma 6). Suppose that H :
-7 — =0 is rigid. We show that step, . H = Az?.u8™.H (\y".[Bly) = :
o — T is total, that is, uS7.H (A\y".[Bly) z : 7 (with a free variable
z : o) is central. This can be verified as follows:

let u be uB.H (Ay.[Bly) = in let v be M in N
po.H (Au.[a](let v be M in N))z
= po.H (Au.let v be M in [a|N)z

let v be M in let u be uB.H (Ay.[fly) z in N
= let v be M in pa.H (Au.[a]N) z
= pa.(let v be M in H (Au.[a|N) z)
= po.H (let v be M in Au.[a]N) z

And finally, since H is rigid, it follows that
H (Au.let v be M in [@]N)z = H (let v be M in Au.[a|N) z.
O

We are then able to see that, if loop is a uniform iterator, the
composition
loop, o step,, : (o — —0) = -0

yields a stable uniform fixpoint operator restricted on the negative
types —o. The cbv fixpoint axiom is verified as (by noting the equation
k7T (step, . F77 777 2%) = Fkux)

(loop,, o step,, ,) ' = loop,, (step, , F')
= Az°.loop, (step, , F) (step, , F )
= Az°.F (loop, (step, , F)) z
= Az°.F ((loop, ostep, ;) F) x

The stability axiom holds as step (Af.Az.F f z) = step F. The unifor-
mity axiom follows from Lemma 7 and Lemma 8. If H 77 "o F 77777 =
G™ "7 "oH 77" and H isrigid (hence total by Lemma 4), the first half
of Lemma 7 implies (step, , F') o (step,. , H) = (step, , H) o (step, , G).
Since step, , H is total by Lemma 8, by the uniformity of loop we have

loop, ; (step, G) = (loop, , (step, F')) o (step,,, H)
= \y".H (loop,, (step, , F))y
= H (loop,, (step, , F'))
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Conversely, if fix¥ is a stable uniform fixpoint operator,
v ]
fix',, opets,, : (0 = 0) = -0
gives a uniform iterator:

(fixt, o pets, ) f = fixt, (pets,, f)

— da?. (petsaaf) (fix',y (petsy s f)) T

= Az?.(Ak"7 Ay Kk (f y)) (fix’, (pets, o f)) z
= Az?.(fix',, (petsy, f)) (f 7)

= Az?.(fix¥, o petsa,a) (fz)

Again, the uniformity is a consequence of Lemma 7 and Lemma, 8. One
direction of the bijectivity of these constructions is guaranteed by the
stability axiom (while the other direction follows from step,, ,opets, , =

ida—)a):
fix?,, o pets, , o step, , = AF.fix!,, (Ak.Az.F kx) = AF.fix!,, F = fix!
So we have established

PROPOSITION 2. There is a bijective correspondence between umni-
form iterators and stable uniform cbv fixpoint operators restricted on
negative types.

The second part is to reduce fixpoints on an arrow type ¢ — 7 to
those on a negative type —(o x —7). This is possible because we can
implement a pair of isomorphisms between these types (again using
first-class continuations):

switchy , = M%) Az 171 (z, \y™.[Bly)

(o x-T) S o—T
switch, L = Af72". Mz, k™) .k(fz) : (0> 7) > (0

X —7)

It is routinely seen that both switch;} o switchy; = id-(,x-7) and

switchg ; o switch;} = idy—+ hold. It is also easy to verify (by direct
calculation or by applying Proposition 8 in Section 7) that

LEMMA 9. switch, ;. and SWItChU are Tigid.

.
By applying the uniformity axiom to the trivial equation switch, ; o
(SW|tch o F o switch, ;) = F o switch, , we have

fixg_yr ' = switchgr (fix’ .y (SW|tch o F o switchg,r))

PROPOSITION 3. There is a bijective correspondence between stable
uniform cbv fizpoint operators restricted on negative types and those on
general function types.
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16 Hasegawa and Kakutani

Proof. From a stable uniform cbv fixpoint operator restricted on
negative types, one can define that on general function types by taking
the equation above as definition; because of the uniformity, this in fact
is the unique possibility of extending the operator to that on all function
types. The only nontrivial point is that the uniformity axiom on this
defined fixpoint operator on general function typed can be derived from
the uniformity axiom on the fixpoint operator on negative types, which
we shall spell out below. Suppose that we have values F': (o0 — 7) —
co—-7,G: (0" >7) >0 > andarigidH:(c »>71) >0 =7
such that H o F' = G o H holds. Since rigid functionals are closed under
composition (Lemma 3) and switch and switch ! are rigid (Lemma 9),
switch~! o H o switch is also rigid. By applying the uniformity axiom
(on negative types) to the equation

(switch;,fT, o H o switch, ;) o (switch;} o F o switch, ;) =
(switch,' s o G o switchgr ;) o (switch,,' ., o H o switch, ;)
we obtain
fix, 51 1y (SWitch s o G o switchyr 1) =

switch !, (H (switch, (fix!

