
Planar Lambda Algebras and Semi-closed Operads

Masahito Hasegawa

December 2023

We show how our previous work on extensional BI( )•-algebras and inter-
nal operads [1] can be extended to (possibly non-extensional) planar lambda
algebras which precisely capture the β-theory of the planar lambda calculus.

First, we identify the axioms on BI( )•-terms for making the translations to
& from the β-theory of the planar lambda calculus sound and complete. Planar
lambda algebras are defined to be BI( )•-algebras satisfying these axioms.

Then we give the construction of the internal operads for planar lambda
algebras, which gives an equivalence between planar lambda algebras and semi-
closed operads. Finally, we discuss the symmetric, braided and cartesian cases.

1 Preliminaries

Planar λ-calculus The planar λ-calculus is an untyped linear λ-calculus with
no exchange, whose terms are given by the following rules.

x ` x
variable

Γ, x ` M

Γ ` λx.M
abstraction

Γ ` M Γ′ ` N
Γ,Γ′ ` M N

application

It is easy to see that planar terms are closed under β- and η-conversion. Typical
planar terms include I = λf.f , B = λfxy.f (x y), and M• = λf.f M for planar
closed term M .

BI( )•-algebras A BI( )•-algebra [4] is an applicative structure A with el-
ements I, B and a• for all a ∈ A satisfying B a b c = a (b c), I a = a, and
a• b = b a.

The set of closed terms of the planar lambda calculus modulo the β-equality
forms a BI( )•-algebra Λplanar

0 with I = λf.f , B = λfxy.f (x y), and M• =
λf.f M .

Semi-closed operads Recall that an (planar or non-symmetric) operad P is
a family of sets (P(n))n∈N equipped with an identity id ∈ P(1) and a com-
position map sending fi ∈ P(ki) (1 ≤ i ≤ n) and g ∈ P(n) to the composite
g(f1, . . . , fn) ∈ P(k1 + k2 + . . . + kn) which are subject to the unit law and
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associativity:

f(id , . . . , id) = f = id(f)
h(g1(f11, . . . , f1j1), . . . , gk(fk1, . . . , fkjk)) = (h(g1, . . . , gn))(f11, . . . , fkmk

).

It is semi-closed when there is an element app ∈ P(2) and maps λ(−) :
P(n + 1) → P(n) satisfying the β-rule app(λ(f), id) = f and the naturality
λ(g(f1, . . . , fn, id)) = (λ(g))(f1, . . . , fn).

For semi-closed operads P and Q, a homomorphism φ : P → Q is a family
of maps φn : P (n) → Q(n) (we often omit the subscript n) such that

• φ1(id) = id ,

• φk1+...+kn
(g(f1, . . . , fn)) = φn(g)(φk1

(f1) . . . , φkn
(fn)),

• φ2(app) = app, and

• φn(λ(f)) = λ(φn+1(f)).

The last condition can be replaced by its single instance φ1(λ(app)) = λ(app)
(cf. [2]), because

φn(λ(f)) = φn(λ(app(λ(f), id))) (β-rule)
= φn(λ(app)(λ(f))) (naturality of λ)
= φ1(λ(app))(φn(λ(f))) (φ preserves composition)
= λ(app)(φn(λ(f))) (φ1(λ(app)) = λ(app))
= λ(app(φn(λ(f)), id)) (naturality of λ)
= λ(φ2(app)(φn(λ(f)), φ1(id))) (φ preserves id and app)
= λ(φn+1(app(λ(f), id))) (φ preserves composition)
= λ(φn+1(f)) (β-rule).

Let us write SemiClosedOperad for the category of semi-closed operads and
homomorphisms.

Proposition 1 The term model of the planar lambda calculus modulo β-equality
gives an initial object Λplanar of SemiClosedOperad.

Explicitly, Λplanar (n) is the set of β-equivalence classes of terms with n free vari-
ables x1, . . . , xn. id is (the equivalence class of) x1 ` x1, app is x1, x2 ` x1 x2,
while λ sends x1, . . . , xn, xn+1 ` M to x1, . . . , xn ` λxn+1.M . Composition is
given by the substitution of terms with appropriate renamings. For any semi-
closed operad P, the unique homomorphism from Λplanar to P is determined
by the obvious translation given by [[x]] = id , [[M N ]] = app([[M ]], [[N ]]) and
[[λx.M ]] = λ([[M ]]).

