
JFP 19 (6): 699–722, 2009. c© Cambridge University Press 2009

doi:10.1017/S0956796809990219 First published online 7 September 2009

699

Small-step and big-step semantics
for call-by-need

KEIKO NAKATA

Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia

(e-mail: keiko@cs.ioc.ee)

MASAHITO HASEGAWA

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

(e-mail: hassei@kurims.kyoto-u.ac.jp)

Abstract

We present natural semantics for acyclic as well as cyclic call-by-need lambda calculi, which are

proved equivalent to the reduction semantics given by Ariola and Felleisen (J. Funct. Program.,

vol. 7, no. 3, 1997). The natural semantics are big-step and use global heaps, where evaluation

is suspended and memorized. The reduction semantics are small-step, and evaluation is

suspended and memorized locally in let-bindings. Thus two styles of formalization describe

the call-by-need strategy from different angles. The natural semantics for the acyclic calculus

is revised from the previous presentation by Maraist et al. (J. Funct. Program., vol. 8, no. 3,

1998), and its adequacy is ascribed to its correspondence with the reduction semantics, which

has been proved equivalent to call-by-name by Ariola and Felleisen. The natural semantics

for the cyclic calculus is inspired by that of Launchbury (1993) and Sestoft (1997), and we

state its adequacy using a denotational semantics in the style of Launchbury; adequacy of

the reduction semantics for the cyclic calculus is in turn ascribed to its correspondence with

the natural semantics.

1 Introduction

Launchbury (1993) studied a natural semantics for a call-by-need lambda calculus

with letrec. He showed the semantics adequate using a denotational semantics.

Sestoft (1997) later revised Launchbury’s semantics. The revised semantics correctly

enforces variable hygiene. Moreover the α-renaming strategy of the revised semantics

is demonstrated to be suitable in the light of possible implementations with heap-

based abstract machines.

Ariola and Felleisen (1997) studied an equational theory for an acyclic (non-

recursive) call-by-need lambda calculus. The calculus admits the standardization

theorem, which gives rise to a reduction semantics for the calculus. The call-by-need

evaluator, induced by the theory, is proved equivalent to the call-by-name evaluator

of Plotkin (1975); as a result, the reduction semantics is shown to be adequate.

Ariola and Felleisen also presented a cyclic (recursive) call-by-need lambda calculus

This paper is dedicated to the memory of Professor Reiji Nakajima (1947–2008).

700 K. Nakata and M. Hasegawa

with letrec; however the cyclic calculus has not been explored. For instance, to the

best of our knowledge, it has not been known if the calculus relates to call-by-name

or if the standard reduction relation, obtained from the one-step reduction relation

and evaluation contexts, is adequate.

The two styles of formalization, namely the natural semantics and the reduction

semantics, describe the operational semantics for call-by-need from different angles.

The natural semantics is big-step, and evaluation is suspended and memorized

in a global heap. The semantics of Sestoft (1997) rigorously preserves binding

structure, by performing α-renaming when allocating fresh locations in a heap.

As he demonstrated by deriving abstract machines from the natural semantics,

this approach to variable hygiene has a natural correspondence with possible

concrete implementations of call-by-need. The reduction semantics is small-step, and

evaluation is suspended and memorized locally in let-bindings. It assumes implicit

α-conversions. In fact we could think implicit renaming in the reduction semantics

is an appropriate approach to variable hygiene, since freshness conditions cannot

be checked locally. In other words, the reduction semantics allows for stepwise local

reasoning of program behaviour using evaluation contexts.

Our work is motivated to bridge the two styles of formalization, both of which

we found interesting. Here are the contributions of the paper:

• We present natural semantics for acyclic and cyclic call-by-need lambda calculi

and prove them equivalent to the corresponding reduction semantics given

by Ariola and Felleisen (1997). For the acyclic calculus we revise the natural

semantics given in Maraist et al. (1998) by correctly enforcing variable hygiene

in the style of Sestoft (1997)1; its adequacy is ascribed to its correspondence

with the reduction semantics, which has been proved equivalent to call-by-

name by Ariola and Felleisen. The natural semantics for the cyclic calculus is

very much inspired by Sestoft’s and hence by Launchbury’s; the main difference

is that our semantics directly works with the full lambda terms with letrec,

whereas Sestoft’s works with the ‘normalized’ lambda terms, where function

arguments are only variables, by having a precompilation step.

• We show the natural semantics for the cyclic calculus adequate by adapt-

ing Launchbury’s denotational argument. As a consequence the reduction

semantics for the cyclic calculus is also shown to be adequate thanks to the

equivalence of the two semantics; to the best of our knowledge, this fact has

not been shown so far.

2 Call-by-need let calculus λlet

We first study the operational semantics for the acyclic (non-recursive) calculus.

1 In Maraist et al. (1998) equivalence of the natural semantics and reduction semantics is stated. The
paper only mentions that the result is proved by simple induction on derivations in the natural
semantics, but we did not find it ‘simple’.

Small-step and big-step semantics for call-by-need 701

Fig. 1. Syntax of λlet.

Fig. 2. Reduction semantics for λlet.

Fig. 3. Natural semantics for λlet.

2.1 Syntax and semantics

The syntax of the call-by-need let calculus λlet is defined in Figure 1. The reduction

and natural semantics are given in Figures 2 and 3 respectively. The metavariable

X ranges over sets of variables. The notation ε denotes an empty sequence. The

notation dom(Ψ) denotes the domain of Ψ, namely dom(ε) = ∅ and dom(x1 �→
M1, . . . , xn �→ Mn) = {x1, . . . , xn}. The notation M[x′/x] denotes substitution of x′

for free occurrences of x in M. The notion of free variables is standard and is defined

in Figure 4. A program is a closed expression. We say an expression M (standard)

reduces to N, written M → N if M = E[M ′] and N = E[N ′], where M ′ −→
need

N ′. We

write M � N to denote that M reduces to N in zero or more steps, i.e. � is the

reflexive and transitive closure of →.

The reduction semantics is identical to the previous presentation by Ariola and

Felleisen (1997). It works with α-equivalence classes of expressions. We assume all

binding occurrences of variables in a canonical representative of a class use pairwise

distinct names. In particular, evaluation contexts and reduction rules are defined

702 K. Nakata and M. Hasegawa

Fig. 4. Free variables.

over canonical representatives. Below we recall the reduction semantics briefly. The

key rule is βneed , where application reduces to a let-construct, thus suspending

evaluation of the argument. Since deref only substitutes values for variables, βneed

also ensures that evaluation of an argument is shared among all references to

the argument in the function body. The administrative rules lift and assoc extend

the scopes of let-bound variables so that values surrounded by let’s become available

without duplicating reducible expressions. The following lemma states that there

exists at most one partitioning of a program into a context and a redex, namely the

unique-decomposition property. It is proved by induction on M.

Lemma 2.1

For any program M, either M is an answer or there exist a unique context E and a

redex N such that M = E[N].

The natural semantics is revised from that of Maraist et al. (1998). It differs

from the previous presentation in the following two points: Firstly our semantics

enforces variable hygiene correctly in the style of Sestoft (1997) by keeping track

of variables which are temporarily deleted from heaps in Variable rule. This way,

freshness conditions are locally checkable. Secondly our semantics works with the

let-explicit calculus instead of the let-free one and hence has an inference rule for

the let-construct; this makes it smooth to extend our study of the acyclic calculus

to the cyclic calculus in the next section. As in Maraist et al. (1998) the order of

bindings in a heap is significant. That is, re-ordering of bindings in a heap is not

allowed. In particular in a heap x1 �→ M1, x2 �→ M2, . . . , xn �→ Mn, an expression Mi

may contain as free variables only x1, . . . , xi−1. This explains why it is safe to remove

the bindings on the right in Variable rule: Φ is not in the scope of M. The natural

semantics does not assume implicit α-renaming but works with (raw) expressions.