—(ox—T) (SWitCh;,}- oFo SWitCha,T))))

which implies (by applying switch, ;+ to both sides of the equation)
fix}, .. G = H (fix;_,. F). O

In summary, we conclude that, in the presence of first-class continu-
ations, stable uniform cbv fixpoint operators are precisely those derived
from uniform iterators, and vice versa:

THEOREM 1. There is a bijective correspondence between uniform
iterators and stable uniform cbv fixpoint operators.

fix,_,, F =
switchy,r (100Pg 5 (StePyy 1y ox—r (SWitch, T o F o switch,;)))

loop, f = fix¥, (pets,, f)

Sample code written in SML/NJ [17, 11] is found in Figure 3.
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(* an empty type "bot" with an initial map A : bot -> ’a *)
datatype bot = VOID of bot;
fun A (VOID v) = A v;
(* the C operator, C : ((’a -> bot) -> bot) -> ’a x)
fun C f =
SMLofNJ.Cont.callcc
(fn k¥ => A (f (fn x => (SMLofNJ.Cont.throw k x) : bot)));

(* basic combinators x*)

fun step F x = C (fn k => F k x);

fun pets £ k x =k (f x) : bot;

fun switch 1 x = C (fn q => 1 (x,9));

fun switch_inv f (x, k) = k (f x) : bot;

(*x step : ((’a -> bot) -> ’b => bot) -> ’b -> ’a
pets : (’a => ’b) => (b -> bot) -> ’a -> bot
switch : (?’a * (°’b => bot) -> bot) -> ’a -> ’b
switch_inv : (’a -> ’b) -> ’a *x (’b -> bot) -> bot *)

(* an iterator, loop : (’a -> ’a) -> ’a -> bot *)
fun loop f x = loop £ (f x) : bot;

(* recursion from iteration *)
fun fix F = switch (loop (step (switch_inv o F o switch)));
(x fix : ((’a => ’b) -> ’a -> ’b) -> ’a -> ’b *)

Figure 8. Coding in SML/NJ (versions based on SML 97 [17])

5. Categorical Semantics

The rest of this paper is devoted to investigating the semantic coun-
terpart of our stable uniform cbv fixpoint operators and for giving
our two main results in a coherent way. In this section we recall some
preliminaries on the underlying categorical structures which will be
used in our semantic development.

5.1. MODELS OF THE \.-CALCULUS

Let C be a category with finite products and a strong monad T =
(T,n,p, @), where n and p are the unit and multiplication of the monad
T, and @ is the tensorial strength with respect to the finite products of C
(see e.g. [18, 19] for these category-theoretic concepts). We write Cr for
the Kleisli category of T', and J : C — Cy for the associated left adjoint
functor; explicitly, J is the identity on objects and sends f € C(X,Y")
tony of € Cr(X,Y) = C(X,TY). We assume that C has Kleisli
exponentials, i.e., for every X in C the functor J((—) x X) : C = Cr
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18 Hasegawa and Kakutani

has a right adjoint X = (—) : Cr — C. This gives the structure for
modelling computational lambda calculus [18]. Specifically, we fix an
object [b] for each base type b and define the interpretation of types
as [o = 7] = [o] = [7], [o x 7] = [o] x [7] and [T] = 1. A well-
typed term I' M : o is interpreted inductively as a morphism of
Cr([T], [e]) = <[], T[e]) (where [T] = [o1] % ... X o] for T' =
Z1:01,...,%n : Op), once we fix the interpretations of constants; see
Appendix A for a summary. Following Moggi, we call such a structure
a computational model.

PROPOSITION 4. [18] The computational models provide a sound
and complete class of models of the computational lambda calculus.

In fact, we can use the A.-calculus as an internal language of a com-
putational model — up to the choice of the base category C (which
may correspond to either syntactically defined values, or more semantic
values like thunkable terms, or even something between them; see [10]
for a detailed consideration on this issue) — in a similar sense that
the simply typed lambda calculus is used as an internal language of a
cartesian closed category [16].

5.2. MODELS OF THE CALL-BY-VALUE A\u-CALCULUS

Let C be a distributive category, i.e., a category with finite products and
coproducts so that (—) x A : C — C preserves finite coproducts for each
A. We call an object R a response object if there exists an exponential
RA for each A, ie., C(— x A,R) ~ C(—,R*) holds. Given such a
structure, we can model the cbv Au-calculus in the Kleisli category Cr
of the strong monad T = RR'™ [25]. A term T M : o | A is interpreted
as a morphism of Cr([T'], [¢] + [A]) (where [A] = [n] + ... + [7]
for A = a1 : 1,...,0p : T,). The interpretation is in fact a typed
version of the call-by-value CPS transformation [21, 25], as sketched in
Appendix B. Following Selinger, we call C a response category and the
Kleisli category Cr a category of continuations and write RC for Cr
(though in [25] a category of continuations means the opposite of RC).

PROPOSITION 5. [25] The categories of continuations provide a sound
and complete class of models of the cbv A\u-calculus.