Corollary 2 Semi-closed operads are sound and complete for the planar lambda
calculus with β-equality.
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2 Axiomatizing Planar Lambda Algebras

Let λplanar be the set of planar lambda terms and BI( )• be the set of terms
generated by variables (each occurring at most once), B, I, application and the
( )•-operator on closed terms. Let =ext be the smallest congruence on BI( )•

satisfying the following axioms

BP QR = P (QR) (B)
IP = P (I)

P • Q = QP (•)
BI = I (BI)

BB• (BB (BBB)) = B (BB)B (B•)
BI• B = BI (I•)

BP •• B = B (BP •)B (••)
(P Q)• = BQ• (BP • B) (app•)

It has been shown that this extensional theory =ext is sound and complete for
the βη-theory of the planar lambda calculus and the following translations [1].

Translations Define (−)♯ : BI( )• → λplanar by

B♯ ≡ λxyz.x (y z)
I♯ ≡ λx.x

(P Q)♯ ≡ P ♯ Q♯

(P •)♯ ≡ λx.xP ♯

x♯ ≡ x

and (−)♭ : λplanar → BI( )• by

(λx.M)♭ ≡ λ∗x.M ♭

(M N)♭ ≡ M ♭ N ♭

x♭ ≡ x

where, for P with the rightmost variable x, λ∗x.P is given as follows [4].

λ∗x.x = I

λ∗x.P Q =

{
BQ• (λ∗x.P ) (x ∈ fv(P ))
BP (λ∗x.Q) (x ∈ fv(Q))

We want to modify these axioms to be sound and complete with respect to
the β-theory of the planar lambda calculus. Among these axioms, only (BI) is
unsound for β, as it requires the η-equality:

(BI)♯ ≡ (λxyz.x (y z)) (λx.x) =β λyz.y z 6=β λy.y ≡ I♯

Indeed, each n ≥ 0 should give distinct Bn I as

(Bn I)♯ =β λx0x1 . . . xn.x0 x1 . . . xn
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while Bn I is equal to I in the extensional theory.
For the β-theory, although BIP = P is in general not valid, we still need

to validate the following cases.

BIB = B (BIB0)
BI I = I (BII)

BIP • = P • (BI•)
BI (BP ) = BP (BIB1

)
BI (BP Q) = BP Q (BIB2

)

The last two can be replaced by the following parameter-free axioms.

B (BI)B = B (BIB1
)

B (B (BI))B = B (BIB2
)

It turns out that (BIB0
) and (BIB1

) are derivable from other axioms.1 Hence
all we need are

BI I = I (BII)
BIP • = P • (BI•)

B (B (BI))B = B (BIB)

(For ease of presentation, in the sequel (BIB2
) is renamed just (BIB).) By

(BI), we mean these three axioms (BII), (BI•) and (BIB) instead of the original
unsoundBI = I, and let =BI( )• be the smallest congruence onBI( )• satisfying
this new set of axioms (summarised in Figure 1). Below we show that they are
sound and complete with respect to the β-theory of the planar lambda calculus.

2.1 Proof

Lemma 3 The following equations are derivable in =BI( )• .

B (BP Q) = B (BP ) (BQ) (B2)
BB (BP ) = B (B (BP ))B (B3)

BP I = BIP (BI2)
B (BP Q)R = BP (BQR) (assoc)

1We can derive (BIB1
) from (BIB2

) and other axioms as follows:

B (BI)B = B (BI) (B (B (BI))B) (BIB2
)

= B (B (BI) (B (BI)))B (assoc)
= B (B (B (BI))B (BI))B (B)
= B (B (BI))B (BIB2

)
= B (BIB2

)

where we use (assoc) from Lemma 3 which is derivable without using (BIB0
) nor (BIB1