We may write 〈〉 M to denote 〈ε〉 M.

A configuration is a pair 〈Ψ〉 M of a heap and an expression. A configuration

〈x1 �→ M1, . . . , xn �→ Mn〉 N is closed if FV (N) ⊆ {x1, . . . , xn}, and FV (Mi) ⊆
{x1, . . . , xi−1} for any i in 1, . . . , n. Borrowing from Sestoft’s nomenclature (Sestoft

1997), we say a configuration 〈x1 �→ M1, . . . , xn �→ Mn〉 N is X-good if x1, . . . , xn
are pairwise distinctly named and {x1, . . . , xn} and X are disjoint. The judgement

〈Ψ〉 M ⇓X 〈Φ〉 V is promising if 〈Ψ〉 M is closed and X-good.

Since derivations in the natural semantics only allocate fresh variables in a heap

and substitute fresh variables for variables in expressions, a derivation of a promising

judgment is promising everywhere. The following lemma is proved by induction on

the derivation of 〈Ψ〉 M ⇓X 〈Φ〉 V .

Small-step and big-step semantics for call-by-need 703

Fig. 5. The reduction sequence for let x be (λy.y)(λy.y) in x.

Fig. 6. The derivation for let x be (λy.y)(λy.y) in x.

Lemma 2.2

If 〈Ψ〉 M is closed and X-good and the judgment 〈Ψ〉 M ⇓X 〈Φ〉 V has a derivation,

then 〈Φ〉 V is closed and X-good, and dom(Ψ) ⊆ dom(Φ), and every judgment in

the derivation is promising.

Lemma 2.2 shows the natural semantics preserves binding structure in the absence

of implicit α-renaming. Since the malloc function returns fresh locations in a heap,

the natural semantics indeed relates to heap-based implementations of call-by-need.

Example Figures 5 and 6 present the reduction sequence and the derivation for the

expression let x be (λy.y)(λy.y) in x respectively.

2.2 Equivalence of the two semantics

The idea underlying our proof is derived from observing the following gap between

the two semantics:

• In the reduction semantics heaps are first allocated locally and then are

globalized as much as necessary by applying lift or assoc afterwards to

dereference computed values. Besides, the redex is focused implicitly in the

sense that the semantics does not specify how to build evaluation contexts but

rather relies on the unique-decomposition property.

• In the natural semantics there is a single global heap. The redex is focused

explicitly by applying inference rules, thus decomposing evaluation contexts.

To facilitate reconstructing reduction sequences from derivations by bridging the

above gap, our proof introduces an instrumented natural semantics, defined in

Figure 7, as an intermediary step. The instrumented natural semantics uses structured

heaps Σ, which are sequences of frames F . Intuitively structured heaps are sequenced

evaluation contexts.

704 K. Nakata and M. Hasegawa

Fig. 7. Instrumented natural semantics for λlet.

The notation LBV (Σ) denotes the set of variables let-bound in frames of Σ. Or

LBV (ε) = ∅
LBV (Σ, []M) = LBV (Σ)

LBV (Σ, let x be M in []) = LBV (Σ) ∪ {x}
LBV (Σ, let x be [] in M) = LBV (Σ)

A structured heap Σ is well-formed if it is an empty sequence, or else Σ = Σ′, F , and

Σ′ is well-formed and one of the following conditions holds:

(1) F = []M and FV (M) ⊆ LBV (Σ′)

(2) F = let x be M in [] and FV (M) ⊆ LBV (Σ′) and x is distinct from any of

LBV (Σ′)

(3) F = let x be [] in M and FV (M) ⊆ LBV (Σ′) ∪ {x} and x is distinct from any

of LBV (Σ′)

A structured configuration 〈Σ〉 M is well-formed if Σ is well-formed and FV (M) ⊆
LBV (Σ).

We map structured configurations to expressions by defining translation �· from

structured heaps to evaluation contexts:

�ε = [] �Σ, F = �Σ[F]

We may identify Σ with �Σ when there should be no confusion and thus write

Σ[M] to denote �Σ[M]. A (raw) expression Σ[M] is not necessarily a canonical

representative of an α-equivalence class. The following lemma is proved by induction

on the structure of Σ.

Lemma 2.3

If 〈Σ〉 M is well-formed, then �Σ[M] is a program.

Let’s look at the inference rules in Figure 7. Lam and Letin are self-explanatory.

When evaluating function expression M1 in App, the rule pushes into the heap

Small-step and big-step semantics for call-by-need 705

Fig. 8. The derivation in the instrumented natural semantics for let x be (λy.y)(λy.y) in x.

the frame []M2, which is popped when evaluating function body N. Notice that

the trailing frame to []M2 in the result heap of the left hypothesis is Θ, which

suggests M1 reduces to an answer Θ[λx.N]. This will be proved in Proposition 2.1.

Also, observe the order between Θ and let x′ be M2 in [] in the right hypothesis,

where let-lifting is performed implicitly. When evaluating variable x in Var, the rule

pushes the ‘continuation’ let x be [] in Σ1[x] into the heap. Again, observe the

order between Θ and let x be V in [] in the result heap of the consequence, where

let-association is implicitly performed. It should be noted that Ariola and Felleisen

already observed that Launchbury’s formalization has hidden flattening of a heap

in his Variable rule, which amounts to applying assoc (Ariola & Felleisen 1997).

Lemma 2.4

If 〈Σ〉 M is well-formed and � 〈Σ〉 M ⇓ 〈Σ′〉 V , then 〈Σ′〉 V is well-formed.

Proof

By induction on the derivation of � 〈Σ〉 M ⇓ 〈Σ′〉 V . �

Simple induction proves the instrumented natural semantics correct with respect

to the reduction semantics.

Proposition 2.1

If 〈Σ〉 M is well-formed and � 〈Σ〉 M ⇓ 〈Σ′〉 V , then Σ[M] � Σ′[V].

Proof

By induction on the derivation of � 〈Σ〉 M ⇓ 〈Σ′〉 V with case analysis on the last

rule used.

• The cases of Lam and Letin are obvious.

• The case of App. Suppose we deduce � 〈Σ〉 M1M2 ⇓ 〈Σ2〉 V from �
〈Σ, []M2〉 M1 ⇓ 〈Σ1, []M2,Θ〉 λx.N and � 〈Σ1,Θ, let x′ be M2 in []〉 N[x′/x] ⇓
〈Σ2〉 V . Then we have

Σ[M1M2]

� Σ1[(Θ[λx.N])M2] by ind. hyp.

� Σ1[Θ[(λx.N)M2]] by lift

→ Σ1[Θ[let x′ be M2 in N[x′/x]]] by βneed

� Σ2[V] by ind. hyp.

• The case of Var. Suppose we deduce � 〈Σ, let x be M in [],Σ1〉 x ⇓
〈Σ2,Θ, let x be V in [],Σ1〉 V from � 〈Σ, let x be [] in Σ1[x]〉 M ⇓

706 K. Nakata and M. Hasegawa

〈Σ2, let x be [] in Σ1[x],Θ〉 V . Then we have

Σ[let x be M in Σ1[x]]

� Σ2[let x be Θ[V] in Σ1[x]] by ind. hyp.

� Σ2[Θ[let x be V in Σ1[x]]] by assoc

→ Σ2[Θ[let x be V in Σ1[V]]] by deref �

We need to prove the original natural semantics in Figure 3 correct with respect

to the instrumented natural semantics. This is mainly to check that in Figure 7

frames are properly pushed and popped so that the pop operation never fails. Below

we define a preorder on structured heaps to state that structured heaps only ‘grow’

during derivations.