As the case of the A.-calculus, we can use the cbv Au-calculus as an
internal language of a category of continuations [25].
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5.3. CENTRE AND FOCUS

We have already seen the notion of centre and focus in the A .-calculus
and the cbv Ap-calculus in a syntactic form (Definition 1). However,
these concepts originally arose from the analysis on the category-theoretic
models given as above. Following the discovery of the premonoidal
structure on the Kleisli category part Cp (R®) of these models [22],
Thielecke [28] proposed a direct axiomatization of RC not depending
on the base category C (which may be seen as a chosen category of
“values”) but on the subcategory of “effect-free” morphisms of RC,
which is the focus (equivalently centre) of RC. Fithrmann [10] carries
out further study on models of the A.-calculus along this line.

DEFINITION 6 (centre, semantic definition). Given a computational
model with the base category C and the strong monad T, an arrow
f:X =Y in Cr is called central if, for any g : X' = Y' in Cr, the
compositions (Y x g) o (f x X') and (f xY') o (X x g) agree.?

Note that the products are not necessarily bifunctorial on Cr; they
form premonoidal products in the sense of [22] (the reader familiar
with this notion might prefer to use ® instead of x for indicating that
they are not cartesian products). This notion of centrality amounts to
the semantic version of centrality in Definition 1.

In this paper we do not go into the further details of these semantic
analyses. However, we will soon see that these concepts naturally arise
in our analysis of the uniformity principles for recursors and iterators.
In particular, a total value h : ¢ — 7 (equivalently the term z : o
hz : T) precisely corresponds to the central morphisms in the semantic
models. In the case of the models of the cbv Au-calculus, the centre
can be characterised in terms of the category of algebras, for which our
uniformity principles are defined; that is, we have

PROPOSITION 6. f € R%(A,B) ~ C(RB,R4) is central if and only
if its counterpart in C is an algebra morphism from the algebra (RE, R"3)
to (R4, R"4).

We discuss more about this in Section 7; there this observation turns
out to be essential in relating the uniformity principles for recursion
and iteration in the cbv Au-theories. We note that this result has been
observed in various forms in [28, 25, 10].

* In terms of C, f € Cr(X,Y) = C(X,TY) is central if px/yr o (f x g) =
@1y 0 (f x g) holds for any g € Cr(X',Y') = C(X',TY") where ¢ and ¢ are the
left-first and right-first pairings (Appendix A).
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6. Uniform T-Fixpoint Operators

In this section we shall consider a computational model with the base
category C and a strong monad 7T'.

6.1. UNIFORM T-FI1XxPOINT OPERATORS

We first recall the notion of uniform T-fizpoint operator of Simpson
and Plotkin [27], which arose from considerations on fixpoint operators
in Axiomatic Domain Theory (ADT) [7, 26]. In ADT, we typically
start with a category C of predomains, for example the category of
w-complete partial orders (possibly without bottom) and continuous
functions. Then we consider the lifting monad T on C, which adds a
bottom element to w-cpo’s. Then objects of the form T'X are pointed
cpo’s (w-cpo’s with bottom), on which we have the least fixpoint op-
erator. It is also easily checked that such a pointed cpo has a unique
T-algebra structure (in fact any T-algebra arises in this way in this
setting, though we will soon see that this is not the case if we take
a continuation monad as T'), and algebra morphisms are precisely the
bottom-preserving maps, i.e., the strict ones. As is well known, the least
fixpoint operator enjoys the uniformity principle with respect to such
strict maps. By abstracting this situation we have:

DEFINITION 7 (uniform T-fixpoint operator [27]). A T-fixpoint op-
erator on C is a family of functions

(=) (TX, TX) - C(1,TX)

such that, for any f : TX — TX, fo f* = f* holds. It is called
uniform if, for any f : TX - TX, g:TY - TY and h: TX - TY,
hou=poTh and goh =ho f imply g* = ho f*.

TTX —2+ TX rx —L+ 1x
Th h h h = g"=hof"
TTY —,u> TY TY g TY

Thus a T-fixpoint operator is given as a fixpoint operator restricted
on the objects of the form T'X. One may easily check that, in the
domain-theoretic example sketched above, the condition hoy = poTh
says that h is a strict map.
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This limited form of fixpoint operator, however, turns out to be
sufficient to model a call-by-value fixpoint operator. To see this, suppose
that we are given an object A with a T-algebra structure a: TA — A
(that is, we ask con =id and oy = aoTa hold). Given f : A — A,
we have ao(no foa)*:1— A and

ao(nofoa) = aonofoao(nofoa)
= foao(nofoa)

Therefore we can extend a T-fixpoint operator (—)* to be a fixpoint
operator (—)* on objects with T-algebra structure by defining f* =
ao (o foa).

Moreover, given a uniform T-fixpoint operator (—)*, it is easy to see
that this extended fixpoint operator (—)* on T-algebras is uniform in
the following sense: for T-algebras (A, : TA — A) and (B, :TB —
B),iff:A— A,g: B— Band h: A— B satisfy hoa = oTh (i.e.,
h is a T-algebra morphism) and go h = ho f, then g* = ho f*.

