Planar Lambda Algebras and Semi-closed Operads

Masahito Hasegawa

December 2023

We show how our previous work on extensional BI(_)®-algebras and inter-
nal operads [1] can be extended to (possibly non-extensional) planar lambda
algebras which precisely capture the S-theory of the planar lambda calculus.

First, we identify the axioms on BI(_)®-terms for making the translations to
& from the S-theory of the planar lambda calculus sound and complete. Planar
lambda algebras are defined to be BI(_)®-algebras satisfying these axioms.

Then we give the construction of the internal operads for planar lambda
algebras, which gives an equivalence between planar lambda algebras and semi-
closed operads. Finally, we discuss the symmetric, braided and cartesian cases.

1 Preliminaries

Planar A-calculus The planar A-calculus is an untyped linear A-calculus with
no exchange, whose terms are given by the following rules.

iabl F,.T M bst ti w application
r g varable g abstraction I,I'FMN

It is easy to see that planar terms are closed under - and n-conversion. Typical
planar terms include I = Af.f, B = Afzy.f (xy), and M*® = A\f.f M for planar
closed term M.

BI(_)*-algebras A BI(_)*-algebra [4] is an applicative structure A with el-
ements I, B and a® for all a € A satisfying Babc = a(bc), Ia = a, and
a*b=ba.

The set of closed terms of the planar lambda calculus modulo the B-equality
forms a BI(_)*-algebra AB“"*" with I = Af.f, B = Afay.f (zy), and M* =
M. M.

Semi-closed operads Recall that an (planar or non-symmetric) operad P is
a family of sets (P(n))nen equipped with an identity id € P(1) and a com-
position map sending f; € P(k;) (1 <i < n) and g € P(n) to the composite
9(f1,--. s fn) € P(k1 + ka2 + ... + k,) which are subject to the unit law and



associativity:

fld, ... id) = f=1id(f)
h(gr(fir, s fiin)s oo 9 (Frts oo frg)) = (B(g1s -+ o5 gn)) (fins - - o5 fromy)-

It is semi-closed when there is an element app € P(2) and maps A(—) :
P(n + 1) — P(n) satisfying the S-rule app(A(f),id) = f and the naturality
Ag(frs -5 fsid)) = (M9))(f15- -5 fn)-

For semi-closed operads P and Q, a homomorphism ¢ : P — Q is a family
of maps ¢, : P(n) — Q(n) (we often omit the subscript n) such that

e p1(id) = id,

® Oyt (9015 fn)) = on(9)(0r (f1) - -5 0k, (f)),
* v2(app) = app, and

* on(A(f)) = AMens1(f))-

The last condition can be replaced by its single instance p;(A(app)) = A\(app)
(cf. [2]), because

en(A(f)) = en(Aapp(A(f),id))) (B-rule)
= n(Aapp)(A(f))) (naturality of \)
= 1(Aapp))(en(A(f))) (¢ preserves composition)
= Aapp)(en(A(f))) (¢1(Mapp)) = A(app))
= AMapp(en(A(f)), id) (naturality of \)
= AMp2(app)(en(A(f)),v1(id))) (¢ preserves id and app)
= Ment1(app(A(f),id))) (¢ preserves composition)
= Men+1(£)) (B-rule).

Let us write SemiClosedOperad for the category of semi-closed operads and
homomorphisms.

Proposition 1 The term model of the planar lambda calculus modulo [3-equality
gives an initial object AP of SemiClosedOperad.

Explicitly, AP!"47 () is the set of S-equivalence classes of terms with n free vari-
ables z1,...,x,. id is (the equivalence class of) x1 b x1, app is x1,z2 - 21 22,
while A sends z1,...,2pn, Tp11 b M to x1,...,2, b Axpy1.M. Composition is
given by the substitution of terms with appropriate renamings. For any semi-
closed operad P, the unique homomorphism from AP to P is determined
by the obvious translation given by [x] = id, [M N] = app([M], [IV]) and
[Ax.M] = N[M]).

Corollary 2 Semi-closed operads are sound and complete for the planar lambda
calculus with B-equality.