).
Similarly, we can derive (BIB0

) from (BIB1
) — replace (BI) in the proof above by I.
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Proof (B3) is derivable from (B), (•) and (B•):

BB (BP ) = B (BB)BP (B)
= BB• (BB (BBB))P (B•)
= B• (BB (BBB)P ) (B)
= BB (BBB)P B (•)
= B (BBBP )B (B)
= B (B (BP ))B (B)

(B2) is derivable from (B) and (B3):

B (BP Q) = BB (BP )Q (B)
= B (B (BP ))BQ (B3)
= B (BP ) (BQ) (B)

(BI2) follows from (B), (I•), (•):

BP I = I• (BP ) (•)
= BI• BP (B)
= BIP (I•)

From (BI2) we have B (λ∗x.P ) I = BI (λ∗x.P ) = λ∗x.P because λ∗x.P is either
I or BQR for some Q and R.

The associativity law (assoc), to be frequently used below, is derivable as

B (BP Q)R
B2
= B (BP ) (BQ)R

B
= BP (BQR).

Lemma 4 P =BI( )• Q implies P ♯ =β Q♯.

Proof Just to check that P ♯ =β Q♯ holds for each axiom P = Q.

Lemma 5 (Crucial) P =BI( )• Q implies λ∗x.P =BI( )• λ∗x.Q.

Proof For each axiom P = Q with free (rightmost) x we show λ∗x.P =BI( )•

λ∗x.Q. The relevant cases are (B), (I) and (•), as other axioms are variable-free.

1. (B) λ∗x.BP QR = λ∗x.P (QR) with x ∈ fv(P ):

λ∗x.BP QR ≡ BR• (BQ• (BB (λ∗x.P )))
= BR• (B (BQ• B) (λ∗x.P )) (assoc)
= B (BR• (BQ• B)) (λ∗x.P ) (assoc)
= B (QR)• (λ∗x.P ) (app•)
≡ λ∗x.P (QR)

2. (B) λ∗x.BP QR = λ∗x.P (QR) with x ∈ fv(Q):

λ∗x.BP QR ≡ BR• (B (BP ) (λ∗x.Q))
= B (BR• (BP )) (λ∗x.Q) (assoc)
= B (B (BR•)BP ) (λ∗x.Q) (B)
= B (BR•• BP ) (λ∗x.Q) (••)
= B (R•• (BP )) (λ∗x.Q) (B)
= B (BP R•) (λ∗x.Q) (•)
= BP (BR• (λ∗x.Q)) (assoc)
≡ λ∗x.P (QR)
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3. (B) λ∗x.BP QR = λ∗x.P (QR) with x ∈ fv(R):

λ∗x.BP QR ≡ B (BP Q) (λ∗x.R)
= (BP ) (BQ (λ∗x.R)) (assoc)
≡ λ∗x.P (QR)

4. (I) λ∗x.IP = λ∗x.P with x ∈ fv(P ):

λ∗x.IP ≡ BI (λ∗x.P )
= λ∗x.P (BI)

5. (•) λ∗x.P • Q = λ∗x.QP with x ∈ fv(Q):

λ∗x.P • Q ≡ BP • (λ∗x.Q)
≡ λ∗x.QP

Lemma 6 (M [x := N ])♭ ≡ M ♭[x := N ♭].

Proof Easy induction on M .

Lemma 7 (λ∗x.P )Q =BI( )• P [x := Q].

Proof Easy induction on P , using axioms (B), (I) and (•).

Lemma 8 M =β N implies M ♭ =BI( )• N ♭.

Proof Induction on the derivation of M =β N .
The case of β-axiom (λx.M)N =β M [x := N ] follows from Lemma 6 and 7.
Most other cases are obvious, except the case of the compatibility with lambda
abstraction (the ξ-rule)

M =β N

λx.M =β λx.N

For this assume M =β N . By induction hypothesis we have M ♭ =BI( )• N ♭. By

Lemma 5 we obtain λ∗x.M ♭ =BI( )• λ∗x.N ♭, hence (λx.M)♭ =BI( )• (λx.N)♭.

Lemma 9 (P ♯)♭ =BI( )• P .