TA %+ A A—L 4
Th h h h = g"=hof"
TBT’B B—g’B

Furthermore, such a uniform extension is unique: given a uniform
fixpoint operator (—)* on objects with T-algebra structure, by applying
this uniformity to «o (o foa) = f o« for a T-algebra (A, ) and
f:A— A, we obtain f* = ao(no foa)* hence (—)* is completely
determined by its restriction on free algebras (T'X, px), i.e., a uniform
T-fixpoint operator.

In particular, Kleisli exponentials X = Y fit in this scheme, where
the T-algebra structure axy : T(X = Y) - X = Y is given as the
adjoint mate (currying) of

TX=YV)x XS5 T(X=7)xX) 8 127y 4 17

(see Appendix A for notations). Since we interpret a function type as
a Kleisli exponential, this fact enables us to use a uniform 7T-fixpoint
operator for dealing with a fixpoint operator on function types.

We note that noaxy : T(X = Y) = T(X = Y) corresponds to
an eta-expansion in the A.-calculus. That is, ifaterm 'F M : X — Y
represents an arrow f : A = T(X = Y) in C, then T' F AzX. Mz :
X — Y represents noaxyof: A->T(X =Y).
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LEMMA 10. ForanyT'FM :0 — T,
[CEX"Mz:0—=7]=noqpe[l'FM:0— 1]

holds.
Proof.

[THX Mz:0— 7]
= nocaur([lz:0F Mz : 7))

= nocaur(poTevopo([lLz:0-M:0—7],[[,z:0F z:0]))
= nocur(poTevopo ([l FM:0 — 7] x7))
= nocur(poTevol o([l'FM:0— 7] X id))
= nocur(poTevol®)o[lFM:0— 7] O

This observation is frequently used in distilling the axioms of the stable
uniform cbv fixpoint operators below.

6.2. AXIOMATIZATION IN THE A.-CALCULUS

Using the A.-calculus as an internal language of Cr, the equation f* =
fof*onX =Y can be represented as

F* = MX . FF*z where F = \f* Y \e* Ffz:(X>Y)=> XY

The side condition F = AfX?Y \zX_ F f £ means that F' corresponds
to an arrow in C(X =Y, X = Y), not Cr(X = Y, X = Y). However,
the operator (—)* : C(X = Y, X = Y) - C(1,X = Y) can be
equivalently axiomatized by a slightly different operator

(X =2Y,T(X=2Y)-C1,X =>Y)

subject to fI = axyofo f* with an additional condition f* = (no
axy o f). In fact, we can define such a (—)* as (ax,y o (—))* and
conversely (—)* by (n o (=))}, and it is easy to see that these are in
bijective correspondence. The condition f = o x,yofof t equivalently
noft =noa x,yofof ! is axiomatized in the \.-calculus as (by recalling
that o axy o (—) gives an eta-expansion)

F' = M. FFlzforany value F: (X 5 Y) > X =Y

which is precisely the cbv fixpoint axiom. The additional condition
fH= (noaxyo f)I is axiomatized as

F* = (\f.\z.F f ) where F is a value

This is no other than the stability axiom. We thus obtain the first two
axioms of our stable uniform cbv fixpoint operators, which are precisely
modelled by T-fixpoint operators.
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6.3. UNIFORMITY AXIOM

Next, we shall see how the uniformity condition on T-fixpoint operators
can be represented in the A -calculus. Following the previous discus-
sions, we consider H € C(X = Y, X' = Y’) as “strict” if it is an algebra
morphism from (X = Y, axy) to (X’ = Y’,ax: y).”> Spelling out this
condition, we ask H to satisfy H o axy = ax y o T(H), equivalently
T(H)onoaxy = noax y oT(H). In terms of the A.-calculus,
this means that an eta-expansion commutes with the application of H;
therefore, in the A.-calculus, we ask H: (X - Y) - X' -5 Y’ to be a
value such that

HOzXMz) = \y HMy : X' > Y’

holds for any M : X — Y. We have called such an H rigid, and defined
the uniformity condition with respect to such rigid functionals.

Remark 4. Actually the uniformity condition obtained by the ar-
gument above is as follows, which is slightly weaker than stated in
Definition 3:

For values F: (0 - 7) 20 —=>7,G:(0c' > 71) >0 = 7" and a
rigid H: (6 > 7) >0’ = 7', it Ho(Af.\z.F fz) = (Ag-Ay.-Ggy)o
H holds, then H (fix'F') = fix'G.

MMz .F fzx
T ag

o— =T

Hl lH = H (fx'F) = fix'G

! ! ! !
O > T\, 1 ~ 0 —T
AgA\y.Ggy

However, thanks to Lemma 5, we can justify the uniformity axiom in
Definition 3.

6.4. SOUNDNESS AND COMPLETENESS
Now we give one of the main result of this paper.

THEOREM 2. The computational models with a uniform T-fizpoint
operator provide a sound and complete class of models of the com-
putational lambda calculus with a stable uniform call-by-value fizpoint
operator.