2 Axiomatizing Planar Lambda Algebras

Let Apianar be the set of planar lambda terms and BI(_)® be the set of terms
generated by variables (each occurring at most once), B, I, application and the
(_)*-operator on closed terms. Let =ext be the smallest congruence on BI(_)®
satisfying the following axioms

BPQR = P(QR) (B)

IP = P (I)

PQ = QP (o)

BI = I (BI)
BB*(BB(BBB)) = B(BB)B (Be)
BI'B = BI (Te

BP*B = B(BP)B  (es)
(PQ)* = BQ*(BP*B) (appe)

It has been shown that this extensional theory =¢x¢ is sound and complete for
the Sn-theory of the planar lambda calculus and the following translations [1].

Translations Define (—)* : BI())® — Aplanar by

B = Jryza(yz)
I' = J\zx
(PQ)F = PHQ*
(P*)f = \x.xPt
.%‘u = X
and (—)° : Aplanar — BI(_)® by
A\e.M)" = XNa.M’
(MN)Y = M"N’
Ib = X

where, for P with the rightmost variable x, \*z.P is given as follows [4].

Nexx = 1
) _ [ BQ*(\z.P) (z€tv(P))
Nz PQ = { BP(M\z.Q) (zefv(Q))

We want to modify these axioms to be sound and complete with respect to
the SB-theory of the planar lambda calculus. Among these axioms, only (BI) is
unsound for 3, as it requires the n-equality:

(BI)f = \zyz.z (y2)) (\e.x) =g \yz.y 2 #5 \y.y = TP
Indeed, each n > 0 should give distinct B" I as

(B" I)ﬁ =8 AToT1...Tn.ToT1 ... Tp



while B" I is equal to I in the extensional theory.
For the S-theory, although BI P = P is in general not valid, we still need
to validate the following cases.

BIB = B (Blg,)
BII = I (BIy)
BIP* = P° (Bl,)
BI(BP) = BP (Blg,)
BI(BPQ) = BPQ (Bls,)

The last two can be replaced by the following parameter-free axioms.

B(B)B = B (Blg,)
B(B(BI)B = B (Bls,)

It turns out that (Blg,) and (Blg,) are derivable from other axioms.! Hence

all we need are
BII =1 (BIy)

BIP* = P* (BL)
B(B(BI)B = B (Blg)

(For ease of presentation, in the sequel (Blg,) is renamed just (Blg).) By
(BI), we mean these three axioms (Bly), (Bl,) and (BIg) instead of the original
unsound BT = I, and let =gjy(_)s be the smallest congruence on BI(.)* satisfying
this new set of axioms (summarised in Figure 1). Below we show that they are
sound and complete with respect to the S-theory of the planar lambda calculus.

2.1 Proof

Lemma 3 The following equations are derivable in =gy(_ye.

BBPQ) = BBP)(BQ) (B2)

BBBP) = B(B(BP)B (B3

BPI = BIP (BI2)
BBPQ)R = BPBQER) (assoc)

1'We can derive (Blg,) from (Blg,) and other axioms as follows:

B(BI)B = B(BI)(B(B(BI))B) (Blg,)
= B(B@BI)B(BI))B (assoc)
= B(B(B(BI)B(BI)B (B)
= B(B(BI)B (Blg,)
= B (BIBQ)

where we use (assoc) from Lemma 3 which is derivable without using (Blg,) nor (Blg,).
Similarly, we can derive (Blg,) from (Blg,) — replace (BI) in the proof above by I.



Proof (B3) is derivable from (B), (e) and (Be):

BB (BP) B(BB)BP (
BB*(BB(BBB))P (
B*(BB(BBB)P) |
BB(BBB)PB (
B(BBBP)B (
B(B(BP))B (

(B2) is derivable from (B) and (B3):

(
BBPQ BB (BP)Q (B)
B(B([BP)BQ (B3)
BBP)(BQ) (B)

~—

(B12) follows from (B), (Te), (e):

BPI I*(BP) (o)
BI'BP (B)

BIP  (le)

From (BI2) we have B (\*z.P)I = BI(A*z.P) = A*x.P because \*z.P is either
I or BQR for some @ and R.
The associativity law (assoc), to be frequently used below, is derivable as

BBPQR 2 BBP)(BQR 2 BPBQR).

Lemma 4 P =gy_). Q implies pt =3 Q"
Proof Just to check that P* =g Q" holds for each axiom P = Q.
Lemma 5 (Crucial) P =gy(_)» Q implies \*z.P =gy(_e \*2.Q.