Proof Induction on P . The cases of variables, applications and I are obvious.
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For B:
(B♯)♭ ≡ B (BI• (BBI))• (BB (BBI))

= B (BI• (BIB))• (BB (BIB)) (BI2)
= B (BI• B)• (BBB) (BIB0

)
= B (BI)• (BBB) (I•)
= B (BI• (BB• B)) (BBB) (app•)
= BI• (BB• (BB (BBB))) (assoc)
= BI• (B (BB)B) (B•)
= B (BI• (BB))B (assoc)
= B (B (BI•)BB)B (B)
= B (BI•• BB)B (••)
= B (I•• (BB))B (B)
= B (BBI•)B (•)
= BB (BI• B) (assoc)
= BB (BI) (I•)
= B (B (BI))B (B3)
= B (BIB)

For P •:
((P •)♯)♭ ≡ B ((P ♯)♭)• I

= BI ((P ♯)♭)• (BI2)
= ((P ♯)♭)• (BI•)
= P • ind. hyp.

Lemma 10 (λ∗x.P )♯ =β λx.P ♯.

Proof Induction on P .

• P ≡ x:
(λ∗x.x)♯ ≡ I♯ ≡ λx.x ≡ λx.x♯.

• P ≡ QR with x ∈ fv(Q):

(λ∗x.QR)♯ ≡ (BR• (λ∗x.Q))♯

≡ B♯ (R•)♯ (λ∗x.Q)♯

≡ B♯ (λu.uR♯) (λ∗x.Q)♯

=β B♯ (λu.uR♯) (λx.Q♯) i.h.
≡ (λxyz.x (y z)) (λu.uR♯) (λx.Q♯)
=β λz.(λu.uR♯) ((λx.Q♯) z)
=β λx.(λu.uR♯)Q♯

=β λx.(Q♯ R♯)
≡ λx.(QR)♯
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• P ≡ QR with x ∈ fv(R):

(λ∗x.QR)♯ ≡ (BQ (λ∗x.R))♯

≡ B♯ Q♯ (λ∗x.R)♯

=β B♯ Q♯ (λx.R♯) i.h.
≡ (λxyz.x (y z))Q♯ (λx.R♯)
=β λz.Q♯ ((λx.R♯) z)
=β λx.Q♯ R♯

≡ λx.(QR)♯

Lemma 11 (M ♭)♯ =β M .

Proof Induction on M . Only the case of lambda abstraction is nontrivial, in
which we use Lemma 10.

Proposition 12 P =BI( )• Q iff P ♯ =β Q♯.

Proof P ♯ =β Q♯ implies P =BI( )• (P ♯)♭ =BI( )• (Q♯)♭ =BI( )• Q by Lemma 9
and 8.

Proposition 13 M =β N iff M ♭ =BI( )• N ♭.

Proof M ♭ =BI( )• N ♭ implies M =β (M ♭)♯ =β (N ♭)♯ =β N by Lemma 11 and
4.

In summary, we have shown that the axioms in Figure 1 are sound and
complete for the β-theory of the planar lambda calculus.

2.2 Planar lambda algebras

A BI( )•-algebra satisfying the axioms of Figure 1 will be called a planar lambda
algebra. Note that our (BI) axioms are similar to Selinger’s axioms for lambda
algebras in the classical case (SK-algebras) [3], where 1 = S (KI) plays the role
of BI. Any extensional BI( )•-algebra is a planar lambda algebra, as all (BI)
axioms follow from the axiom BI = I of extensional BI( )•-algebras.

For planar lambda algebras A and B, a homomorphism h : A → B is a
map h from A to B satisfying h(I) = I, h(B) = B, h(a•) = (h(a))• and
h(a b) = h(a)h(b).

The category of planar lambda algebras and homomorphisms will be denoted
by PlanarLamAlg. The closed term model of the planar lambda calculus
(modulo β-equality) gives an initial object Λplanar

0 of PlanarLamAlg.

