
�
�

�
�

�
�

�
�

Publ. RIMS, Kyoto Univ.
40 (2004), 991–1014

The Uniformity Principle
on Traced Monoidal Categories†

By

Masahito Hasegawa
∗

Abstract

The uniformity principle for traced monoidal categories has been introduced as
a natural generalization of the uniformity principle (Plotkin’s principle) for fixpoint
operators in domain theory. We show that this notion can be used for constructing
new traced monoidal categories from known ones. Some classical examples like the
Scott induction principle are shown to be instances of these constructions. We also
characterize some specific cases of our constructions as suitable enriched limits.

§1. Introduction

Traced monoidal categories were introduced by Joyal, Street and Verity
[16] as the categorical structure for cyclic phenomena arising from various areas
of mathematics, most notably knot theory [25]. They are (balanced) monoidal
categories [15] enriched with a trace, which is a natural generalization of the
traditional notion of trace in linear algebra, and can be regarded as an operator
to create a “loop”. For example, the braid closure operation — e.g. the con-
struction of the trefoil knot from a braid depicted below — can be considered
as the trace operator on the category of tangles.

�������
�

⇒ ������

�� ���
�
�

�
	

�

=

�

Communicated by R. Nakajima. Received December 16, 2003.
2000 Mathematics Subject Classification(s): 18D10, 19D23

†This article is an invited contribution to a special issue of Publications of RIMS com-
memorating the fortieth anniversary of the founding of the Research Institute for Math-
ematical Sciences.

∗Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan;
PRESTO, Japan Science and Technology Agency, Japan

c© 2004 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

�
�

�
�

�
�

�
�

992 Masahito Hasegawa

In computer science, specialized versions of traced monoidal categories natu-
rally arise from considerations on recursion/feedback operators (in the fairly
general sense) as well as cyclic data structures. Here is a graphical account of
the recursive (fixpoint) computation created from a circularly shared structure:

f � ⇒ f �

�� ���

=
�
���
��

f

f

�

�

�

�

In the middle of 90’s, Martin Hyland and the author independently ob-
served a bijective correspondence between Conway (Bekič, or dinatural diago-
nal) fixpoint operators [3, 23] and traces on categories with finite products [8, 9].
Thus, in this setting, the notion of trace precisely captures the well-behaved
fixpoint operators commonly used in computer science.

An extra bonus of this trace-fixpoint correspondence is that the uniformity
principle (à la Plotkin) on a fixpoint operator [20, 6, 23] precisely amounts to a
uniformity principle on the corresponding trace, as introduced in the previous
work [8, 9] (see also historical remarks at the end of Sec. 3). This uniformity
principle is general enough to make sense for arbitrary traced monoidal cate-
gories. An application of this concept is found in Selinger’s work on categorical
models of asynchronous communications [21].

In the present paper we demonstrate that this uniformity principle on
traced monoidal categories can be used for constructing new traced monoidal
categories (and categories with fixpoint operators) from known ones. The con-
struction is very simple and in some sense old – its origin can be traced back
to the Scott induction principle.

We must admit that, by its general nature, our constructions do not im-
mediately provide mathematically strong results. However, we think that our
development is a natural one, in that it adds a new view to the relationship
between model construction techniques and proof principles; in particular, we
expect that results of this paper can be combined with the well-established
relationship between categorical glueing and logical relations.

Moreover, our constructions seem to enjoy characterizations by some uni-
versal property, as certain limits in an enriched sense. We study this issue for
some specific cases, point out the difficulties in this direction, and propose a
solution for which our leading example (with a slight modification) is charac-
terized as a Graph-enriched limit.

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 993

The rest of this paper is organized as follows. In Sec. 2, we explain the
graphical notations for symmetric monoidal categories which are used through-
out this paper, and recall the notion of traced symmetric monoidal categories.
We then introduce the notion of uniformity and strict maps for traced monoidal
categories in Sec. 3. Sec. 4 is devoted for some basic results on the uniformity
principle. In Sec. 5 we recall the correspondence between traces and fixpoint
operators and give the relationship between the uniformity principle for traces
and that for Conway operators. Sec. 6 and 7 form the central part of this paper,
where we show how the uniformity principle can be used for constructing new
traced monoidal categories. Sec. 8 gives some observations on the uniformity
principle and the Int construction.

This paper is a revised and extended version of the work presented at the
Category Theory and Computer Science (CTCS’02) conference [10].

Remark 1.1. Although many of the notions and results in this work ap-
ply to general traced balanced monoidal categories (where we may have non-
trivial intertwiners and twists [15, 22] which are essential for interpreting the
ribbon diagrams [25]), in this paper we restrict our attention only to traced
symmetric monoidal categories, firstly because for ease of presentation, and
secondly because most of examples relevant to computer science seem to be
instances of symmetric monoidal categories. So by a traced monoidal category,
in this paper we mean a traced symmetric monoidal category unless otherwise
stated.