Proof For each axiom P = @ with free (rightmost) x we show \*z.P =gy(_)s
A*z.Q). The relevant cases are (B), (I) and (e), as other axioms are variable-free.

1. (B) M*&.BPQR = \2.P (QR) with € fo(P):
Nz BPQR B R* (BQ* (BB (\*z.P)))
BR*(B(BQ*B)(\*x.P)) (assoc)
B(BR*(BQ*B)) (A\*z.P) (assoc)

B(QR)* (\*z.P) (appe)
ANa.P(QR)

2. (B) M*2.BPQR = \*z.P (QR) with z € fv(Q):

Nz.BPQR BR* (B (BP)(\z.Q))
B(BR*(BP)) (\z.Q) (
B(B(BR*)BP)(\z.Q) (
B(BR*BP)(\2.Q) (
B (R** (B P)) (A"2.Q) (B)
B (BPR*) (\r.Q) (
BP(BR*(\2.Q)) (
Nz P(QR)

5



3. (B) M*2.BPQR = X\*z.P (QR) with z € fu(R):

Nz BPQR B(BPQ)(\z.R)
(BP)(BQ (ANz.R)) (assoc)
Mz.P(QR)

4. (I) N*2.IP = \2.P with 2 € fv(P):

Nz IP BI(\*z.P)

. P (BI)

5. (¢) M*x.P*Q = X\*2.Q P with z € fv(Q):

Nz P*Q B P* (\2.Q)

Nzx.Q P

Lemma 6 (M|z:= N])* = M’[z:= N°].

Proof Easy induction on M.

Lemma 7 (\z.P)Q =gy Plr:=Q].

Proof Easy induction on P, using axioms (B), (I) and (e).
Lemma 8 M =g N implies M =BI(_)* NP.

Proof Induction on the derivation of M =g N.
The case of f-axiom (Az.M)N =g Mz := N] follows from Lemma 6 and 7.
Most other cases are obvious, except the case of the compatibility with lambda

abstraction (the £-rule)
M =4 N

Ae.M =g Ax.N

For this assume M =g N. By induction hypothesis we have M =BI(_)* N’. By
Lemma 5 we obtain \*z.M” =BI()* N ax.N°, hence (\z.M)° =BI(_)* (A\z.N)°.

Lemma 9 (P*)° =) P.

Proof Induction on P. The cases of variables, applications and I are obvious.



For B:

(B = B(BI*(BBI))* (BB (BBI))
= B(BI*(BIB))* (BB (BIB)) (BI2)
- B(BI'B)*(BBB) (Blg, )
= B(BI)*(BBB) (Te)
= B(BI*(BB*B))(BBB) (appe)
= BI*'(BB*(BB(BBB))) (assoc)
- BI*(B(BB)B) (Be)
= B(BI°(BB))B (assoc)
= B(B(BI')BB)B (B)
= B(BI**BB)B (o)
= B(I**(BB))B (B)
= B(BBI*)B (o)
= BB(BI*B) (assoc)
- BB(BI) (Te)
= B(B(BI))B (B3)
- B (Blg)
For P*:
(P*F)Y = B((PH))°1
= BI((P%)’)* (BI2)
= ((PH")° (BL)
= P* ind. hyp.
Lemma 10 (\*z.P)* =5 \z.P*.
Proof Induction on P.
o P=ux:
N zz) =T = dex = Aeah
e P=QR with z € fv(Q):
NMz.QR)E = (BR* (\z.Q))
= BfY(R*)! (\r.Q)F
= B (M\uuR) (\z2.Q)F
=5 B! (Ou.uRY) (\2.QY) i.h.
= (Qzyz.z(yz)) Awu R (A\2.QF)
=5 Az.(Muu RF) (A\r.Q%) 2)
=5 Ar.(Qu.u RY) QF
=5 Aa.(Q" RF)
= M. (QR)?



e P=QR with z € fu(R):

(\2.Q R)*

(BQ(\r.R))
B! Qf (\*z.R)!
5 BIQF (\z.RY)
A\zyz.x (y2)) QF (\z.RY)
5 A2.QF (\x.RF) 2)
B )\x.Qﬁ Rﬁ
Az.(Q R)F

i.h.

Lemma 11 (M°)* =5 M.

Proof Induction on M. Only the case of lambda abstraction is nontrivial, in
which we use Lemma 10.

Proposition 12 P =gy . Q iff P* =5 Q*.