A preorder � on structured heaps is defined such that F1, . . . , Fm � F ′
1, . . . , F

′
n

if there is an injection ι from {1, . . . , m} to {1, . . . , n} satisfying the following three

conditions:

(1) if i < j, then ι(i) < ι(j);

(2) for all i in {1, . . . , m}, either Fi = F ′
ι(i) or else Fi = let x be M in [] and

F ′
ι(i) = let x be N in [] for some x, M and N;

(3) for all i in {1, . . . , n}\ran(ι), F ′
i = let x be M in [] for some x and M, where

ran(ι) denotes the range of ι and {1, . . . , n}\ran(ι) denotes set subtraction.

It is easy to check that � is a preorder.

Lemma 2.5

If 〈Σ〉 M is well-formed and � 〈Σ〉 M ⇓ 〈Σ′〉 V , then Σ � Σ′.

Proof

By induction on the derivation of � 〈Σ〉 M ⇓ 〈Σ′〉 V . We use the fact that if Σ � Σ′

and Σ′,Θ � Σ′′, then Σ � Σ′′. �

We define translation �·� from structured heaps to (ordinary) heaps by collecting

let-frames as follows:

�ε� = ε

�Σ, []M� = �Σ�
�Σ, let x be M in []� = �Σ�, x �→ M

�Σ, let x be [] in M� = �Σ�

Proposition 2.2

If 〈Ψ〉 M is closed and X-good and 〈Ψ〉 M ⇓X 〈Φ〉 V , then for any Σ such that

�Σ� = Ψ and 〈Σ〉 M is well-formed, � 〈Σ〉 M ⇓ 〈Σ′〉 V and �Σ′� = Φ.

Proof

By induction on the derivation of 〈Ψ〉 M ⇓X 〈Φ〉 V with case analysis on the last

rule used.

• The cases of Lambda and Let are obvious.

• The case of Application. Suppose M = M1M2 and we deduce 〈Ψ〉 M1M2 ⇓X

〈Ψ′〉 V from 〈Ψ〉 M1 ⇓X 〈Φ〉 λx.N and 〈Φ, x′ �→ M2〉 N[x′/x] ⇓X 〈Ψ′〉 V .

Suppose �Σ� = Ψ and 〈Σ〉 M1M2 is well-formed. By ind. hyp. and Lemmas 2.4

Small-step and big-step semantics for call-by-need 707

and 2.5, � 〈Σ, []M2〉 M1 ⇓ 〈Σ1, []M2,Θ〉 λx.N and �Σ1, []M2,Θ� = Φ and

〈Σ1, []M2,Θ〉 λx.N is well-formed. By ind. hyp.,

� 〈Σ1,Θ, let x′ be M2 in []〉 N[x′/x] ⇓ 〈Σ2〉 V and �Σ2� = Ψ′.

• The case of Variable. Suppose M = x and we deduce 〈Ψ, x �→ N,Φ〉 x ⇓X

〈Ψ′, x �→ V ,Φ〉 V from 〈Ψ〉 N ⇓X∪{x}∪dom(Φ) 〈Ψ′〉 V . Let Σ = Σ1, let x be N in [],

Σ2 with �Σ1� = Ψ and �Σ2� = Φ and 〈Σ〉 x well-formed. By ind. hyp. and

Lemma 2.5, � 〈Σ1, let x be [] in Σ2[x]〉 N ⇓ 〈Σ3, let x be [] in Σ2[x],Θ〉 V with

�Σ3, let x be [] in Σ2[x],Θ� = Ψ′. Thus we deduce � 〈Σ〉 x ⇓ 〈Σ3,Θ, let x be V

in [],Σ2〉 V . �

We prove the reduction semantics correct with respect to the natural semantics

without going through the instrumented natural semantics. We first prove three useful

lemmas. Lemma 2.6 proves that irrelevant evaluation contexts are replaceable. It

lets us prove Lemmas 2.7 and 2.8. The former proves that reductions at the function

position inside application can be recast outside the application. The latter proves

that local reductions inside a let-binding can be recast as top-level reductions. We

use the notation M �n N to denote that M reduces into N in n steps.

Lemma 2.6

For any Θ, E and x such that Θ[E[x]] is a program and x is not in LBV (E), if

Θ[E[x]] �n Θ′[E[V]], then for any E ′ such that Θ[E ′[x]] is a program and x is not

in LBV (E ′), Θ[E ′[x]] �n Θ′[E ′[V]].

Proof

By induction on n. Let Θ = Θ1, let x be M in [],Θ2 with x not in LBV (Θ2). We

perform case analysis on the possible reductions of M.

• The case in which M is an answer is easy.

• The case in which M (one-step) reduces independent of the context is

immediate by induction.

• Suppose M = E1[x1] and x1 is not in LBV (E1) and we have
Θ1[let x be E1[x1] in Θ2[E[x]]] �n1 Θ′

1[let x be E1[V1] in Θ2[E[x]]] �n2

Θ′[E[V]]
Then by ind. hyp., we have

Θ1[let x be E1[x1] inΘ2[E
′[x]]]�n1 Θ′

1[let x be E1[V1] in Θ2[E
′[x]]] �n2

Θ′[E ′[V]] �

We introduce a notion of rooted reductions to identify a particular intermediate

step in reductions: a reduction M → M ′ is βneed -rooted with argument N if M =

Θ[(λx.N ′)N] and M ′ = Θ[let x be N in N ′]. A reduction sequence M � M ′ preserves

a βneed -root with argument N if none of (one-step) reductions in the sequence is βneed -

rooted with argument N. Intuitively, if Θ[MN] � M ′ preserves a βneed -root with

argument N, then all the reductions only occur at M or in the environment Θ.

Lemma 2.7

For any Θ, M and N such that Θ[MN] is a program, if Θ[MN] �n Θ′[VN] and the

reduction sequence preserves a βneed -root with argument N, then Θ[M] �n′
Θ′[V]

with n′ � n.

708 K. Nakata and M. Hasegawa

Proof

By induction on n with case analysis on the possible reductions of M.

• The case in which M is an answer is easy.

• The case in which M reduces independent of the context is immediate by

induction.

• Suppose M = E[x] and x is not in LBV (E) and we have

Θ[(E[x])N] �n1 Θ1[(E[V])N] �n2 Θ′[VN]

Then by Lemma 2.6 followed by ind. hyp., we have

Θ[E[x]] �n1 Θ1[E[V]] �n′
2 Θ′[V], where n′

2 � n2. �

Lemma 2.8

For any Θ, x,M and E such that Θ[let x be M in E[x]] is a program and x is not in

LBV (E), if Θ[let x be M in E[x]] �n Θ′[let x be V in E[x]], then Θ[M] �n′
Θ′[V]

with n′ � n.

Proof

By induction on n with case analysis on the possible reductions of M.

• The case in which M is an answer is easy.

• The case in which M reduces independent of the context is immediate by

induction.

• Suppose M = E ′[x′] and x′ is not in LBV (E ′) and we have
Θ[let x be E ′[x′] in E[x]] �n1 Θ1[let x be E ′[V ′] in E[x]]�n2 Θ′[let x be

V in E[x]]
Then by Lemma 2.6 followed by ind. hyp., we have

Θ[E ′[x′]] �n1 Θ1[E
′[V ′]] �n′

2 Θ′[V] where n′
2 � n2. �

Now we are ready to prove the reduction semantics correct with respect to the

natural semantics, using the above three lemmas to have induction go through.

Proposition 2.3

For any program M, if M � A, then for any X, there exist Θ and V such that Θ[V]

and A belong to the same α-equivalence class and 〈〉 M ⇓X 〈�Θ�〉 V .

Proof

Without loss of generality, we assume Θ[V] and A are syntactically identical. We

prove by induction on the length of the reductions of M. Let M = Θ′[M ′] with

M ′ �= let x be N ′ in N. We perform case analysis on M ′.

• The case of abstraction is obvious.