§2. Preliminaries

§2.1. Graphic presentation of monoidal categories

In this paper, an arrow f : A1 ⊗ A2 ⊗ · · · ⊗ Am → B1 ⊗ B2 ⊗ · · · ⊗ Bn

in a monoidal category [19, 15] (pretended as if the tensor product is strictly
associative for brevity) is drawn as (from left to right)

f

Am

A2

:

A1

�Bn

�B2

:

�B1

The identity morphism is drawn just as a straight arrow. The composition
of f : X → Y and g : Y → Z is represented as a sequential composition

�
�

�
�

�
�

�
�

994 Masahito Hasegawa

X f �Y Y g �Z ⇒ X f Y g �Z

while the tensor f ⊗ g : A⊗C → B ⊗D of f : A → B and g : C → D is drawn
as a parallel composition

A f �B

C g �D

⇒
A f �B

C g �D

The symmetry cX,Y : X ⊗ Y → Y ⊗ X in a symmetric monoidal category is
represented by a cross wiring:

X

Y

���� �Y
�X

A formal justification of these graphical presentations has been given by Joyal
and Street [14].

§2.2. Traced monoidal categories

A trace on a symmetric monoidal category C is a family of functions TrX
A,B :

C(A ⊗ X, B ⊗ X) → C(A, B) subject to the following conditions:

• it is natural in A and B (left/right tightening), and dinatural in X (sliding)

• vanishing: TrI
A,B(f) = f and TrX⊗Y

A,B (f) = TrX
A,B(TrY

A⊗X,B⊗X(f))

• superposing: TrX
C⊗A,C⊗B(idC ⊗ f) = idC ⊗ TrX

A,B(f)

• yanking: TrX
X,X(cX,X) = idX

where, again for brevity, we pretend as if the tensor is strictly associative. A
traced symmetric monoidal category is a symmetric monoidal category equipped
with a (specified) trace – note that there can be many ways of giving traces.

Trace admits a natural graphical presentation as a “feedback”: for f :
A ⊗ X → B ⊗ X, its trace TrX

A,B(f) : A → B can be drawn as�� ���

fA �B

Using this notation, the axioms for trace given above can be graphically pre-
sented as follows.

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 995

Naturality (Left Tightening)�� ���

h
f � =

�� ���

h
f �

Naturality (Right Tightening)�� ���

f
h � =

�� ���

f
h �

Dinaturality (Sliding)�� ���
h f � =

�� ���

f h
�

Vanishing (I)
� I

f � = f �

Vanishing (⊗)�� ���
�
�

�
�

�

f
� =

�� ���
�
�

�
�

�

f
�

Superposing�� ���

f �
�

=

�� ���

f �
�

Yanking�� ���

����� = �

§3. Uniformity for Traces

Definition 3.1. Consider a traced monoidal category C with trace Tr.
We say h : X → Y is strict in C (with respect to the trace Tr) if the following
condition holds:

For any f : A ⊗ X → B ⊗ X and g : A ⊗ Y → B ⊗ Y ,
(idB ⊗ h) ◦ f = g ◦ (idA ⊗ h) : A ⊗ X → B ⊗ Y

A ⊗ X B ⊗ X

A ⊗ Y B ⊗ Y

�f

�
idA⊗h

�
idB⊗h

�
g

implies TrX
A,B(f) = TrY

A,B(g) : A → B.

In terms of the graphic notation:

f
h

X X �Y
A �B

= h g
X Y �Y
A �B

⇒

�� ���

fA �B
=

�� ���

gA �B

�
�

�
�

�
�

�
�

996 Masahito Hasegawa

Definition 3.2. Let C be a traced monoidal category with trace Tr, and
S be a class of arrows of C. We say Tr is uniform (or: Tr satisfies the uni-
formity principle) for S if, for any h : X → Y of S, the condition in Def. 3.1
holds.

Thus the class of strict maps is the largest class of arrows for which the trace
satisfies the uniformity principle.

As noted by Selinger [21], the uniformity principle can be seen a proof
principle for showing two traces are equivalent: to prove TrX(f) = TrY (g), it
suffices to find h : X → Y of S such that (id⊗h)◦f = g◦(id⊗h) holds. In such
applications, it is often convenient to give S a priori as a suitable subcategory
containing reasonably rich class of arrows; see ibid. for several good examples.

However, we note that there is no reason to expect that the class of strict
maps form a category – in fact there are counterexamples, as we will see shortly.
For now, we shall recall some popular examples, where strict maps actually form
categories.