3 Internal Operads

We expect that Hyland’s approach to the lambda calculus using semi-closed
cartesian operads [2] and our previous approach to extensional BI( )•-algebras
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B a b c = a (b c) (B)
I a = a (I)
a• b = b a (•)

B (B (BI))B = B (BIB)
BI I = I (BII)

BI a• = a• (BI•)
BB• (BB (BBB)) = B (BB)B (B•)

BI• B = BI (I•)
B a•• B = B (B a•)B (••)

(a b)• = B b• (B a• B) (app•)

If we write a ◦ b for the composition B a b, they can be rewritten as follows.

B a b c = a (b c) (B)
I a = a (I)
a• b = b a (•)

(B (BI)) ◦B = B (BIB)
I ◦ I = I (BII)

I ◦ a• = a• (BI•)
B• ◦ (B ◦ (B ◦B)) = (BB) ◦B (B•)

I• ◦B = BI (I•)
a•• ◦B = (B a•) ◦B (••)
(a b)• = b• ◦ (a• ◦B) (app•)

Figure 1: Axioms of planar lambda algebras
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using closed operads and the internal operad construction [1] can be applied to
the planar lambda calculus (with the β-equality) and planar lambda algebras.
Below we shall spell out some of the basic concepts and preliminary results
towards this direction.

3.1 From semi-closed operads to planar lambda algebras

Every semi-closed operad P gives rise to a planar lambda algebra P(0):

Proposition 14 For any semi-closed operad P with app ∈ P(2) and λ : P(n+
1) → P(n), P(0) is a planar lambda algebra with a · b = app(a, b), I = λ(id),
B = λ(λ(λ(app(id ,app)))) and a• = λ(app(id , a)). This map P 7→ P(0)
extends to a functor U : SemiClosedOperad → PlanarLamAlg sending
φ : P → Q to φ0 : P(0) → Q(0).

Proof Verifying that P(0) is a planar lambda algebra is routine, and essentially
amounts to the soundness of the translation (−)♯ into the planar lambda calculus
(Lemma 4). Seeing that φ0 : P(0) → Q(0) is a homomorphism of planar lambda
algebras is immediate as φ preserves all the constructs of the planar lambda
algebras by definition.

Proposition 15 Let P and Q be semi-closed operads. Suppose that there is a
homomorphism h : P(0) → Q(0) between the planar lambda algebras P(0) and
Q(0) given as the previous proposition. Then there exists a homomorphism of
operads φ : P → Q such that φ0 = h holds.

Proof Define φn : P(n) → Q(n) by φ0 = h and φn+1(f) = app(φn(λ(f)), id).
We shall verify that φ is a homomorphism of semi-closed operads.

• φ1(id) = id :

φ1(id) = app(h(λ(id)), id)
= app(h(I), id) (I = λ(id))
= app(I, id) (h(I) = I)
= app(λ(id), id) (I = λ(id))
= id

• φk1+...+kn
(g(f1, . . . , fn)) = φn(g)(φk1

(f1) . . . , φkn
(fn)):

For f ∈ P(n) let dfe =
n times︷ ︸︸ ︷
λ(. . . λ(f) . . .) ∈ P(0). We shall note that φn(f) =

n times︷ ︸︸ ︷
app(. . .app(h(dfe), id) . . . , id) holds. Then

dg(f1, . . . , fn)e = F dge df1e . . . dfne

holds, where F ∈ P(0) is given by

λ∗pq1 . . . qnx11 . . . xnkn
.p (q1 x11 . . . x1k1

) . . . (qn xn1 . . . xnkn
).
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Since h is a homomorphism of planar lambda algebras, we have

h(dg(f1, . . . , fn)e)
= h(F dge df1e . . . dfne)
= F (h(dge) (h(df1e)) . . . (h(dfne))
= λ∗x11 . . . xnkn

.h(dge) (h(df1e)x11 . . . x1k1
) . . . (h(dfne)xn1 . . . xnkn

)

and φk1+...+kn
(g(f1, . . . , fn)) = φn(g)(φk1

(f1) . . . , φkn
(fn)).