• The case of application. Suppose M ′ = M1M2 and we have

Θ′[M1M2] � Θ1[(λx.M3)M2] → Θ1[let x be M2 in M3] � Θ[V]

By Lemma 2.7 and ind. hyp., 〈〉 Θ′[M1] ⇓X 〈�Θ1�〉 λx.M3. By ind. hyp, 〈〉 Θ1

[let x be M2 in M3] ⇓X 〈�Θ�〉 V . Thus we deduce 〈〉 Θ′[M1M2] ⇓X 〈�Θ�〉 V .

• The case of a variable. Suppose M ′ = x and Θ′ = Θ1, let x be N in [],Θ2 and

we have
Θ1[let x be N in Θ2[x]] � Θ′

1[let x be V in Θ2[x]] → Θ′
1[let x be V in

Θ2[V]]

Small-step and big-step semantics for call-by-need 709

Fig. 9. Syntax of λletrec.

Fig. 10. Reduction semantics for λletrec.

By Lemma 2.8 and ind. hyp., 〈〉 Θ1[N] ⇓X∪{x}∪dom(�Θ2�) 〈�Θ′
1�〉 V , from which we

deduce 〈〉 Θ′[x] ⇓X 〈�Θ′
1, let x be V in [],Θ2�〉 V . �

Collecting all propositions together, we prove the equivalence of the two semantics.

Theorem 2.1

For any program M, the following two conditions hold:

(1) if M � A, then there exist Θ and V such that Θ[V] and A belong to the same

α-equivalence class and 〈〉 M ⇓∅ 〈�Θ�〉 V ;

(2) if 〈〉 M ⇓∅ 〈Ψ〉 V , then M � Θ[V], where �Θ� = Ψ.

Proof

(1) By Proposition 2.3.

(2) By Proposition 2.2 and Lemma 2.5, � 〈〉 M ⇓ 〈Θ〉 V with �Θ� = Ψ. By

Proposition 2.1, M � Θ[V]. �

3 Call-by-need letrec calculus λletrec

In this section we extend the equivalence result to the cyclic (recursive) calculus.

3.1 Syntax and semantics

The syntax of the call-by-need letrec calculus λletrec is defined in Figure 9. The

reduction and natural semantics are defined in Figures 10 and 11 respectively. No

710 K. Nakata and M. Hasegawa

Fig. 11. Natural semantics for λletrec.

ordering among bindings in D is assumed. Metavariables Ψ and Φ range over

finite mappings from variables to expressions. Here we do not assume any ordering

among bindings in heaps. In particular, a heap may contain cyclic structure such

as 〈x1 �→ λy.x2y, x2 �→ λy.x1y〉 and 〈x �→ y, y �→ x〉 . In the natural semantics, the

notation Ψ[xi �→ Mi]i∈{1,...,n} denotes mapping extension. Precisely,

Ψ[xi �→ Mi]i∈{1,...,n}(x) =

{
Mi when x = xi for some i in 1, . . . , n,

Ψ(x) otherwise.

We write Ψ[x �→ M] to denote a single extension of Ψ with M at x. In rule Letrec of

Figure 11, M ′
i ’s and N ′ denote expressions obtained from Mi’s and N, respectively, by

substituting x′
i’s for xi’s. We may abbreviate 〈Ψ〉 M, where Ψ is an empty mapping,

i.e. the domain of Ψ is empty, to 〈〉 M. We adapt the definition of free variables in

Figure 4 for λletrec by replacing the rule for let with the following rule:

FV (let rec x1 be M1, . . . , xn be Mn in N)

= (FV (M1) ∪ . . . ∪ FV (Mn) ∪ FV (N))\{x1, . . . , xn}

The reduction semantics is mostly identical to the previous presentation by Ariola

and Felleisen (1997), except that we elaborately deal with ‘undefinedness’, which

arises due to direct cycles such as let rec x be x in M. Undefinedness represents

provable divergences. In our reduction semantics undefinedness, or black holes •,

are produced and propagated explicitly, in a spirit similar to Wright and Felleisen’s

treatment of exceptions in a reduction calculus (Wright & Felleisen 1994). Rules

error and errorenv produce black holes. Applying a black hole to an expression

results in a black hole (errorβ). A value may be an abstraction or a black hole. Thus

rules lift, deref, deref env , assoc and assocenv can be exercised to propagate black holes.

Explicit handling of black holes facilitates inductive reasoning. Again the reduction

semantics works with α-equivalence classes of expressions. The following lemma

states the unique-decomposition property for λletrec and is proved by induction on M.

Small-step and big-step semantics for call-by-need 711

Fig. 12. The reduction sequence for let rec x be fx, f be λy.y in x.

Fig. 13. The derivation for let rec x be fx, f be λy.y in x.

Lemma 3.1

For any program M, either M is an answer or there exist a unique context E and

redex N such that M = E[N].

The natural semantics is very much inspired by that of Sestoft (1997) and hence by

that of Launchbury (1993). We revise Sestoft’s semantics in the following two points

to draw a direct connection with the reduction semantics. Firstly, in accordance

with the reduction semantics, our natural semantics may return black holes. In

Variable rule, x is bound to • while the bound expression to x is evaluated. For

instance, 〈〉 let rec x be x in x ⇓ 〈x′ �→ •〉 • is deduced in our formulation.

Sestoft’s formulation removes the binding of x from the heap during its evaluation;

thus evaluation involving direct cycles ‘gets stuck’; i.e. no derivation is possible when

direct cycles are encountered. Since we do not remove bindings from heaps, freshness

conditions are locally checkable without extra variable tracking. Secondly, we do

not precompile expressions into ‘normalized’ ones. Our semantics works with full

lambda expressions with letrec, where function arguments may be any expression,

not only variables.

The notation dom(Ψ) denotes the domain of Ψ. A configuration 〈Ψ〉 M is closed

if FV (M) ⊆ dom(Ψ), and for any x in dom(Ψ), FV (Ψ(x)) ⊆ dom(Ψ).

Example Figures 12 and 13 present the reduction sequence and the derivation for

the expression let rec x be fx, f be λy.y in x respectively. We deliberately chose a

black hole producing expression to demonstrate the difference of our formulation

from those of Ariola and Felleisen (1997) and Sestoft (1997).

3.2 Equivalence of the two semantics

We prove equivalence of the two semantics for λletrec in similar steps as those for

λlet and use an instrumented natural semantics defined in Figure 14. The notation

712 K. Nakata and M. Hasegawa

Fig. 14. Instrumented natural semantics for λletrec.

Θ denotes the flattening of Θ. Or

ε = ε Θ, let rec D in [] = Θ, D

The notation x ∈ Dx′ denotes that x is letrec-bound in Dx′; i.e. either x be [] or

x be M is in Dx′ . In rule Letrecin, M ′
i ’s and N ′ denote expressions obtained from

Mi’s and N by substituting x′
i’s for xi’s, respectively.

Here a frame may be let rec D in [] or let rec Dx, D in E[x], instead of

let x be M in [] or let x be [] in E[x]. We need to adjust the definitions of

well-formedness for structured heaps and structured configurations. The notation

LBV (Σ) denotes the set of variables letrec-bound in frames of Σ. Or

LBV (ε) = ∅
LBV (Σ, []M) = LBV (Σ)

LBV (Σ, let rec D in []) = LBV (Σ) ∪ LBV (D)

LBV (Σ, let rec D,Dx in M) = LBV (Σ) ∪ LBV (D,Dx)

LBV (D, x be M) = LBV (D) ∪ {x}
LBV (D, x be []) = LBV (D) ∪ {x}

Small-step and big-step semantics for call-by-need 713

The notations Exp(F) and Exp(Σ) respectively denote the sets of expressions that F

and Σ contain. Or

Exp([]M) = {M}
Exp(let rec D in []) = Exp(D)

Exp(let rec D,Dx in M) = {M} ∪ Exp(D,Dx)

Exp(ε) = ∅
Exp(D, x be M) = Exp(D) ∪ {M}
Exp(D, x be []) = Exp(D)

Exp(Σ, F) = Exp(Σ) ∪ Exp(F)

A structured heap Σ is well-formed if it is an empty sequence, or else Σ = Σ′, F , and

Σ′ is well-formed and one of the following conditions hold:

(1) F = []M and FV (M) ⊆ LBV (Σ);

(2) F = let rec x1 be M1, . . . , xn be Mn in [] and FV (Mi) ⊆ LBV (Σ) for all i’s,

and x1, . . . , xn are pairwise distinctly named, and all xi’s are distinct from any

of LBV (Σ′);

(3) F = let rec x be [], x1 be M1, . . . , xn be Mn in N and FV (N) ⊆ LBV (Σ) and

FV (Mi) ⊆ LBV (Σ) for all i’s, and x, x1, . . . , xn are pairwise distinctly named,

and all xi’s and x are distinct from any of LBV (Σ′).