Example 3.1.
• The category of finite dimensional vector spaces over a field and linear

maps, where the trace is a natural generalization of the standard trace
[16]: for a linear map f : U ⊗K W → V ⊗K W , its trace TrW

U,V (f) : U → V

is given by

(TrW
U,V (f))i,j = Σkfi⊗k,j⊗k

—if U = V = K, we have TrW (f) = Σkfk,k as expected. An arrow in this
category is strict if and only if it is an isomorphism.

• The category Cppo of ω-cpo’s with bottom and continuous functions,
where the trace is induced from the least fixpoint operator (see Sec. 5).
Explicitly, for f : A × X → B × X we have TrX

A,B(f) : A → B by

TrX
A,B(f)(a) = πB,X(fixB×X (λ(bB, xX).f(a, x)))

where fixB×X : (B × X)B×X → B × X is the least fixpoint operator. An
arrow is strict w.r.t. this trace iff it preserves the bottom element.

• The category of sets and partial functions, with coproducts as monoidal
products — its trace is derived from the natural feedback operator: for

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 997

f : A + X → B + X we have TrX
A,B(f) : A → B by

TrX
A,B(fA+X→B+X)(aA) =

case f(inA(a)) of

(
inB(b) �→ b
inX(y) �→ feedbackX,B(f ◦ inX)(y)

)

where

feedbackX,B(gX→B+X)(xX) = case g(x) of

(
inB(b) �→ b
inX(y) �→ feedbackX,B(g)(y)

)

In this setting any arrow is strict.

Remark 3.1. Our terminology (“uniformity” and “strictness”) is moti-
vated from that of fixpoint operators in domain theory, and will be justified
in Sec. 5. The corresponding notions for various specialized versions of traced
monoidal categories had appeared in the literature under various names and
forms. In particular, Ştefǎnescu’s “enzymatic rule” for his network algebras
[24] precisely corresponds to our uniformity principle, where strict arrows are
called “functorial arrows” (following the terminology by Arbib and Manes for
partially additive categories [2]). See ibid. for bibliographic remarks and also
several examples.

§4. Basic Facts

As a warming up, let us see a few basic (but fundamental) properties
which strict maps in a traced monoidal category enjoy — and do not enjoy.
In summary, we will see that (1) isomorphisms are strict, (2) strict maps are
closed under tensor product, but (3) strict maps may not be closed under
composition. To help with the intuition, we shall extensively make use of the
graphical presentation in the proofs below.

Lemma 4.1. In a traced monoidal category, isomorphisms are strict.

Proof. Suppose h is an isomorphism. Then

f h �
� = h g

�
�

�
�

�
�

�
�

�
�

998 Masahito Hasegawa

implies �� ���

f � = h−1 ◦ h = id

�� ���

f h h−1

�

= dinaturality

�� ���

h−1
f h

�

= assumption

�� ���

h−1 h g �

= h ◦ h−1 = id

�� ���

g �

Hence h is strict.

By a similar argument we also have

Lemma 4.2. The composition of a strict map and an isomorphism is
strict.

(This actually subsumes the previous lemma, as an identity is trivially strict.)

Lemma 4.3. Strict maps are closed under tensor product.

Proof. Suppose h and k are strict. Then

f
h
k

h
k

f
h

k
h

k

g

g

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 999

is strictf k

k

k h

naturalityf k k

is strictf

vanishingf

g

g

g

g

Hence k ⊗ h is also strict.

Corollary 4.1. If strict maps are closed under trace, they are also
closed under composition (hence form a traced monoidal subcategory).

Proof. Let h : X → Y and k : Y → Z be strict. The previous lemmas
imply that cY,Z ◦ (h ⊗ k) : X ⊗ Y → Z ⊗ Y is also strict, and we then have
TrY (cY,Z ◦ (h ⊗ k)) = k ◦ h : X → Z strict.

Proposition 4.1. There are traced monoidal categories in which strict
maps are not closed under composition.

Proof. Consider the traced monoidal category generated from an object
X, arrows f, g, h : X → X with axioms h◦h◦f = g◦h◦h and TrX(k◦h) = TrX(h)
for any k : X → X.

f h h � = h h g �
�� ���

h . . . =
�� ���

h

In this traced category, h is strict but h ◦ h is not (although h ◦ h ◦ f = g ◦ h ◦ h,
TrX(f) �= TrX(g)).

�
�

�
�

�
�

�
�

1000 Masahito Hasegawa

Corollary 4.2. There are traced monoidal categories in which strict
maps are not closed under trace.

§5. The Trace-Fixpoint Correspondence

Before going into the main topic of this paper (constructions of traced
monoidal categories using uniformity principle), let us recall how traces and
fixpoint operators on a category with finite products are related, and see how
the uniformity principle on traced monoidal categories generalizes that on cat-
egories with fixpoint operator. Later these observations enable us to specialize
some of our constructions of traced monoidal categories to those of categories
with fixpoint operator.