5 A characterisation of rigid functions (on computation types) in the same spirit

is given in Filinski’s thesis [6] (Section 2.2.2) though unrelated to the uniformity of
fixpoint operators.
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This extends Proposition 4 with the stable uniform call-by-value fix-
point operator and uniform T-fixpoint operators. Most parts of sound-
ness follow from a routine calculation. However, the interpretation of
the stable uniform call-by-value fixpoint operator and the verification
of the axioms do require some care: we need to consider a parameter-
ized fixpoint operator (with parameterized uniformity) for interpreting
the free variables. Thus we have to parameterize the considerations in
Section 6.1. This can be done along the line of Simpson’s work [26].
Below we outline the constructions and results needed for our purpose.

PROPOSITION 7. A uniform T-fizpoint operator uniquely extends to
a family of functions

(=)x.40:CX x 4,4) = C(X, A)

where X ranges over objects of C and (A, : TA — A) over T-algebras,
such that

1. (parameterized fizpoint) For f : X x A — A with a T-algebra (4, @),
f}k(,A,a =fo <7:dX,f}k(’A,a) : X — A holds

2. (parameterized uniformity) For f : X x A - A, g: X x B — B,
h:X x A — B with T-algebras (A, ) and (B,[3), ho (idx X a) =
BoThobxa and ho(mxa.f) = go(mxa,h) imply gk s =
ho(idx, fx Al

tdx Xa (m XA,f)

XxTA —— X x A XxA—>XxA

{h (mx,A,h) J {h

B X x B B

U
9x,Bs = ho(idx, fx a4)

Thofx

TB

Here we only give the construction of f% 4, : X — A from f :
X X A — A and omit the proof (which largely consists of lengthy
diagram chasings and we shall leave it for interested readers — see also
[26]). Let px,a0 = @oevo (axa Xidx) : T(X = A)x X — A
(recall that ax 4 : T(X = A) = X = A is the T-algebra structure on
X = A). Using p, we define [f] : T(X = A) - T(X = A) by

[f1=mnx=a0cur(naoc fo(rp)
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Finally we have f% 4, = po ([f]"olx,idx) : X — A. By trivialising
the parameterization and by considering just the free algebras, one can
recover the original uniform 7T-fixpoint operator. The uniqueness of the
extension follows from the uniformity (essentially in the same way as
described in Section 6.1).

Using this parametrically uniform parameterized fixpoint operator,
now it is not hard to interpret a stable uniform call-by-value fixpoint
operator in a computational model with a uniform 7'-fixpoint operator
and check that all axioms are validated.

Completeness is shown by constructing a term model, for which
there is no difficulty. Since the uniform T-fixpoint operator on this
term model is directly defined by the stable uniform call-by-value fix-
point operator on the types To = T — o, and also because we have
already observed that rigid functionals are characterized as the algebra
morphisms in this model, this part is truly routine.

7. Recursion from Iteration Revisited

7.1. ITERATION IN THE CATEGORY OF CONTINUATIONS

Let C be a response category with a response object R. An iterator
on the category of continuations RC is a family of functions (—), :
RY(A,A) — R®%(A,0) so that f, = f. o f holds for f € R®(A, A).
Spelling out this definition in C, to give an iterator on RC is to give a
family of functions (—)* : C(R4, R4) — C(1, R4) so that f* = fo f*
holds for f € C(R4, R*). Thus an iterator on R® (hence in the cbv \u-
calculus) is no other than a fixpoint operator on C (hence the target
call-by-name calculus) restricted on objects of the form R4 (“negative
objects”).

Example 3. We give a simple-minded model of the cbv Ay-calculus
with an iterator. Let C be the category of w-cpo’s (possibly without
bottom) and continuous maps, and let R be an w-cpo with bottom.
Since C is a cartesian closed category with finite coproducts, it serves
as a response category with the response object R. Moreover there is
a least fixpoint operator on the negative objects R4 because R“ has
a bottom element, thus we have an iterator on RC (which in fact is a
unique uniform iterator in the sense below).

Remark 5. A careful reader may notice that we actually need a pa-
rameterized version of the iterator for interpreting free variables as
well as free names: (—), should be defined as a function from RC(X x
A,A+Y) to R%(X x A,Y). However, this parameterization, including
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that on uniformity discussed below, can be done in the same way as in
the previous section (and is much easier); a uniform iterator uniquely
extends to a parametrically uniform parameterized iterator — we leave
the detail to the interested reader.

7.2. RELATION TO UNIFORM T-FIXPOINT OPERATORS

For any object A, the negative object R* canonically has a T-algebra
structure

RA A
aq =R = xmE" Azt m ()\fRA.f z): RR™ _, A

for the monad T = RE'™. Thus the consideration on the uniform 7-
fixpoint operators applies to this setting: if this computational model
has a uniform T-fixpoint operator, then we have a fixpoint operator on
negative objects, hence we can model an iterator of the cbv Ay-calculus
in the category of continuations.