A structured configuration 〈Σ〉 M is well-formed if Σ is well-formed and FV (M) ⊆
LBV (Σ).

We use the same definition as in the previous section for the translation �· from

structured heaps to contexts:

�ε = [] �Σ, F = �Σ[F]

Again we may identify Σ with �Σ and thus write Σ[M] to denote �Σ[M]. The

following lemma is proved by induction on the structure of Σ.

Lemma 3.2

For any well-formed configuration 〈Σ〉 M, Σ[M] is a program.

Let’s look at the inference rules in Figure 14. The first four rules are equivalent to

the previous four rules in Figure 7. Whereas Var corresponds to the production

let rec x be E,D in E ′[x] of evaluation contexts, Varenv corresponds to the

production let rec x′ be E,D[x, x′], D in E ′[x]. Errvar mediates between the natural

and the reduction semantics when a black hole is produced. Indeed variables letrec-

bound in Dx correspond to variables bound to • in a heap in the natural semantics.

The instrumented natural semantics keeps the original expressions bound to the

variables to facilitate reconstructing reduction sequences from its derivations. Errβ
is almost the same as the original rule Errorβ in Figure 11.

Lemma 3.3

If 〈Σ〉 M is well-formed and � 〈Σ〉 M ⇓ 〈Σ′〉 V , then 〈Σ′〉 V is well-formed.

Proof

By induction on the derivation of 〈Σ〉 M ⇓ 〈Σ′〉 V . �

714 K. Nakata and M. Hasegawa

Easy induction proves the instrumented natural semantics correct with respect to

the reduction semantics.

Proposition 3.1

If 〈Σ〉 M is well-formed and � 〈Σ〉 M ⇓ 〈Σ′〉 V , then Σ[M] � Σ′[V].

Proof

By induction on the derivation of � 〈Σ〉 M ⇓ 〈Σ′〉 V with case analysis on the last

rule used.

• The case of Val is obvious.

• The case of App. Suppose we deduce � 〈Σ〉 M1M2 ⇓ 〈Σ′〉 V from � 〈Σ, []M2〉
M1 ⇓ 〈Σ1, []M2,Θ〉λx.N and � 〈Σ1,Θ, let rec x′ be M2 in []〉 N[x′/x] ⇓ 〈Σ′〉 V .

Then we have
Σ[M1M2]

� Σ1[(Θ[λx.N])M2] by ind. hyp.

� Σ1[Θ[(λx.N)M2]] by lift

→ Σ1[Θ[let rec x′ be M2 in N[x′/x]]] by βneed

� Σ′[V] by ind. hyp.
• The case of Letrecin is immediate by induction.

• The case of Var. Suppose we deduce � 〈Σ, let rec x be M,D in [],Σ1〉 x ⇓
〈Σ2, let rec Θ, x be V ,D′ in [],Σ1〉 V from � 〈Σ, let rec x be [], D in Σ1[x]〉 M ⇓
〈Σ2, let rec x be [], D′ in Σ1[x],Θ〉 V . Then we have

Σ[let rec x be M,D in Σ1[x]]

� Σ2[let rec x be Θ[V], D′ in Σ1[x]] by ind. hyp.

� Σ2[let rec Θ, x be V ,D′ in Σ1[x]] by assoc

→ Σ2[let rec Θ, x be V ,D′ in Σ1[V]] by deref
• The case of Varenv is similar to the above Var case, where we use assocenv and

deref env instead of assoc and deref, respectively.

• The case of Errvar (1). Suppose x = x′ and we deduce � 〈Σ,let rec D,Dx inE[x],

Σ′〉 x ⇓ 〈Σ, let rec D,Dx in E[x],Σ′〉 •. The side-condition x ∈ Dx im-

plies Dx[Σ
′[x]] = D[x, x]. Thus we have Σ[let rec D,Dx[Σ

′[x]] in E[x]] →
Σ[let rec D,Dx[Σ

′[•]] in E[x]] by error.

• The case of Errvar (2). Suppose x �= x′ and we deduce � 〈Σ,let rec D,Dx′ inE[x′],

Σ′〉 x ⇓ 〈Σ, let rec D,Dx′ in E[x′],Σ′〉 •. Then x ∈ Dx′ implies Dx′[Σ′[x]] =

D[x′, x], D[x, x]. Thus we have Σ[let rec D,Dx′[Σ′[x]] in E[x′]]→Σ[let rec D,Dx′

[Σ′[•]] in E[x′]] by errorenv .

• The case of Errβ is easy and similar to App. �

Next we prove the instrumented natural semantics correct with respect to the

original natural semantics in Figure 11. Again this amounts to checking that in the

instrumented natural semantics pushing and popping frames into heaps are properly

balanced. The proof is similar to the previous one for Proposition 2.2, but we extend

the preorder � on structured heaps to take account of their cyclic structure.

To define the preorder � on structured heaps, we use two auxiliary preorders. The

preorder �D on sequences of bindings is defined such that D �D D′ if LBV (D) ⊆
LBV (D′). The preorder �F on frames is the smallest reflexive and transitive

Small-step and big-step semantics for call-by-need 715

relation satisfying the condition that if D �D D′, then let rec Dx, D in E[x] �F
let rec Dx, D

′ in E[x] and let rec D in [] �F let rec D′ in []. Then the preorder �
on structured heaps is defined such that F1, . . . , Fm � F ′

1, . . . , F
′
n if there is an injection

ι from {1, . . . , m} to {1, . . . , n} satisfying the following three conditions:

(1) if i < j, then ι(i) < ι(j);

(2) for all i in {1, . . . , m}, Fi �F F ′
ι(i);

(3) for all i in {1, . . . , n}\ran(ι), F ′
i = let rec D in [] for some D.

It is easy to check that � is a preorder. The following lemma is proved by induction

on the derivation of � 〈Σ〉 M ⇓ 〈Σ′〉 V .

Lemma 3.4

If 〈Σ〉 M is well-formed and � 〈Σ〉 M ⇓ 〈Σ′〉 V , then Σ � Σ′.

We define translation �·� from structured heaps into sequences of bindings by

�ε� = ε

�Σ, []M� = �Σ�
�Σ, let rec D in []� = �Σ�, D

�Σ, let rec D,Dx in M� = �Σ�, D, x1 be •, . . . , xn be •

where LBV (Dx) = {x1, . . . , xn}. We identify a sequence of bindings D with a heap

Ψ such that LBV (D) = dom(Ψ), and for all x in dom(Ψ), Ψ(x) = M iff D contains

x be M. Thus �Σ� denotes a heap.

We prove one basic result about the natural semantics: Lemma 3.5 states that

extending heaps with irrelevant bindings does not affect derivations and is proved

by routine induction. For mappings Ψ,Φ such that dom(Ψ) and dom(Φ) are disjoint,

the notation Ψ ∪ Φ denotes their union, namely dom(Ψ ∪ Φ) = dom(Ψ) ∪ dom(Φ)

and

(Ψ ∪ Φ)(x) =

{
Ψ(x) when x ∈ dom(Ψ),

Φ(x) when x ∈ dom(Φ).