§5.1. Fixpoint operators

Let C be a category with finite products.

Definition 5.1. A parameterized fixpoint operator on C is a family of
functions

(−)† : C(A × X, X) → C(A, X)

which is natural in A and satisfies the fixpoint equation f† = f ◦ 〈idA, f†〉 :
A → X for f : A × X → X.

Definition 5.2. A Conway operator on C is a parameterized fixpoint
operator (−)† which satisfies

• dinaturality: (f ◦ 〈πA,X , g〉)† = f ◦ 〈idA, (g ◦ 〈πA,Y , f〉)†〉 : A → X for
f : A × Y → X and g : A × X → Y

• diagonal property: (f ◦(idA×∆X))† = (f†)† : A → X for f : A×X×X →
X, where ∆X : X → X × X is the diagonal map.

This axiomatization of Conway operators is taken from [23]; see [3, 9] for other
possible axiomatizations.

§5.2. The correspondence

The basic relationship between traces and fixpoint operators is

Theorem 5.1 (Hyland/Hasegawa). For any category with finite prod-
ucts, to give a Conway operator is to give a trace (where finite products are
taken as the monoidal structure).

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 1001

This observation, noticed independently by Martin Hyland and the author,
together with some implications to the study on semantics of recursive com-
putation, was first announced in [8]; a full proof is found in [9] (but we should
note that mathematically equivalent observations have been made by several
authors even before the notion of traced monoidal categories was invented, in
particular by Bloom and Ésik [3] and Ştefǎnescu [24]). Here we shall just recall
the constructions of this bijective correspondence:

f : A × X → X

f† = TrX
A,X(∆X ◦ f) : A → X

g : A × X → B × X

TrX
A,B(g) = πB,X ◦ (g ◦ (idA × π′

B,X))† : A → B

§5.3. Correspondence of the uniformity principles

Quite fortunately, the correspondence between traces and Conway opera-
tors smoothly extends to the uniformity principles. Let us recall the classical
notion of uniformity for fixed points (Plotkin’s principle):

Definition 5.3. Let (−)† be a parameterized fixpoint operator on a
category with finite products. We say h : X → Y is strict (with respect to
(−)†) if the following condition holds:

For any f : A × X → X and g : A × Y → Y , h ◦ f = g ◦ (idA × h)

A × X X

A × Y Y

�f

�

idA×h

�

h

�
g

implies g† = h ◦ f† : A → Y .

(The reader should compare this with the corresponding definition for traced
monoidal categories (Def. 3.1). They are quite similar – we should confess that
Def. 3.1 was inspired from Def. 5.3 – but they are also subtly different, in
that the arrow h in the pre-condition of Def. 5.3 survives in the post-condition
while it disappears from the post-condition in Def. 3.1.)

For instance, in the category Cppo an arrow is strict with respect to the
standard least fixpoint operator if and only if it preserves the bottom, thus is
strict in the standard sense.

�
�

�
�

�
�

�
�

1002 Masahito Hasegawa

It is also possible to formulate the uniformity principle with respect to a
given class (quite often a subcategory) S of strict maps in the same way as
Def. 3.2: (−)† satisfies the uniformity principle for the class of arrows S if, for
any h ∈ S, the condition in Def. 5.3 holds. In [3] (cf. [23]) it is shown that
a Conway operator satisfying the uniformity principle for a lluf subcategory
with finite products is an iteration operator [3] – thus uniformity principle for
a reasonably rich S does have strong consequences. (But again we shall warn
that there are cases where the strict maps do not form a category! Also we note
that S being a category is not necessary to show the above-mentioned result;
it suffices to ask that S contains a few structural morphisms. The only reason
to assume S to be a category seems that it is the case for all natural examples
known so far.)

Theorem 5.2. Consider a category with finite products and a Conway
operator, and the corresponding trace (as given in Thm. 5.1). Then an arrow
is strict w.r.t. the Conway operator if and only if it is strict w.r.t. the trace.

A proof is given in Appendix A. It is almost straightforward to show that
the trace-strictness implies the Conway-strictness. The other direction is more
non-trivial and slightly tricky; perhaps the easiest way, as taken here, is first
to show that Conway-strict arrows are closed under products, using the Bekič
property (which gives another axiomatization of Conway operators [8, 9]).

This theorem confirms that the uniformity principles for traces and Con-
way operators coincide, as long as we talk about those on categories with fi-
nite products. We regard this as a strong evidence that our notion of uni-
formity principle on traces is a natural generalization of that on traditional
fixpoint operators in the theory of computation, especially in domain theory.
Technically, this result enables us to specialize the constructions of traced
monoidal categories via the uniformity principle to those of categories with
finite products and Conway operator, to be introduced in the following sec-
tions.