Conversely, if we have an iterator on RC, then it corresponds to a
fixpoint operator on negative objects in C, which of course include
objects of the form TA = RE". Therefore we obtain a T-fixpoint
operator. It is then natural to expect that (along the consideration
in Section 6.1), if the iterator satisfies a suitable uniformity condition,
then it bijectively corresponds to a uniform T-fixpoint operator. This
uniformity condition on an iterator must be determined again with re-
spect to algebra morphisms. So we regard h € RC(A, B) ~ C(RB, R4)
as “strict” when its counterpart in C(R?, R4) is an algebra morphism
from (RB,ap) to (R4, ay4), ie., hoap = as o RE" holds in C. We
say that an iterator (—), on RC is uniform if f, = g, o h holds for
f:A—> A, g: B— B and “strict” h: A — B such that ho f =goh.

THEOREM 3. Given a response category C with a response object R,

to give a uniform RR(f)—ﬁa:pomt operator on C is to give a uniform
iterator on RC.

Proof. Immediate, since a uniform RR(_)—ﬁxpoint operator uniquely
extends to a uniform fixpoint operator on negative objects (hence a
uniform iterator) — the uniqueness of the extension follows from the
uniformity (by the same argument as given in Section 6.1). O
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Fortunately, the condition to be an algebra morphism is naturally
represented in a cbv Au-theory. A value h : A— B represents an algebra
morphism if and only if

z:AFletyPbehzin 'y = Mu'.he : T B

holds — in fact, the CPS transformation (see Appendix B) of this equa-
tion is no other than the equation hoap = a4 o RE". By Lemma 1, in
a cbv Ap-theory, this requirement is equivalent to saying that hx is a
central term for each value z (this also implies Proposition 6 in Section
5), hence h is total. Therefore we obtain the uniformity condition for
an iterator in Section 4. This is remarkable, as it says that the idea of
defining the uniformity principle of fixpoint operators with respect to
algebra morphisms (from ADT) and the idea of defining the uniformity
principle of iterators with respect to effect-free morphisms (from Filin-
ski’s work) coincide in the presence of first-class continuations, despite
their very different origins; technically, this is the substance of the left-
to-right implication of Proposition 6. In summary, we have semantically
shown Theorem 1:

THEOREM 4 (Theorem 1 restated). In a cbv Au-theory, there is a bi-
jective correspondence between the stable uniform cbv fizpoint operators
and the uniform iterators.

In a sense, the syntactic proof in Section 4 gives an example of direct
style reasoning, whereas this semantic proof provides a continuation-
passing style reasoning on the same result. We can choose either stable
uniform fixpoint operators (in syntactic, direct style) or uniform 7'-
fixpoint operators (in semantic, monadic or continuation-passing style)
as the tool for reasoning about recursion in call-by-value setting; they
are as good as the other (thanks to Theorem 2).

7.3. ON FILINSKI’S UNIFORMITY

In [5] Filinski introduced uniformity principles for both cbv fixpoint
operators and iterators, for establishing a bijective correspondence be-
tween them. While his definitions turn out to be sufficient for his
purpose, in retrospect they seem to be somewhat ad hoc and are strictly
weaker than our uniformity principles. Here we give a brief comparison.

First, Filinski calls a value h : ¢ — 7 “total” when h v is a value for
each value v : 0. However, while a value is always central, the converse
is not true. Note that, while the notion of centre is uniquely determined
for each cbv Au-theory (and category of continuations), the notion
of value is not canonically determined (a category of continuations
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can arise from different response categories [25]). Since the uniformity
principle is determined not in terms of the base category C but in terms
of the category of algebras, it seems natural that it corresponds to the
notion of centre which is determined not by C but by Cr.

Second, Filinski calls a value H : (¢ = 7) = o' — 7’ “rigid” when
there are total hy : 0/ = 7 — 7" and hy : ¢/ = o such that

H=A "M hiy(f(hay)):(c—>71)—=0d =1

holds (cf. Example 2). It is easily checked that if H is rigid in the sense
of Filinski, it is also rigid in our sense — but the converse does not
hold, even if we change the notion of total values to ours (for instance,
switchy » in Section 4 is not rigid in the sense of Filinski). By closely
inspecting the correspondence of rigid functionals and total functions
via the step/pets and switch constructions, we can strengthen Filinski’s
formulation to match ours:

PROPOSITION 8. In a cbv Au-theory, H : (60 — 1) — o' — 7' is rigid
if and only if there are total hy : o' - 17— 7" and hy : (¢! X =7') > ¢
such that H = Afo7" Ay .uy" .[7](h1y (f (h2 (y, Az7 .[7]2)))) holds.