Proof P* =4 QF implies P =BI()* (Pt)° =BI(_)* Q1 =gi(_) @ by Lemma 9
and 8.

Proposition 13 M =5 N iff M” =gy(_e N’.

Proof M® =BI(_)* N’ implies M =5 (M")f =5 (N”)* =5 N by Lemma 11 and
4.

In summary, we have shown that the axioms in Figure 1 are sound and
complete for the S-theory of the planar lambda calculus.

2.2 Planar lambda algebras

A BI(_)*-algebra satisfying the axioms of Figure 1 will be called a planar lambda
algebra. Note that our (BI) axioms are similar to Selinger’s axioms for lambda
algebras in the classical case (SK-algebras) [3], where 1 = S (K I) plays the role
of BI. Any extensional BI(_)*-algebra is a planar lambda algebra, as all (BI)
axioms follow from the axiom BT =T of extensional BI(_)*-algebras.

For planar lambda algebras A and B, a homomorphism h : A — B is a
map h from A to B satisfying h(I) = I, h(B) = B, h(a®) = (h(a))® and
h(ab) = h(a) h(b).

The category of planar lambda algebras and homomorphisms will be denoted
by PlanarLamAlg. The closed term model of the planar lambda calculus

planar

(modulo B-equality) gives an initial object Aj of PlanarLamAlg.

3 Internal Operads

We expect that Hyland’s approach to the lambda calculus using semi-closed
cartesian operads [2] and our previous approach to extensional BI(_)®-algebras



Babec = a(be) (B)

Ia = a 0

a*b = ba (o)
B(B(BI)B = B (BIg)
BII = I (BIy)

BIa®* = a° (BI.)
BB*(BB(BBB) = B(BB)B  (Be)
BI'B = BI (le

Ba*B = B(Ba)B ()
(ab)* = Bb*(Ba*B) (appe)

If we write a o b for the composition B a b, they can be rewritten as follows.

Babe = a(be) (B)
Ia = a (0
a*b = ba (o)
(B(BI)oB = B (Blg)
Tol = 1 (BIy)
Ioa® = a° (BlL,)
B*o(Bo(BoB)) (BB)oB (Be
I'oB = BI (Te)
a**oB = (Ba®)oB  (ee)
(ab)* = b*o(a®*oB) (appe)

Figure 1: Axioms of planar lambda algebras



using closed operads and the internal operad construction [1] can be applied to
the planar lambda calculus (with the S-equality) and planar lambda algebras.
Below we shall spell out some of the basic concepts and preliminary results
towards this direction.

3.1 From semi-closed operads to planar lambda algebras

Every semi-closed operad P gives rise to a planar lambda algebra P(0):

Proposition 14 For any semi-closed operad P with app € P(2) and A : P(n+
1) — P(n), P(0) is a planar lambda algebra with a - b = app(a,b), I = A\(id),
B = A A(\(app(id,app)))) and a®* = X app(id,a)). This map P — P(0)
extends to a functor U : SemiClosedOperad — PlanarLamAlg sending
w:P = Q toy: P(0)—= Q(0).

Proof Verifying that P(0) is a planar lambda algebra is routine, and essentially
amounts to the soundness of the translation (—)* into the planar lambda calculus
(Lemma 4). Seeing that ¢q : P(0) — Q(0) is a homomorphism of planar lambda
algebras is immediate as ¢ preserves all the constructs of the planar lambda
algebras by definition.

Proposition 15 Let P and Q be semi-closed operads. Suppose that there is a
homomorphism h : P(0) — Q(0) between the planar lambda algebras P(0) and
Q(0) given as the previous proposition. Then there exists a homomorphism of
operads ¢ : P — Q such that o = h holds.