Lemma 3.5

For any Ψ, Ψ′, Φ and M such that dom(Ψ′) and dom(Φ) are disjoint and 〈Ψ〉 M

and 〈Ψ ∪ Ψ′〉 M are closed, 〈Ψ〉 M ⇓ 〈Φ〉 V iff 〈Ψ ∪ Ψ′〉 M ⇓ 〈Φ ∪ Ψ′〉 V and their

derivations are of the same depth.

Proposition 3.2

If 〈Ψ〉 M is closed and 〈Ψ〉 M ⇓ 〈Φ〉 V , then for any Σ such that �Σ� = Ψ and

〈Σ〉 M is well-formed, � 〈Σ〉 M ⇓ 〈Σ′〉 V with �Σ′� = Φ.

Proof

By induction on the depth of the derivation of 〈Ψ〉 M ⇓ 〈Φ〉 V with case analysis

on the last rule used.

• The case of Value is obvious.

• The case of Application. Suppose �Σ� = Ψ and 〈Σ〉 M1M2 is well-formed

and we deduce 〈Ψ〉 M1M2 ⇓ 〈Ψ′〉 V from 〈Ψ〉 M1 ⇓ 〈Φ〉 λx.N and 〈Φ[x′ �→
M2]〉 N[x′/x] ⇓ 〈Ψ′〉 V . By ind. hyp. and Lemma 3.4, � 〈Σ, []M2〉 M1 ⇓

716 K. Nakata and M. Hasegawa

〈Σ1, []M2,Θ〉 λx.N. with �Σ1, []M2,Θ� = Φ. By Lemma 3.3, 〈Σ1, []M2,Θ〉 λx.N
is well-formed. By ind. hyp., � 〈Σ1,Θ, let rec x′ be M2 in []〉 N[x′/x] ⇓ 〈Σ2〉 V
with �Σ2� = Ψ′.

• The cases of Errorβ and Letrec are immediate by induction.

• The case of Variable. Suppose we deduce 〈Ψ〉 x ⇓ 〈Φ[x �→ V]〉 V from

〈Ψ[x �→ •]〉 Ψ(x) ⇓ 〈Φ〉 V . Suppose �Σ� = Ψ and 〈Σ〉 x is well-formed. There

are three possible cases:

(i) When Ψ(x) = • and Σ = Σ1, let rec D,Dx′ in E[x′],Σ2 with x ∈ Dx′ . Then

we deduce � 〈Σ〉 x ⇓ 〈Σ〉 • by Errvar .

(ii) When Ψ(x) = N and Σ = Σ1, let rec x be N,D in [],Σ2. By ind.

hyp. and Lemmas 3.4 and 3.5, � 〈Σ1, let rec x be [], D in Σ2[x]〉 N ⇓
〈Σ′

1, let rec x be [], D′ in Σ2[x],Θ〉 V and �Σ′
1, let rec x be [], D′ in Σ2[x],Θ�

is the restriction of Φ to LBV (Σ′
1, let rec x be [], D′ in Σ2[x],Θ). Hence by

Var we deduce � 〈Σ1, let rec x be N,D in [],Σ〉 x ⇓ 〈Σ′
1, let rec Θ, x be V ,D′

in [],Σ2〉 V and �Σ′
1, let rec Θ, x be V ,D′ in [],Σ2� = Φ[x �→ V].

(iii) The case in which Ψ(x) = N and Σ = Σ1, let rec x be N,D,Dx′ in E[x′],Σ2

is similar to the above case, except that we use Varenv instead of Var.

�

We prove the reduction semantics correct with respect to the natural semantics

by proving three auxiliary results in Lemmas 3.6 and 3.7 and Corollary 3.1, which

respectively correspond to Lemmas 2.8, 2.7 and 2.6 for the acyclic case.

We say a reduction sequence M �n N is autonomous if either n = 0 or the last

step is reduced by rules other than assoc or assocenv . These two rules have particular

behaviour in that they flatten nested letrec’s on request outside. We will restrict the

use of the two rules by requiring a reduction sequence to be autonomous. We write

M �→→n N to denote that M reduces into N in n-steps and the reduction sequence is

autonomous. We may omit the suffix n when it is irrelevant.

Lemma 3.6

The following two conditions hold:

(1) For any Θ, x, M, D and E such that Θ[let rec x be M,D in [E[x]]] is

a program and x is not in LBV (E), Θ[let rec x be M,D in [E[x]]] �→→n

Θ′[let rec x be A,D′ in E[x]] iff

Θ[let rec x be •, D in M] �n Θ′[let rec x be •, D′ in A].

(2) For any Θ, D[x1, xm], M, D and E such that Θ[let rec D[x1, xm], xm be M,D in

E[x1]] is a program and x1 is not in LBV (E) and LBV (D[x1, xm])={x1, . . . , xm−1},
Θ[let rec D[x1, xm], xm be M,D in E[x1]] �→→n Θ′[let rec D[x1, xm], xm be A,D′ in

E[x1]] iff Θ[let rec x1 be •, . . . , xm be •, D in M] �n Θ′[let rec x1 be •, . . . ,
xm be •, D′ in A].

Proof

First we remark that the autonomy condition uniquely determines n in the if case

of both the conditions. We prove by simultaneous induction on the length of the

reductions with case analysis on the possible reductions.

Small-step and big-step semantics for call-by-need 717

• The case in which M is an answer is obvious.

• The case in which M reduces independent of the context is immediate by

induction.

• The case in which M = E ′[x′] and Θ = Θ1, let rec x′ be N,D1 in [],Θ2. We

only prove the if case in (1). The other cases are similar. Suppose we have
Θ1[let rec x′ be N,D1 in Θ2[let rec x be E ′[x′], D in [E[x]]]]

�→→n1 Θ′
1[let rec x′ be Θ3[V], D′

1 in Θ2[let rec x be E ′[x′], D in [E[x]]]]

�n2 Θ′
1[let rec x′ be V ,Θ3, D

′
1 in Θ2[let rec x be E ′[x′], D in [E[x]]]]

→ Θ′
1[let rec x′ be V ,Θ3, D

′
1 in Θ2[let rec x be E ′[V], D in [E[x]]]]

�→→n3 Θ′[let rec x be A,D′ in E[x]]

By ind. hyp., Θ1[let rec x′ be •, D1 in N] →n1 Θ′
1[let rec x′ be •, D′

1 in Θ3[V]].

Hence we have
Θ1[let rec x′ be N,D1 in Θ2[let rec x be •, D inE ′[x′]]]

�→→n1Θ′
1[let rec x′ be Θ3[V], D′

1 inΘ2[let rec x be •, D inE ′[x′]]] by ind. hyp.

�n2 Θ′
1[let rec x′ be V ,Θ3, D

′
1 in Θ2[let rec x be •, D in E ′[x′]]] by assoc

→ Θ′
1[let rec x′ be V ,Θ3, D

′
1 in Θ2[let rec x be •, D in E ′[V]]] by deref

�n3 Θ′[let rec x be •, D′ in A] by ind. hyp.

• The cases in which M = E ′[x] in (1) and in which M = E ′[xi] for some i in

1, . . . , m in (2) are immediate by induction.

• The case in which M = E ′[x′] and x′ is in LBV (D) for the if case in (1).

Suppose we have
Θ[let rec x be E ′[x′], x′ be N,D1 in E[x]]

�→→n1 Θ1[let rec x be E ′[x′], x′ be Θ2[V], D′
1 in E[x]]

�n2 Θ1[let rec x be E ′[x′],Θ2, x
′ be V ,D′

1 in E[x]]

→ Θ1[let rec x be E ′[V],Θ2, x
′ be V ,D′

1 in E[x]]

�→→n3 Θ′[let rec x be A,D′ in E[x]]

By ind. hyp., Θ[let rec x be •, x′ be •, D1 in N] �n1 Θ1[let rec x be •, x′ be •,
D′

1 in Θ2[V]].