Proof. By pre- and post-composing switch and switch !, rigid func-
tionals of (¢ — 7) — o — 7/ are in bijective correspondence with
those of —(o x =7) — =(¢’ x =7'), which are, by Lemma 8, in bijective
correspondence with the total functions of (¢/ x =7') — (o x —7) via
the step/pets construction. A total function of (¢! X =7') = (o x —7)
is equal to A(y, k).(ha(y, k), h1(y,k)) : (¢’ x =7") = (o x —=7) for some
total functions hg : (0! x =7') = o and hy : (¢' x =7') = —7. We note
that total functions of (¢’ x —=7') — —7 are in bijective correspondence
with those of ¢/ — 7 — 7/ — for f : (¢/ X =7') — -7 we have
Aydz.pfB.f(y, \z.[flz)x : o/ - 7 - 7' and for g : ¢/ - 7 = 7'
we take Ay, k). \z.k (gyz) : (¢/ X =7") = 7.

In summary, for any rigid functional H : (¢ = 7) = ¢ — 7" we
have total hy : ' — 7 — 7' and hg : (¢/ X =7') — o such that

H = switch o (pets (A(y, k).(ha(y, k), Ax.k (hy1 y z)))) o switch™!

holds. By simplifying the right hand side of this equation, we obtain
the result. O

This subsumes Filinski’s rigid functionals as special cases where ho does
not use the second argument.
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8. Conclusion and Further Work

We have proposed an axiomatization of fixpoint operators in typed
call-by-value programming languages, and have shown that it can be
justified in two different ways: as a sound and complete axiomatization
for uniform 7-fixpoint operators of Simpson and Plotkin [27], and also
by Filinski’s bijective correspondence between recursion and iteration
in the presence of first-class continuations [5]. We also have shown that
these results are closely related, by inspecting the semantic structure
behind Filinski’s construction, which turns out to be a special case of
the uniform T-fixpoint operators.

We think that our axioms are reasonably simple, and we expect they
can be a practical tool for direct-style reasoning about call-by-value
programs involving recursion, just in the same way as the equational
theory of the computational lambda calculus is the theoretical basis of
the theory of A-normal forms [23, §].

8.1. FURTHER PRINCIPLES FOR CALL-BY-VALUE RECURSION

It is an interesting challenge to strengthen the axioms in some system-
atic ways. Below we give some results and perspectives.

Dinaturality, diagonal property, and Iteration Theories

By adding other natural axioms on an iterator in the presence of first-
class continuations, one may derive the corresponding axioms on the
cbv fixpoint operator. In particular, we note that the dinaturality

loop (g o f) = loop(fog)of
on an iterator loop precisely amounts to the axiom
fix! (Go (Af.Ay.F fy))) = Az.G (fix' (F o (A\g.A\x.Ggx)))=z

on the corresponding cbv fixpoint operator fix¥ (note that this axiom
implies both the cbv fixpoint axiom and the stability axiom). Similarly,
the diagonal property on the iterator

loop (Az.pa.[a, a](f ) = loop (Az.ucloop (Ay.up.[a, B](f y)) )
corresponds to that on the fixpoint operator
fix! (A\f.F f f) = fix¥ (Af.fix! (Ag.F fg)).

These can be seen axiomatizing the call-by-value counterpart of Con-
way theories [1, 12]. In [27], Simpson and Plotkin have shown that the
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equational theory induced by a uniform Conway operator (provided it
is consistent) is the smallest iteration theory of Bloom and Esik [1],
which enjoys very general completeness theorem. Regarding this fact,
we conjecture that our axioms for stable uniform cbv fixpoint operators
together with the dinaturality and diagonal property capture all the
valid identities on the cbv fixpoint operators, at least in the presence
of first-class continuations.

Mutual recursion and extensions to product types

One may further consider the call-by-value version of the Beki¢ property
(another equivalent axiomatization of dinatural and diagonal properties
[12]) along this line, which could be used for reasoning about mutual
recursion. For this purpose it is natural to extend the definition of
fixpoint operators on product types of function types, and also extend
the notion of rigid functionals to those with multiple parameters. These
extensions are syntactically straightforward and semantically natural
(as the category of algebras is closed under finite products). Spelling
this out, for = o — 7 and ¢ = o' — 7/, we can (uniquely) extend
the fixpoint operator on ¢ X ¢’ by (using the idea of Section 6)

fixthy g FOXO 2% = o (fixh_ 5 (AR 79 AuT F ()

where oo = AhT 9% (Ax% .7 (h*)xz, Ady® .o (h %) y). Bekié property is
stated as, for F1 : ¢ x ¢' = pand Fr: p x ¢ — ¢/,

fixh g (AP (Fy 2, Fyz)) = (V, fixty (Ag? o (V, 9))) : ¢ x ¢

where V' = fixj, (Afe.Fy (f, fixgy (\g? .F5(f,9)))) : ¢. For example, from
Beki¢ property and uniformity, we can show equations like fix’ F =
fix' (F o (\f.A\z.F f x)).

Fizpoint objects

Another promising direction is the approach based on fizpoint objects
[2], as a uniform T-fixpoint operator is canonically derived from a fix-
point object whose universal property implies strong proof principles.
For instance, in Example 3, a uniform iterator is unique because the
monad RE” has a fixpoint object. For the setting with first-class con-
tinuations, it might be fruitful to study the implications of the existence
of a fixpoint object of continuation monads.