§6. Constructions via Uniformity

Good constructions of categories with trace or fixpoint operator are of
great value, as the recent history of knot theory (after 80’s we know that many
knot invariants can be constructed in a generic way) and domain theory (the
progress of axiomatic and synthetic domain theory resulted some constructions
of models of domain theory) has shown. The main goal of this paper is a

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 1003

small contribution towards this direction: to demonstrate that the uniformity
principle on traced monoidal categories helps us with constructing new traced
monoidal categories. The construction is of rather general nature, and natu-
rally we cannot expect very strong results. However, we shall try to indicate
how natural it is, by pointing the relationship with a classical example: the
Scott induction principle in domain theory.

To motivate the constructions, let us start with some elementary exer-
cises:

Let F , G etc be functors between traced monoidal categories which
preserve the structure on the nose (which we shall call strict traced
functors). Can we give a trace to categories like the comma category
F ↓ G, categories of (co)algebras of endofunctors F -Alg, F -Coalg, or
even the inserters (dialgebras) of F and G etc?

The answer depends on the cases – in general we cannot (as expected), but
in some particular cases there exists a natural way to give a trace. It turns
out that, for all of these examples, we can naturally identify a full subcategory
which is traced monoidal – with help of the uniformity principle.

§6.1. First example: C�

We shall look at a simple case in detail: given a traced monoidal category
C with a trace Tr, let us consider the arrow category C→, whose objects are
arrows of C and a morphism from h : X → Y to h′ : X ′ → Y ′ in C→ is a pair
(f : X → X ′, g : Y → Y ′) such that h′ ◦ f = g ◦ h holds in C.

(
f � , g �

)
: h� → h′� ⇐⇒ f h′� = h g �

C→ naturally inherits a symmetric monoidal structure from C, determined by
a pointwise manner. The question is then how to give a trace, say, for (f, g) :
k ⊗ h → l⊗ h (i.e., (l ⊗ h) ◦ f = g ◦ (k ⊗ h)). The natural candidate is the pair
(Tr(f), T r(g)) – what is not obvious is that if this is really a morphism from k

to l, i.e., l ◦ Tr(f) = Tr(g) ◦ k holds. At this point, the reader probably notice
that we can appeal to the uniformity principle: if h is strict w.r.t. Tr, then
(l ⊗ h) ◦ f = g ◦ (k ⊗ h) implies l ◦ Tr(f) = Tr(g) ◦ k! Let us define1 C� to be
a full subcategory of C→ whose objects are strict maps w.r.t. the trace. Since
strict maps are closed under tensor product, C� is a symmetric monoidal full
subcategory of C→.

1The notation “C�” is suggested by Martin Hyland.

�
�

�
�

�
�

�
�

1004 Masahito Hasegawa

Proposition 6.1. C� is a traced monoidal category.

Proof. For (f, g) : k ⊗ h → l ⊗ h (i.e. (l ⊗ h) ◦ f = g ◦ (k ⊗ h)), define
the trace on C� by Trh

k,l(f, g) = (Tr(f), T r(g)). We have Trh
k,l(f, g) : k → l

because

(
f
�
� ,

g
�
�

)
: h �

k � → h �
l �

⇐⇒ definitionf h �
l �

= h
k

g
�
�

⇐⇒ f h �
l � = h

k
g
�
�

=⇒ h is strict
�� ���

f
l �

=

�� ���

k
g �

⇐⇒ naturality
�� ���

f
l �

=

�� ���

k
g �

⇐⇒ definition
(�� ���

f � ,

�� ���

g �
)

: k � → l �

The axioms of trace are trivially satisfied.

We shall note that this construction specializes to Conway operators (be-
cause the uniformity principles for traces and Conway operators agree): if C is
a category with finite products and a Conway operator, so is C�. Here is a
classical example:

Example 6.1 (Scott Induction Principle). Let D be a ω-cpo with
bottom ⊥, and f : D → D be continuous. We write fix(f) for the least fixpoint
of f . Let P be an inclusive (admissible) subset of D. If x ∈ P implies f(x) ∈ P

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 1005

and also ⊥ ∈ P , then fix(f) ∈ P :

P D

P D

�ι

�
f |P

�
f

�
ι

implies

1 1

P D

�=

�
fix(f |P)

�
fix(f)

�
ι

where ι is the strict order monic associated to the inclusive subset. This can
be seen an instance of the construction described above (Cppo�).

This example, although not new at all, gives a strong motivation to our study.
It has been observed that many of the proof techniques on type theories like
logical relations can be understood as model-construction techniques, for ex-
ample categorical glueing or comma objects. The example above says that we
can understand the Scott induction principle in this general context too, as a
construction on traced monoidal categories.