Proof Define ¢,, : P(n) — Q(n) by ¢o = h and ¢,+1(f) = app(pn(A(f)), id).
We shall verify that ¢ is a homomorphism of semi-closed operads.

o ©1(id) = id:

p1(id) = app(h(A(id)), id)
= app(h(I),id) (I=A(id))
= app(l,id) (h(I) =T1)
= a;)p(k( d),id) (I = A(id))

® Pritoth, (9155 ) = onl9)(0r, (1) - 0r, (fn)):

n times

—
For f € P(n) let [f] = A(...A(f)...) € P(0). We shall note that ¢, (f) =

n times

—_—~
app(...app(h([f]),id)...,id) holds. Then

[g(fr, s )l = Flgl [fi] o [
holds, where F' € P(0) is given by

)‘*p(h <. qnTi11 ... Tk, -P (fh r11 .- xlkl) cee (Qn Tnl «-- mnkn)-

10



Since h is a homomorphism of planar lambda algebras, we have

h(|—g(f17 MR fn)~|)
= h(F[g][Ai] .. [fal)
= F(g]) (W(TAT1) --- (h([fa]))
= /\*xll e xnknh( [91) (h(|’f1-|) 11 - .- xlkl) e (h( [fn]) Tnl --- znkn)

and o, 4.4k, (9(f1,- -+ fn) = €n(9) (@r, (1) -5 ok, (fn) 2
* ©y(app) = app:

p2(app) = app(app(h(A(A(app))), id), id)
= app(app(h(BI),id), id) (A(Mapp)) = BI)
= app(app(B1I,id),id) (h(BI)=BI)
= app(app(M(A(app)), id), id) (A(A(app)) = BI)
= app.

e ¢1(A(app)) = A(app):

¢1(Mapp)) = app(h(AM(A(app))),id)
app(A(A(app)), id) just as the above
= A app).

Corollary 16 Let P and Q be semi-closed operads such that P(0) and Q(0)
are isomorphic as planar lambda algebras. Then P and Q are isomorphic as
semi-closed operads.

Thus, for any planar combinatory algebra A, up to isomorphism there is at
most one semi-closed operad P such that P(0) = A. This applies to extensional
BI(_)*-algebras too, and the claim in [1] that there can be many non-isomorphic
closed operads giving rise to the same extensional BI(_)®-algebra is invalid. The
adjunction between closed operads and extensional BI(_)®-algebras is actually
an equivalence.

3.2 Internal operads of planar lambda algebras

The internal operad construction [1] can be carried out on any planar lambda al-
gebra and the construction gives an equivalence between SemiClosedOperad
and PlanarLamAlg. We shall spell out the expected construction, which is
largely the same as the extensional case [1], though the lack of extensionality
calls for some extra care.

Definition 17 An element a of a planar lambda algebra A is said to be of arity
m — n when

a®*oB™ = (Ba)oB" and (B"I)oa=a
hold.

2This part is hard to follow, largely because the notations of operads and those of combi-
natory algebras are badly mixed. A better presentation would be desirable.

11



Note that, in the extensional case [1], only the first equation in Definition 17 is
required; the second equation is always valid in the extensional case.
For the basic constructs of planar lambda algebras, we have

e B is of arity 2 — 1 by the axioms (Be) and (Blg);
e I is of arity 0 — 0 by the axioms (Te) and (BIy); and
e a* is of arity 0 — 1 by the axioms (ee) and (BI,).

Thus six among the ten axioms of planar lambda algebras are directly related
to the notion of arity. Assuming the first equation a® c B™*! = (Ba) o B", the
second equation (B™1I)oa = a is equivalent to a o (B™I) = a. It follows that
the composition respects the arities, and B™ 1 : m — m serves as the identity
on m. We shall note that, when n = 1, a is of arity m — 1 if and only if the
equation

(aI)*oB™ =a

holds.? This is the same condition as the one used for the extensional case
[1]. So, as long as we are to define internal operads (where only the case of
n = 1 is needed), we can re-use the same characterization from the extensional
case. However, for handling the internal PRO, we do need an extra axiom
(B™I)oa = a.

Tensor products are given using the composition o and the following “adding
lower /upper strands” constructions [1]: for a : m — n,

k+a=B*a:k+m—=k+n

and
a+k=B""N)oa=aoB" ) :m+k—>n+k

Then, for a : m — n and @’ : m’ — n/, their tensor a +a’ : m+m’ — n+n'is
(a+m)o(n+d)=(m+ad)o(a+n).

These data determine a PRO C4 with Ca(m,n) ={a € A| a:m — n} and
an operad — the internal operad — P4 with P4(m) = C4(m,1).

3This might not be entirely obvious. Assuming a : m — 1, we have

(aI)®* o B™ I°0a® o B™T! (appe)
I°o(Ba)oB (a:m—1)
(B(I*)oB)a)oB (B)
(I**oB)a)oB (o0)

aol®*oB (B, e)
aoBI (Ie)
a (a:m —1).