Graphical axioms

Jeffrey [14] argues the possibility of partial traces as a foundation of
graphical reasoning on recursion in call-by-value languages. Schweimeier
and Jeffrey [24] demonstrate that such graphical axioms can be used to
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verify the closure conversion phase of a compiler. Similar consideration
is found in Fithrmann’s thesis [10]. It follows that most of the equalities
proposed in these approaches can be derived (up to some syntactic
differences) from the axioms for stable uniform call-by-value fixpoint
operators with dinatural and diagonal (or Beki¢) property; detailed
comparisons, however, are left as future work.

In a related but different direction, Erkok and Launchbury [3] pro-
pose graphical axioms for reasoning about recursion with monadic
effects in lazy functional programming languages. Friedman and Sabry
[9] also discuss about recursion in such settings (“unfolding recursion”
versus “updating recursion”) and propose an implementation of “up-
dating recursion” via a monadic effect. Although these approaches have
the same common underlying semantic structure as the present work,
the problems considered are rather of different nature and it is not clear
how they can be compared with our work.

8.2. RELATING RECURSION IN CALL-BY-NAME AND CALL-BY-VALUE

The results reported here can be nicely combined with Filinski’s duality
[4] between call-by-value and call-by-name languages with first-class
control primitives. In his MSc thesis [15], the second author demon-
strates that recursion in the call-by-name Ap-calculus [20] exactly cor-
responds to iteration in the call-by-value Au-calculus via this duality,
by extending Selinger’s work [25]. Together with the results in this
paper, we obtain a bijective correspondence between call-by-name re-
cursion and call-by-value recursion (both subject to suitable uniformity
principles)

Recursion in Iteration in Recursion in
cbn Ap-calculus cbv Ap-calculus cbv Ap-calculus

which seems to open a way to relate the reasoning principles on recur-
sive computations under these two calling strategies.
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Appendix

A. Semantic interpretation of the A.-calculus

Below we work in the base category C. Recall that the each component
of the unit 7, multiplication p and tensorial strength 6 of a strong
monad 7" has the following typing.

nx: X =>TX px:T’X >TX Oxy:XxTY -»T(X xY)

We use the following notations for the adjoint mate (currying) and
counit (evaluation map) of the Kleisli exponentials:

f:AXX >TY
ar(f):A-X=Y

eVX’y:(X:>Y)XX—>TY

We define the “left-first pairing” ¢xy : TX xTY — T(X xY') by

/
X, TY T0x v

7}
oxy =TX xTY 25 T(X xTY) =% T*X xY) "2 T(X x Y)

where ' is obtained from @ by pre- and post-composing suitable symme-
try morphisms. (By exchanging 6 and €', we also obtain the right-first
pairing ¢’y : TX x TY — T(X x Y).) Using these notations, the
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interpretation is given as follows.

[CFzi:oi] = [[1%%[0:] %4 Tloi] C=21:01,....20: 0n)
[C+A2M:0 1] = [T] °”—>'(“F’f"’kM”“) ] = [ "2 7o) = [+])
[T M= No 7] = [I7] e e i el T([o] = []) x T[o] =

T(([o] = [7]) x D) 5 7] 3 7]
[CH+:T] = 1] 2312571

[CF (M,NY:ox 1] = [I] ;i%” To] x T[] - T([o] x [])

[CFm M%<z o] = [[] ——— " T([o1] % [o2]) 2% T[o4]

B. Semantic interpretation of the cbv Au-calculus

We give the interpretation in the response category C. We use the
simply typed ABn-calculus with products and sums for describing the
morphisms in C (although we need only function types of the form RX).
This enables us to state the interpretation as a CPS transformation.
Recall that, for the continuation monad T = RR(_), we have the inter-
pretation of types as [o — 7] = R(RIDHET, [T]1=1, [ex7] = [o] x[]:
[L] = 0 and [o + 7] = [o] + [7]. The unit, multiplication and tensorial
strength are given by

nx(zX) = MR kx
X

MBS m (ARE® k)
Y
Ox,y (@, BRT ) = PR (Y k (2, )

The derived transformation is

T = Mkkz
2N = Mk (Az.M)
N = Me.M (Am.N (An.mnk))
* = Ak.kx
(M,N) = Me.M (Am.N (An.k (m,n)))
M = \k.M(Am.k (m; m))
[e]M = Me.Ma

pa.M = o.M
[a, /M = Mk.M(Az.case z of (injz = azx|ingy = By))
plen B).M = Xy M.y (in z)/a, My.y (in2y)/B] &
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where < is the unique inhabitant of RY.
Given z1 1 01,...Tm O EF M0 | oy T1,...,0Q, : Ty, we have

211 [01], - T ¢ [om], 01 : RIPL ... qy « RUPD - 37 2 RV
which amounts to a morphism of

C([o1] % --- % [om] x RIMD x ... x RI™1 RE'D)
C([o1] X -- - X [o], RECITr-Imdy
Cr([o1] x ... x [om], [6] + [m] + --- + [m]) -

R
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