§6.2. Variations

We have seen that, in a particularly simple case, uniformity principle can
be used for constructing new traced monoidal categories from known ones.
Now the reader should be able to think of many variations of C�: like comma
categories, categories of algebras of endofunctors, as well as those of coalgebras
– just by restricting the objects to be strict with respect to the trace.

Example 6.2 (Cppo⊥ from co-slice). It is an easy exercise to see
Cppo⊥ as a traced full subcategory of the co-slice 1\Cppo: its objects are
strict maps from the one-point cpo 1 (hence the bottom elements), so arrows are
precisely the bottom-preserving maps. The trace on Cppo⊥ is then inherited
from Cppo.

Example 6.3 (inserters). Let F, G : C → D be strict traced functors.
We consider the following full subcategory of the inserter of F and G: its objects
are pairs (C, h) where C is an object of C and h : FC → GC is a strict map in
D, while an arrow f : (C, h) → (C ′, h′) is an arrow f : C → C ′ in C such that
h′ ◦Ff = Gf ◦h holds. By repeating the same consideration as the case of C�,
this forms a traced monoidal category, with the trace inherited from C.

As special cases, we can apply these constructions on categories with finite
products and a Conway operator, with strict maps w.r.t. the Conway opera-
tor (as we already did in Example 6.1). We already know that the resulting

�
�

�
�

�
�

�
�

1006 Masahito Hasegawa

category is traced. If its monoidal product is cartesian, by the trace-fixpoint
correspondence, we have a Conway operator on it.

§7. Constructions as Enriched Limits

§7.1. Some attempts

Having observed these examples, it is then natural to ask if these construc-
tions can be characterized by some suitable universal property. However, the
category of traced monoidal categories and (strict) traced functors fails to have
many interesting limits or colimits; even worse, this category is not monadic
over Cat (in the sense that it is not monadic for the monad induced by the
natural forgetful functor), although it is monadic over the category SMCats of
small symmetric monoidal categories and strict symmetric monoidal functors
(Martin Hyland and John Power, private communication). Thus this seems not
the right setting to look at – in any case our constructions are in much more
flavour of two-dimensional limits, and also there seems no way to accommodate
the uniformity principle in this one-dimensional view.

Then a second and natural attempt is to look for a suitable enrichment, so
that 2-cells somehow capture the strict maps (or natural transformations whose
components are strict). As already warned before, strict maps do not form a
category in general, so we cannot have a Cat-enrichment. However they do
form graphs and it seems natural to consider the following Graph-enrichment
on the category of traced monoidal categories and traced functors, for the
cartesian closed category Graph � Set·

→
→ · : each hom-set is equipped with

a graph structure whose objects are traced functors, and arrows are monoidal
natural transformations whose components are strict.

This seems to work well: for example, it is tempting to characterize C�

as a Graph-cotensor of the graph (· → ·) and the traced monoidal category C
— here let us recall the notion of cotensors; for general background of enriched
category theory see e.g. [17, 4].

Definition 7.1. Let V be a symmetric monoidal closed category and C
be a V-category. We say the cotensor of V ∈ V and C ∈ C exists if there is an
object [V, C] ∈ C together with isomorphisms C(D, [V, C]) � [V, C(D, C)] which
are V-natural in D in C. C is V-cotensored when the cotensor of V and C exists
for all V and C.

(For readers unfamiliar with the notation: note that the square bracket in the
right hand side of the defining isomorphism is the internal hom of V ; indeed
the internal hom can be regarded as the special case of cotensor with C = V).

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 1007

Thus we would like to claim

TreMon(B, C�) � [(· → ·),TreMon(B, C)]

where TreMon is the Graph-enriched category of traced monoidal categories
and strict traced functors as described above.

Alas, there already exists a nasty difficulty even in this simple case. The
problem is that strict maps in C� may not agree with those coming from strict
maps in C. This is very problematic, as morphisms in TreMon(B, C�) depend
on the strict maps in C�, while those in [(· → ·),TreMon(B, C)] depend just
on the strict maps in C.

And, unfortunately, there are counterexamples. Suppose that C is a traced
monoidal category in which all strict maps are monic. Then it follows that
(f, g) : h → h′ in C� is strict whenever its second component g is strict in C.
For instance: the traced monoidal category generated from an object X, arrows
f, g, h : X → X with axioms h ◦ h ◦ f = g ◦ h ◦ h and TrX(k ◦ h) = TrX(h) for
any k : X → X. This has already been used as a case where strict maps do
not compose – h is strict while h ◦ h is not strict. And in this category every
morphism is monic. Therefore (h ◦ h, h) : h → idX is strict, although its first
component is not.

§7.2. A solution

Perhaps the easiest way to remedy this is to explicitly specify a “monoidal”
subgraph of strict maps (that is, a graph of objects and strict maps which is
closed under unit and tensor product) for each traced monoidal category, and
then give the enrichment with respect to such explicitly specified graphs of
strict maps. For instance, given a traced monoidal category C with a monoidal
subgraph S of strict maps of C, we define C� as the full subcategory of C→

whose objects are in S, and we specify its monoidal subgraph S� as the class
of strict maps whose components belong to S.