2

• φ2(app) = app:

φ2(app) = app(app(h(λ(λ(app))), id), id)
= app(app(h(BI), id), id) (λ(λ(app)) = BI)
= app(app(BI, id), id) (h(BI) = BI)
= app(app(λ(λ(app)), id), id) (λ(λ(app)) = BI)
= app.

• φ1(λ(app)) = λ(app):

φ1(λ(app)) = app(h(λ(λ(app))), id)
= app(λ(λ(app)), id) just as the above
= λ(app).

Corollary 16 Let P and Q be semi-closed operads such that P(0) and Q(0)
are isomorphic as planar lambda algebras. Then P and Q are isomorphic as
semi-closed operads.

Thus, for any planar combinatory algebra A, up to isomorphism there is at
most one semi-closed operad P such that P(0) ∼= A. This applies to extensional
BI( )•-algebras too, and the claim in [1] that there can be many non-isomorphic
closed operads giving rise to the same extensional BI( )•-algebra is invalid. The
adjunction between closed operads and extensional BI( )•-algebras is actually
an equivalence.

3.2 Internal operads of planar lambda algebras

The internal operad construction [1] can be carried out on any planar lambda al-
gebra and the construction gives an equivalence between SemiClosedOperad
and PlanarLamAlg. We shall spell out the expected construction, which is
largely the same as the extensional case [1], though the lack of extensionality
calls for some extra care.

Definition 17 An element a of a planar lambda algebra A is said to be of arity
m → n when

a• ◦Bm+1 = (B a) ◦Bn and (Bm I) ◦ a = a

hold.
2This part is hard to follow, largely because the notations of operads and those of combi-

natory algebras are badly mixed. A better presentation would be desirable.
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Note that, in the extensional case [1], only the first equation in Definition 17 is
required; the second equation is always valid in the extensional case.

For the basic constructs of planar lambda algebras, we have

• B is of arity 2 → 1 by the axioms (B•) and (BIB);

• I is of arity 0 → 0 by the axioms (I•) and (BII); and

• a• is of arity 0 → 1 by the axioms (••) and (BI•).

Thus six among the ten axioms of planar lambda algebras are directly related
to the notion of arity. Assuming the first equation a• ◦Bm+1 = (B a) ◦Bn, the
second equation (Bm I) ◦ a = a is equivalent to a ◦ (BnI) = a. It follows that
the composition respects the arities, and Bm I : m → m serves as the identity
on m. We shall note that, when n = 1, a is of arity m → 1 if and only if the
equation

(a I)• ◦Bm = a

holds.3 This is the same condition as the one used for the extensional case
[1]. So, as long as we are to define internal operads (where only the case of
n = 1 is needed), we can re-use the same characterization from the extensional
case. However, for handling the internal PRO, we do need an extra axiom
(Bm I) ◦ a = a.

Tensor products are given using the composition ◦ and the following “adding
lower/upper strands” constructions [1]: for a : m → n,

k + a = Bk a : k +m → k + n

and
a+ k = (Bm+k I) ◦ a = a ◦ (Bn+k I) : m+ k → n+ k.

Then, for a : m → n and a′ : m′ → n′, their tensor a+ a′ : m+m′ → n+ n′ is
(a+m′) ◦ (n+ a′) = (m+ a′) ◦ (a+ n′).

These data determine a PRO CA with CA(m,n) = {a ∈ A | a : m → n} and
an operad — the internal operad — PA with PA(m) = CA(m, 1).

3This might not be entirely obvious. Assuming a : m → 1, we have

(a I)• ◦Bm = I• ◦ a• ◦Bm+1 (app•)
= I• ◦ (B a) ◦B (a : m → 1)
= ((B (I•) ◦B) a) ◦B (B)
= ((I•• ◦B) a) ◦B (••)
= a ◦ I• ◦B (B, •)
= a ◦BI (I•)
= a (a : m → 1).