Hence we have
Θ[let rec x be •, x′ be N,D1 in E ′[x′]]

�→→n1 Θ1[let rec x be •, x′ be Θ2[V], D′
1 in E ′[x′]] by ind. hyp.

�n2 Θ1[let rec x be •,Θ2, x
′ be V ,D′

1 in E ′[x′]] by assoc

→ Θ1[let rec x be •,Θ2, x
′ be V ,D′

1 in E ′[V]] by deref

� Θ′[let rec D′ in A] by ind. hyp.

• The cases in which M = E ′[x′] and x′ is in LBV (D) for the only if case in (1)

and the if and only if cases in (2) are similar to the above case. �

Corollary 3.1

For any Θ, E and x such that Θ[E[x]] is a program and x is not in LBV (E), if

Θ[E[x]] �n Θ′[E[V]], then for any E ′ such that Θ[E ′[x]] is a program and x is not

in LBV (E ′), Θ[E ′[x]] �n Θ′[E ′[V]].

We adapt the definition of rooted reductions in an obvious way by replacing

let with let rec. A reduction M → M ′ is βneed -rooted with argument N if M =

Θ[(λx.N ′)N] and M ′ = Θ[let rec x be N in N ′]. A reduction sequence M � M ′

718 K. Nakata and M. Hasegawa

preserves a βneed -root with argument N if none of the (one-step) reductions in the

sequence is βneed -rooted with argument N. The following lemma is proved similarly

as Lemma 2.7.

Lemma 3.7

For any Θ, M and N such that Θ[MN] is a program, if Θ[MN] �n Θ′[VN] and the

reduction sequence preserves a βneed -root with argument N, then Θ[M] �n′
Θ′[V]

with n′ � n.

Now we are ready to prove the reduction semantics correct with respect to the

natural semantics.

Proposition 3.3

For any program M, if M � A, then there exist Θ and V such that Θ[V] and A

belong to the same α-equivalence class and 〈〉 M ⇓ 〈�Θ�〉 V .

Proof

Without loss of generality, we assume Θ[V] and A are syntactically identical. We

prove by induction on the length of the reductions of M. Let M = Θ′[M ′] with

M ′ �= let rec D in N. We perform case analysis on M ′.

• The case of an answer is obvious.

• Suppose M = M1M2 and we have

Θ′[M1M2] � Θ1[(λx.N)M2] → Θ1[let rec x be M2 in N] � Θ[V]

By Lemma 3.7 and ind. hyp., 〈〉 Θ′[M1] ⇓ 〈�Θ1�〉 λx.N. By ind. hyp.,

〈〉 Θ1[let rec x be M2 in N] ⇓ 〈�Θ�〉 V . Thus we deduce 〈〉 Θ′[M1M2] ⇓ 〈�Θ�〉 V .

• The case in which M = M1M2 and M1 reduces to • is similar to the above

case.

• Suppose M = x and Θ = Θ1, let rec x be N,D in [],Θ2 and we have
Θ1[let rec x be N,D in Θ2[x]]

�→→n Θ′
1[let rec x be Θ3[V], D1 in Θ2[x]]

� Θ′
1[let rec x be V ,Θ3, D1 in Θ2[x]]

→ Θ′
1[let rec x be V ,Θ3, D1 in Θ2[V]]

By Lemma 3.6, Θ1[let rec x be •, D in N] �n Θ′
1[let rec x be •, D1 in Θ3[V]].

By ind. hyp., 〈〉 Θ1[let rec x be •, D in N] ⇓ 〈�Θ′
1, let rec x be •, D1 in [],Θ3�〉V .

By Lemma 3.5, 〈�Θ1, let rec x be •, D in [],Θ2�〉 N ⇓ 〈�Θ′
1, let rec x be •, D1

in [],Θ3,Θ2�〉 V . Thus we deduce 〈〉 Θ1[let rec x be N,D in Θ2[x]] ⇓
〈�Θ′

1, let rec x be V ,Θ3, D1 in [],Θ2�〉 V . �

Collecting all propositions together, we prove equivalence of the two semantics.

Theorem 3.1

For any program M, the following two conditions hold:

(1) if M � A, then there exist Θ and V such that Θ[V] and A belong to the same

α-equivalence class and 〈〉 M ⇓ 〈�Θ�〉 V ;

(2) if 〈〉 M ⇓ 〈Ψ〉 V , then M � Θ[V] where �Θ� = Ψ.

Small-step and big-step semantics for call-by-need 719

Proof

(1) By Proposition 3.3.

(2) By Proposition 3.2 and Lemma 3.4, � 〈〉 M ⇓ 〈Θ〉 V with �Θ� = Ψ. By

Proposition 3.1, M � Θ[V]. �

3.3 Adequacy

In this subsection we state that the natural semantics is adequate using a denotational

semantics in the style of Launchbury (1993). Fortunately we can adapt his proof

strategy with minor modifications. Below we only recall the necessary definitions

from his paper to state main propositions; we refer the details to his original paper

and the extended version of ours (Nakata & Hasegawa 2009).

We define the denotational semantics for pure expressions of λletrec. An expression

is pure if it does not contain black holes. The denotational semantics models

functions by a lifted function space (Abramsky & Ong 1993). We represent lifting

using Fn and projection using ↓Fn (written as a postfix operator). Let Values be

some appropriate domain containing at least a lifted version of its own function

space. Environments, ranged over by ρ, are functions from Vars to Values , where

Vars denotes the infinitely many set of variables of λletrec. The notation ρ⊥ denotes

an ‘initial’ environment which maps all variables to ⊥.

The semantic functions [[M]]ρ and {{D}}ρ respectively give meanings to the expres-

sion M and the bindings D under the environment ρ. The former returns an element

from Value and the latter an environment. They are defined by mutual recursion as

follows:

[[λx.M]]ρ = Fn (λν.[[M]]ρ�{x �→ν})

[[MN]]ρ = ([[M]]ρ) ↓Fn ([[N]]ρ)

[[x]]ρ = ρ(x)

[[let rec x1 be M1, . . . , xn be Mn in N]]ρ = [[N]]{{x1 be M1 ,...,xn be Mn}}ρ
{{x1 be M1, . . . , xn be Mn}}ρ = μρ′.ρ � {x1 �→ [[M1]]ρ′ , . . . , xn �→ [[Mn]]ρ′ }

where μ denotes the least fixed point operator; {{D}}ρ is defined only when ρ is

consistent with D; i.e. if ρ and D bind the same variable, then they map the

variable to values for which an upper bound exists. The semantic function for heaps

is defined in the same way as that for bindings by identifying a heap with an

unordered sequence of bindings.

Proposition 3.4 states that derivations preserve non-bottom meanings of pure

expressions; Proposition 3.5 states that a pure expression evaluates to an abstraction

if and only if its meaning is a non-bottom element. Since the natural semantics is

deterministic, we can deduce that if a pure expression evaluates to a black hole, then

its meaning is a bottom element.

Proposition 3.4

For any pure program M, if 〈〉 M ⇓ 〈Ψ〉 λx.N, then [[M]]ρ⊥ = [[λx.N]]{{Ψ}}ρ⊥
.

720 K. Nakata and M. Hasegawa

Proposition 3.5

For any pure program M, [[M]]ρ⊥ �= ⊥ iff 〈〉 M ⇓ 〈Ψ〉 λx.N.