Conversely, assuming a = b® o B™, we have a : m — 1 from b®* : 0 > 1l and B: 2 —» 1
using the argument for adding upper strands: whenever a : I — m and b : m + k — n,
aob=ao(B™**I)ob= (a+k)obis of arity | + k — n.

12



For a € Pa(m+1),let A(a) = (aI)*oB™ € Pa(m). Let app = B € P4(2).

Then
app(A(a),id) = (A(a) +1)oapp

= B™"I)o(al)*ocB™oB
= (B™'I)oI*ca*cBoB™oB
— (B™'I)oI'c(Ba)oB
(Bm+1I)oaOI’OB
— o (BY)

= a

as expected. Moreover, the naturality b o A(a) = A((b+ 1) o a) € P4(m’) holds
for a € Pa(m) and b : m’ — m. Hence P4 is a semi-closed operad. On
the other hand, the n-equality is not valid: for a € P4(m), A(app(a,id)) =
AM(a+1)oB)=aoA(B) =ao (BI)* o B may not be equal to a.

It follows that P4(0) = A®* = {a® | a € A}. The axioms (ee) and (BI,) say
that a® is of arity 0 — 1, hence a® € P4(0). Conversely, if b is of arity 0 — 1,

b = bo(BI) b:0—>1)
= bolI*oB (Te)
= (BI**Bb)oB (B)
= (B(BI*)Bb)oB (ee)
= o(Bb)oB (B)
= I'0b*oB (b:0—1)
(

= (bD° appe)

hence b = (bI)®* € A®. As in the extensional case, A®* = A holds, via (-)I :
A* — Aand (0)*: A — A®. Thus P4 is a semi-closed operad such that P 4(0)
is isomorphic to A.

3.3 Example: the internal operad of the planar lambda
calculus

Consider the planar lambda algebra AL of the S-equivalence classes of closed
planar lambda terms. Then an element a is of arity m — n if and only if a is
the equivalence class of a S-normal form

/\fﬂl‘l .. .Jtm.fMl Mn
with no free f in M;’s.* In particular, an element of arity a — 1 is of the form
)\fxl ‘e Z‘m.f M

which encodes
Tly.e-- Ty =M

in APlanar () of the semi-closed operad AP!*"". For instance:

4This claim is far from obvious; we even think that this is one of the most difficult results
in our study.
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e B = )\fxixs.f (x1 22) encodes the application app = z1,22 F x1 xs.
e BI = )\fz.fz; encodes the identity id = z1 b 2.
e For closed M, M*® = A\f.f M encodes - M.

For a = Afzy...xp.f My ... M,, adding lower k strands gives
k’+a:Bka:)\fyl...ykzl...:cm.fyl ooy My oo M,
whereas adding upper k strands gives
a+k= (Bm+k1)oa:)\fxl...xmzl...zk.fMl oMy 2z

For a = Afx1...xm.f My ... M, and @' = Afyr...ym.fM{ ... M],, their
tensor product a + @’ is

)\fxlxmaylym’fMl MRM{ M//.

n

For
a=Afxy...x.fMy ... My, il —m

and
b=Afy1...ymz1...2..f N1 ... Ny, :m+k — n,

aob:l+k—>nis
Mzi.oooxpzr ooz (N1 N[y i= My, .o Ym = Moy

For a = Afxy...2nZni1.f M, let Ma) = Afzy...20.f (Axpi1.M). For a =
Mxy...xpm.fMand b= Afy;...y,.f N, app(a,b) = ao (Bb) o B gives

Maxi...xpmyr .. yn.-f (M N)

as expected.

All these can be given in the graphical language of the planar lambda calculus
as done in [1]. The crucial difference from 4bid. is that now adding upper stands
is not free at all as we do not assume the n-equality.

4 Extensions

We sketch three extensions of planar lambda algebras: the symmetric, braided,
and cartesian lambda algebras.

Adding Symmetry A symmetry in a planar lambda algebra is an element
C which is subject to the following conditions.

e C is of arity 2 — 2, i.e., satisfies

C*oB*=(BC)oB? and (B?’I)oC=C.

14



e The Coxter relations (or Reidemeister moves)
CoC=B?’I and (BC)oCo(BC)=Co(BC)oC
hold.
e Naturality with respect to B:2 —1and a®:0—1
(BB)oC=Co(BC)oB and a*oC=Ba*
hold.