Conversely, assuming a = b• ◦ Bm, we have a : m → 1 from b• : 0 → 1 and B : 2 → 1
using the argument for adding upper strands: whenever a : l → m and b : m + k → n,
a ◦ b = a ◦ (Bm+k I) ◦ b = (a+ k) ◦ b is of arity l + k → n.
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For a ∈ PA(m+1), let λ(a) = (a I)• ◦Bm ∈ PA(m). Let app = B ∈ PA(2).
Then

app(λ(a), id) = (λ(a) + 1) ◦ app
= (Bm+1 I) ◦ (a I)• ◦Bm ◦B
= (Bm+1 I) ◦ I• ◦ a• ◦B ◦Bm ◦B
= (Bm+1 I) ◦ I• ◦ (B a) ◦B
= (Bm+1 I) ◦ a ◦ I• ◦B
= a ◦ (BI)
= a

as expected. Moreover, the naturality b ◦ λ(a) = λ((b+ 1) ◦ a) ∈ PA(m
′) holds

for a ∈ PA(m) and b : m′ → m. Hence PA is a semi-closed operad. On
the other hand, the η-equality is not valid: for a ∈ PA(m), λ(app(a, id)) =
λ((a+ 1) ◦B) = a ◦ λ(B) = a ◦ (BI)• ◦B may not be equal to a.

It follows that PA(0) = A• ≡ {a• | a ∈ A}. The axioms (••) and (BI•) say
that a• is of arity 0 → 1, hence a• ∈ PA(0). Conversely, if b is of arity 0 → 1,

b = b ◦ (BI) (b : 0 → 1)
= b ◦ I• ◦B (I•)
= (BI•• B b) ◦B (B)
= (B (BI•)B b) ◦B (••)
= I• ◦ (B b) ◦B (B)
= I• ◦ b• ◦B (b : 0 → 1)
= (b I)• (app•)

hence b = (b I)• ∈ A•. As in the extensional case, A• ∼= A holds, via ( ) I :
A• → A and ( )• : A → A•. Thus PA is a semi-closed operad such that PA(0)
is isomorphic to A.

3.3 Example: the internal operad of the planar lambda
calculus

Consider the planar lambda algebra Λplanar
0 of the β-equivalence classes of closed

planar lambda terms. Then an element a is of arity m → n if and only if a is
the equivalence class of a β-normal form

λfx1 . . . xm.f M1 . . . Mn

with no free f in Mi’s.
4 In particular, an element of arity a → 1 is of the form

λfx1 . . . xm.f M

which encodes
x1, . . . xm ` M

in Λplanar (n) of the semi-closed operad Λplanar . For instance:

4This claim is far from obvious; we even think that this is one of the most difficult results
in our study.
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• B = λfx1x2.f (x1 x2) encodes the application app = x1, x2 ` x1 x2.

• BI = λfx1.f x1 encodes the identity id = x1 ` x1.

• For closed M , M• = λf.f M encodes ` M .

For a = λfx1 . . . xm.f M1 . . . Mn, adding lower k strands gives

k+ a = Bk a = λfy1 . . . ykx1 . . . xm.f y1 . . . yk M1 . . . Mn

whereas adding upper k strands gives

a+ k = (Bm+k I) ◦ a = λfx1 . . . xmz1 . . . zk.f M1 . . . Mn z1 . . . zk.

For a = λfx1 . . . xm.f M1 . . . Mn and a′ = λfy1 . . . ym′ .f M ′
1 . . . M ′

n′ , their
tensor product a+ a′ is

λfx1 . . . xm, y1 . . . ym′ .f M1 . . . Mn M
′
1 . . . M ′

n′ .

For
a = λfx1 . . . xl.f M1 . . . Mm : l → m

and
b = λfy1 . . . ymz1 . . . zk.f N1 . . . Nn : m+ k → n,

a ◦ b : l + k → n is

λfx1 . . . xlz1 . . . zk.(f N1 . . . Nn)[y1 := M1, . . . , ym := Mm].

For a = λfx1 . . . xnxn+1.f M , let λ(a) = λfx1 . . . xn.f (λxn+1.M). For a =
λfx1 . . . xm.f M and b = λfy1 . . . yn.f N , app(a, b) = a ◦ (B b) ◦B gives

λfx1 . . . xmy1 . . . yn.f (M N)

as expected.
All these can be given in the graphical language of the planar lambda calculus

as done in [1]. The crucial difference from ibid. is that now adding upper stands
is not free at all as we do not assume the η-equality.