Now we re-define TreMon as follows. Its objects are traced monoidal
categories with a specified monoidal subgraph of strict maps. Arrows are strict
traced functors. Its hom-graphs are defined as the previous version, except
that we ask the each component of natural transformations stay in the specified
monoidal subgraph of strict maps.

Then (C�,S�) is indeed the cotensor of the graph (· → ·) and (C,S). In
fact we have all Graph-cotensors:

Theorem 7.1. TreMon is Graph-cotensored:

TreMon((B,U), [G, (C,S)]) � [G,TreMon((B,U), (C,S))]

�
�

�
�

�
�

�
�

1008 Masahito Hasegawa

In particular, we have

TreMon((B,U), (C�,S�)) � [(· → ·),TreMon((B,U), (C,S))]

Explicitly, [G, (C,S)] can be described as follows. Its objects are graph homo-
morphisms from G to S. Arrows are transformations between graph homo-
morphisms. The symmetric monoidal structure is given by a pointwise man-
ner, e.g. I(X) = I, (F ⊗ G)(X) = FX ⊗ GX and so on. Given a trans-
formation θ : F ⊗ H → G ⊗ H, we have its trace TrH

F,G(θ) : F → G by
(TrH

F,G(θ))X = TrHX
FX,GX(θX) (thanks to the uniformity). Finally, we spec-

ify the monoidal subgraph part of [G, (C,S)] as the collection of strict maps
whose components are all in S — in this way we exclude the nasty possibility
mentioned before.

We believe that other constructions are naturally characterized as certain
Graph-limits in this TreMon, though the details are yet to be spelled out.
Also it still remains open how we can characterize the original constructions
(without using specified classes of strict maps).

Another direction which might be worth looking at is to replace the graphs
by Freyd’s paracategories [11, 12] (roughly: categories in which composition is
a partial operator), since strict maps form not just a graph but a paracategory,
and one may expect “monoidal paracategories” would give a better account on
the structure we are looking at.

§8. Strict Maps in Int C

The Int construction [16] turns a traced monoidal category C into a com-
pact closed category [18] called Int C to which C fully faithfully embeds (see
Appendix B for a summary of the construction). Its applications to com-
puter science are discussed and studied, especially with the relation to Girard’s
Geometry of Interaction (GoI) [5] which essentially amounts to implement bi-
directional (or interactive) communications via feedback operators, in the liter-
ature [1, 13, 7] — in this context, the Int construction is also known as the GoI
construction. It is interesting to see how the uniformity principles in C and in
Int C are related. However, the situation seems less clear than we first guess,
and in this paper we can give only some elementary results and remarks. First,
by a straightforward calculation, we have an obvious sort of characterization of
strict maps in Int C in terms of C:

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 1009

Proposition 8.1. h ∈ Int C((X+, X−), (Y +, Y −)) = C(X+⊗Y −, Y +⊗
X−) is strict in Int C if and only if, for any f ∈ C(A⊗X+⊗X−, B⊗X+⊗X−)
and g ∈ C(A ⊗ Y + ⊗ Y −, B ⊗ Y + ⊗ Y −),

�� ���

���� ���� ����
f

h
Y − X−�
X+ �Y +

A �B

=

�� ���

���� ���� ����
h g

Y − �X−

X+ �Y +

A �B

implies �� ���
�
�

�
	

�

f
A �B

=

�� ���
�
�

�
	

�

g
A �B

From this characterization, it is immediate to see

Proposition 8.2. If h+ ∈ C(X+, Y +) and h− ∈ C(Y −, X−) are strict
in C, then h+ ⊗ h− ∈ C(X+ ⊗ Y −, Y + ⊗X−) = Int C((X+, X−), (Y +, Y −)) is
strict in Int C.

Therefore the canonical embedding from C×Cop to Int C preserves strict maps.
However, we do not know much about strict maps in Int C which do not arise in
this way. We shall conclude this paper with the following simple observations,
which indicate the subtlety of this problem.

• The strictness of h ∈ Int C((X+, X−), (Y +, Y −)) in Int C does not imply
the strictness of h in C (as a morphism from X+ ⊗ Y − to Y + ⊗ X−) in
general.2 As an example, consider the isomorphism (I, X∗) �→ (X, I) in
Int C where C itself is a compact closed category. This isomorphism (hence
a strict map) amounts to the unit ηX : I → X ⊗X∗ in C, and its strictness
in C implies TrX(idX)⊗TrX(idX) = idI which is not always the case (e.g.
let C be the category of finite dimensional vector spaces and linear maps).