4 Related work

Our work builds on previous work by Launchbury (1993), Sestoft (1997), Ariola

and Felleisen (1997) and Maraist et al. (1998). The reduction semantics present in

the paper are mostly identical to those of Ariola and Felleisen. As to the natural

semantics for λlet, we revised that of Maraist et al. by correctly enforcing variable

hygiene in the style of Sestoft and by explicitly introducing an inference rule for

the let construct. As to the natural semantics for λletrec, we revised that of Sestoft

by eliminating the precompilation step. Adequacy of the natural semantics for λlet

is ascribed to its correspondence with the reduction semantics, which is proved

equivalent to call-by-name by Ariola and Felleisen. In turn we showed adequacy of

the natural semantics for λletrec by adapting Launchbury’s denotational argument.

Adequacy of the reduction semantics for λletrec is then ascribed to its correspondence

with the natural semantics; to the best of our knowledge, this fact has not been

shown so far. In the above-discussed sense, our work extends those previous work.

There are several lines of work which considers other styles of formalization of

call-by-need in the presence or absence of recursion. Below we review some of them.

The reader may be interested in the concluding remarks of Maraist et al. (1998),

where they have discussed the reduction semantics in relation to other systems.

Recent work by Garcia et al. (2009) proposed an abstract machine for the let-free

formulation of the acyclic calculus λlet, which is proved equivalent to the reduction

semantics of Ariola and Felleisen (1997). They also presented a simulation of

the machine by a call-by-value lambda calculus extended with delimited control

operators. While developed independently, their abstract machine, in particular the

refined one, and our instrumented natural semantics bear similarities in that both

manipulate sequenced evaluation contexts while retaining the structural knowledge

of a term that has been discovered. More thorough comparison might suggest a

means of simulating the cyclic calculus λletrec using delimited control. This is one

direction for future work.

Sestoft revised the natural semantics of Launchbury by enforcing variable hygiene

correctly and changing the α-renaming strategy (Sestoft 1997). He derived an abstract

machine for call-by-need from the revised semantics. The machine has a small-step

semantics and uses global heaps to implement sharing of evaluation. Starting from

a simple machine, he refines it to a more efficient machine in several steps. The

machine is proved equivalent to his natural semantics. As discussed earlier, the

natural semantics for λletrec is strongly inspired by his semantics.

Okasaki et al. (1994) proposed a transformation of call-by-need λ terms, in the

absence of recursion, into continuation-passing style, which is proved equivalent

to a call-by-need continuation semantics. Sharing of evaluation is implemented by

ML-style references, which resemble global heaps.

Ariola and Klop (1994) and Ariola and Blom (1997) studied equational theories

of cyclic lambda calculi by means of cyclic lambda graphs. The former observed

Small-step and big-step semantics for call-by-need 721

that having non-restricted substitution leads to non-confluence and proposed a

restriction on substitution to recover confluence. The latter proposed a relaxed

notion of confluence which holds in the presence of non-restricted substitution.

In Ariola and Blom (1997) a calculus supporting sharing is considered, but a

reduction strategy for the calculus is not studied.

Danvy (2008) has advocated the use of abstract machines as a ‘natural meeting

ground’ of various functional implementations of operational semantics, especially

the small-step reduction semantics and big-step natural semantics. In a large

perspective, our work presented here can be thought as making an analogous case

for a destructive, non-functional setting, in which circularly shared computation

contributes significant complexities.

5 Conclusion

We have presented natural semantics for acyclic and cyclic call-by-need lambda

calculi, which are proved equivalent to the reduction semantics given by Ariola and

Felleisen (1997). We observed differences of the two styles of formalization in the

treatment of when to reorganize the heap structure and how to focus redexes. The

proof uses instrumented natural semantics as mediatory semantics of the two, in

order to bridge these differences by making heap reorganization and redex focusing

explicit.

This work is initially motivated to study lazy evaluation strategies for recursive

records in terms of the reduction semantics as well as the natural semantics. The

extended paper (Nakata & Hasegawa 2009) considers an extension of λletrec with

pairs and a call-by-value variant with lazy letrec. The variant can emulate the

delay and force operators as provided in Scheme (Sperber et al. 2009), or OCaml’s

equivalent lazy and force (Leroy et al. 2008), by let rec x be M in λx′.x for delay(M)

and M(λx.x) for force(M). For instance, the initialization graphs of Syme (2005),

which underlie the object initialization strategy of F# (Syme & Margetson 2008),

fit in the call-by-value variant extended with n-tuples, or records.

Acknowledgments

We thank the anonymous referees for their careful reviewing and Matthias Felleisen

for his editorial support. Keiko Nakata has been supported by the Estonian Science

Foundation grant no. 6940 and the ERDF cofunded project EXCS, the Estonian

Centre of Excellence in Computer Science. Masahito Hasegawa has partly been

supported by the Grant-in-Aid for Scientific Research (C) 20500010.

References

Abramsky, S. & Ong, C.-H. L. (1993) Full abstraction in the lazy lambda calculus, Inf.

Comput., 105 (2): 159–267.

Ariola, Z. & Felleisen, M. (1997) The call-by-need lambda calculus. J. Funct. Program., 7 (3):

265–301.

722 K. Nakata and M. Hasegawa

Ariola, Z. M. & Blom, S. (1997) Cyclic lambda calculi. In Proc. Theoretical Aspects of

Computer Software. Abadi, M. and Ito, T. (eds), Lecture Notes in Computer Science,

vol. 1281. Springer, Berlin/Heidelberg, pp. 77–106.

Ariola, Z. M. & Klop, J. W. (1994) Cyclic lambda graph rewriting. In Proceedings of the

Symposium on Logic in Computer Science, Abramsky, S. (ed), Paris, France, pp. 416–425.

Danvy, O. (2008) Defunctionalized interpreters for programming languages. In Proceedings of

the International Conference on Functional Programming, James Hook and Peter Thiemann

(eds), Victoria, BC, Canada, ACM Press.

Garcia, R., Lumsdaine, A & Sabry, A. (2009) Lazy evaluation and delimited control. In

Proceedings of the ACM SIGPLAN-SIGACT Symposium on the Principles of Programming

Languages, Zhong Shao and Benjamin C. Pierce (eds), Savannah, GA, USA. ACM Press.

Launchbury, J. (1993) A natural semantics for lazy evaluation. In Proceedings of the ACM

SIGPLAN-SIGACT Symposium on the Principles of Programming Languages, Charleston,

SC, USA.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D. & Vouillon, J. (2008) The Objective Caml

system, release 3.11 [online]. Available at: http://caml.inria.fr/ (Accessed 29 July

2009).

Maraist, J., Odersky, M. & Wadler, P. (1998) A call-by-need lambda calculus, J. Funct.

Program., 8 (3): 275–317.

Nakata, K. & Hasegawa, M. (2009) Small-step and big-step semantics for call-by-need

(extended version). ArXiv:0907.4640v1 [cs.PL].

Okasaki, C., Lee, P. & Tarditi, D. (1994) Call-by-need and continuation-passing style, LISP

Symbol. Comput., 7 (1): 57–82.

Plotkin, G. (1975) Call-by-name, Call-by-value and the λ-Calculus, Theoret. Comp. Sci., 1 (2):

125–159.

Sestoft, P. (1997) Deriving a lazy abstract machine, J. Funct. Program., 7 (3): 231–264.

Sperber, M., Dybvig, R. K., Flatt, M. & Straaten, A. V. (2009) Revised6 Report on the

Algorithmic Language Scheme. J. Funct. Program., 19 (S1): 1–301.

Syme, D. (2005) Initializing mutually referential abstract objects: The value recursion

challenge. In Proceedings of the Workshop on ML, Electr. Notes Theor. Comput. Sci., Tallinn,

Estonia, 148 (2): 3–25.

Syme, D. & Margetson, J. (2008) The F# programming language [online]. Available at:

http://research.microsoft.com/en-us/um/people/curtisvv/fsharp_default.aspx

(Accessed 29 July 2009).

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Information

and Computation, 115 (1): 38–94.