4 Extensions

We sketch three extensions of planar lambda algebras: the symmetric, braided,
and cartesian lambda algebras.

Adding Symmetry A symmetry in a planar lambda algebra is an element
C which is subject to the following conditions.

• C is of arity 2 → 2, i.e., satisfies

C• ◦B3 = (BC) ◦B2 and (B2 I) ◦C = C.

14



• The Coxter relations (or Reidemeister moves)

C ◦C = B2 I and (BC) ◦C ◦ (BC) = C ◦ (BC) ◦C

hold.

• Naturality with respect to B : 2 → 1 and a• : 0 → 1

(BB) ◦C = C ◦ (BC) ◦B and a• ◦C = B a•

hold.

From the naturality with respect to a•, we can derive

C a b c = a c b.

It follows that a• = CI a holds, and more generally a• ◦ b = C b a is derivable.
So it is possible to axiomatize planar lambda algebras with a symmetry as BCI-
algebras where ( )• is not a primitive construct but a derived operator CI ( ).
For instance, the arity condition for a : m → n can be replaced by

(CB a) ◦Bm = (B a) ◦Bn and (Bm I) ◦ a = a.

Such an axiomatization is given in Figure 2. In this axiomatization,

• (BIB) and (α) say B : 2 → 1;

• (BIC) and (cox 2) say C : 2 → 2;

• (BII) and (ρ) say I : 0 → 0;

• (cox 1) and (cox 3) are the Coxter relations: and

• (bc) is the naturality of C with respect to B : 2 → 1.

Let us call such algebras symmetric lambda algebras (or linear lambda algebras if
we want to emphasize linearity). Symmetric lambda algebras satisfying BI = I
are precisely the extensional BCI-algebras in [1]. The internal operad of a
symmetric lambda algebra is a semi-closed symmetric operad.

Adding Braiding A braiding in a planar lambda algebra is a pair of elements
C+ and C− which are subject to the following conditions.

• C+ and C− are of arity 2 → 2, i.e.,

C±• ◦B3 = (BC±) ◦B2 and (B2 I) ◦C± = C±.

• The Coxter relations (or Reidemeister moves):

C± ◦C∓ = B2 I and (BC±) ◦C± ◦ (BC±) = C± ◦ (BC±) ◦C±.
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B a b c = a (b c) (B)
C a b c = a c b (C)

I a = a (I)
(B (BI)) ◦B = B (BIB)
(B (BI)) ◦C = C (BIC)

I ◦ I = I (BII)
CBI = BI (ρ)

(BB) ◦B = (CBB) ◦ (B ◦B) (α)
C ◦C = B (BI) (cox 1)

(BC) ◦ (B ◦B) = (CBC) ◦ (B ◦B) (cox 2)
(BC) ◦ (C ◦ (BC)) = C ◦ ((BC) ◦C) (cox 3)

(BB) ◦C = C ◦ ((BC) ◦B) (bc)

Figure 2: Axioms of symmetric lambda algebras

• Naturality with respect to B : 2 → 1 and a• : 0 → 1:

(BB) ◦C± = C± ◦ (BC±) ◦B and a• ◦C± = B a•.

From the naturality condition we can defrive

C± a b c = a c b and C+ a b = C− a b.

We shall call a planar lambda algebra with a braiding a braided lambda algebra.
Similarly to the case of symmetry, it is possible to axiomatize braided lambda
algebras in terms of B, C+, C− and I; see Figure 3.

The internal operad of a braided lambda algebra is a semi-closed braided
operad.

Adding Comonoid Structure A cartesian lambda algebra is a symmetric
lambda algebra with elements W and K subject to the axioms saying

• W : 1 → 2 and K : 1 → 0,

• W and K form a co-commutative comonoid, and

• B and a• are comonoid morphisms (the latter implies W a b = a b b and
K a b = a).

Explicitly, these axioms can be given as Figure 4. Cartesian lambda algebras
are precisely the lambda algebras in the sense of [3], and their internal operads
are semi-closed cartesian operads.
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