From the naturality with respect to a®, we can derive
Cabc=ach.

It follows that a® = CIa holds, and more generally a® o b = Cba is derivable.
So it is possible to axiomatize planar lambda algebras with a symmetry as BCI-
algebras where (_)® is not a primitive construct but a derived operator CI (_).
For instance, the arity condition for a : m — n can be replaced by

(CBa)oB™ =(Ba)oB" and (B™I)oa=a.
Such an axiomatization is given in Figure 2. In this axiomatization,
e (Blg) and (a) say B: 2 — 1;
[ ]

Blg) and (cozs) say C:2 — 2;

(
(
e (BIj) and (p) say I: 0 — 0;
(coz1) and (cozs) are the Coxter relations: and
(

Let us call such algebras symmetric lambda algebras (or linear lambda algebras if
we want to emphasize linearity). Symmetric lambda algebras satisfying BI = I
are precisely the extensional BCI-algebras in [1]. The internal operad of a
symmetric lambda algebra is a semi-closed symmetric operad.

Adding Braiding A braiding in a planar lambda algebra is a pair of elements
C* and C~ which are subject to the following conditions.

e C*™ and C™ are of arity 2 — 2, i.e.,

C**oB’=(BC*)oB? and (B%’I)oC*=C*.
e The Coxter relations (or Reidemeister moves):

Ct*oCT=B?’I and (BCH)oC*o(BC*) =C*o(BC*)oC* .

15



Babec = a(be) (B)

Cabc = ach (©)

Ia = a ()
BBI))oB = B (Blg)
(B(BI))oC = C (Blc)
Tol = I (B

CBI = BI (p)
(BB)oB = (CBB)o(BoB) (a)
CoC = B(BI) (cozq)
(BC)o(BoB) = (CBC)o(BoB) (coxs)
(BC)o(Co(BC)) = Co((BC)oC) (coxs)
(BB)oC = Co((BC)oB) (be

Figure 2: Axioms of symmetric lambda algebras

e Naturality with respect to B:2 — 1 and a®: 0 — 1:
(BB)oCt=C*o(BC*)oB and a®oC* =Ba".

From the naturality condition we can defrive
Ctabc=acb and CTab=C ab.

We shall call a planar lambda algebra with a braiding a braided lambda algebra.
Similarly to the case of symmetry, it is possible to axiomatize braided lambda
algebras in terms of B, CT, C~ and I; see Figure 3.

The internal operad of a braided lambda algebra is a semi-closed braided
operad.

Adding Comonoid Structure A cartesian lambda algebra is a symmetric
lambda algebra with elements W and K subject to the axioms saying

e W:1l—-2and K:1—0,

e W and K form a co-commutative comonoid, and

e B and a*® are comonoid morphisms (the latter implies Wab = abb and
Kab=a).

Explicitly, these axioms can be given as Figure 4. Cartesian lambda algebras
are precisely the lambda algebras in the sense of [3], and their internal operads
are semi-closed cartesian operads.
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Babc = a(be) (B)
C*abc = acbh (@)
Ia = a (I
C*tab = Cab (C2)
(B(BI)oB = B (Blg)
(B(BI))oC* = C* (Blg=)
Iol = I (BIy)
C*BI = I (p)
(BB)oB — (C'BB)o(BoB) ()
CtoCT = B(BI) (coz)
(BC*)o(BoB) = (C*BC*)o(BoB) (cors)
(BCH)o(Cto(BC*)) = Cto((BCH)oC*t) (coxs)
(BB)oC* = C*o((BC*)oB) (be)

The double signs + and F in an equation should be taken as appropriately
linked, while * indicates an arbitrary choice of + or —.

Figure 3: Axioms of braided lambda algebras

W*oBoB = (BW)oBoB (W:1—2)
K*°ocBoB = BK (K:1—0)
(BI)oW = W (W:1—2)
(B)cK = K (W:1-0)
WoK = BI (co-unit)

WoW = Wo(BW) (co-associativity)
WoC = W (co-commutativity)
BoW = (BW)oWo(BC)oBo(BB) (B comonoid hom)

BoK = KoK (B comonoid hom)
a®*oW = a®oaqa® (a® comonoid hom)
a*oK =1 (a® comonoid hom)

Figure 4: Axioms of cartesian lambda algebras (only those for W and K)
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