• The converse of the above also does not hold in general. For instance,
consider the symmetry cI,X ∈ Int C((I, I), (X, X)) = C(I ⊗ X, X ⊗ I). It
is an isomorphism (hence strict) in C, but its strictness in Int C implies
TrX(idX) ⊗ TrX(idX) = idI .

2In [10] this was left as an open issue.

�
�

�
�

�
�

�
�

1010 Masahito Hasegawa

(If C is compact closed, Int C is equivalent to C, and the equivalence preserves
the strictness: h ∈ Int C((X+, X−), (Y +, Y −)) is strict in Int C if and only if
the corresponding morphism from X+⊗X−∗ to Y +⊗Y −∗ is strict in C — but
this characterization does not seem very helpful.)

Appendix A. Proof of Theorem 5.2

Appendix A.1. From trace-strictness to conway-strictness

Assume that the diagram

A × X X

A × Y Y

�f

�

A×h

�

h

�
g

commutes and that h is strict w.r.t. the trace. Then the following diagram

A × X Y × X

A × Y Y × Y

�(h×X)◦∆◦f

�
A×h

�
Y ×h

�
∆◦g

also commutes. From the uniformity for the trace, we have

TrX((h × X) ◦ ∆ ◦ f) = TrY (∆ ◦ g).

By Right Tightening, the left hand side is equal to h ◦ TrX(∆ ◦ f). Since
f† = TrX(∆◦f) and g† = TrY (∆◦ g), we get h◦f† = g†. Therefore h is strict
w.r.t. the Conway operator.

Appendix A.2. From conway-strictness to trace-strictness

Assume that the diagram

A × X B × X

A × Y B × Y

�f

�
A×h

�
B×h

�
g

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 1011

commutes and that h is strict w.r.t. the Conway operator. Then the following
diagram

A × B × X B × X

A × B × Y B × Y

�f◦(A×π′)

�
A×B×h

�
B×h

�
g◦(A×π′)

also commutes. Since h is strict w.r.t. the Conway operator, so is B × h, by
Lemma 1 below. Thus we have

(B × h) ◦ (f ◦ (A × π′))† = (g ◦ (A × π′))†.

Since TrX(f) = π ◦ (f ◦ (A × π′))† and TrY (g) = π ◦ (g ◦ (A × π′))†, we get
TrX(f) = TrY (g). Hence h is strict w.r.t. the trace.

Lemma 1. If h : X −→ Y and h′ : X ′ −→ Y ′ are strict w.r.t. the
Conway operator, so is h × h′ : X × X ′ −→ Y × Y ′.

Proof. Assume that the diagram

A × X × X ′ X × X ′

A × Y × Y ′ Y × Y ′

�f

�

A×h×h′

�

h×h′

�
g

(1)

commutes. Our aim is to show (h×h′)◦f† = g†. By the Bekič property (which
holds for any Conway operator [8, 9, 23]), this is equivalent to equations

h ◦ (f1 ◦ 〈A × X, f†
2 〉)† = (g1 ◦ 〈A × Y, g†2〉)†(2)

h′ ◦ (f ′
2 ◦ 〈A × X ′, f ′†

1〉)† = (g′2 ◦ 〈A × Y ′, g′
†
1〉)†(3)

where f1 = π ◦ f : A × X × X ′ −→ X, f2 = π′ ◦ f : A × X × X ′ −→ X ′,
f ′

i = fi ◦ (A× cX′,X), and so on. We shall show 2. 3 is proved in the same way.
By 1, the diagrams

A × X × X ′ X

A × Y × Y ′ Y

�f1

�
A×h×h′

�
h

�
g1

(4)

�
�

�
�

�
�

�
�

1012 Masahito Hasegawa

A × X × X ′ X ′

A × X × Y ′ Y ′

�f2

�
A×X×h′

�
h′

�
g2◦(A×h×Y ′)

(5)

commute. From 5 and the strictness of h′,

h′ ◦ f†
2 = (g2 ◦ (A × h × Y ′))†.

By naturality, the right hand side is equal to g†2 ◦ (A × h). Thus we have a
commutative diagram

A × X X ′

A × Y Y ′

�f†
2

�

A×h

�

h′

�
g†
2

(6)

From 4 and 6,

A × X A × X × X ′ X

A × Y A × Y × Y ′ Y

�〈A×X,f†
2 〉

�

A×h

�f1

�
A×h×h′

�

h

�
〈A×Y,g†

2〉
�

g1

commutes. Since h is strict, we obtain 2.

Appendix B. The Int Construction

Let C be a traced monoidal category. The compact closed category Int C
is given as follows. Its objects are pairs of those of C, and an arrow from
(A+, A−) to (B+, B−) in Int C is an arrow from A+ ⊗ B− to B+ ⊗ A−.
The identity arrow on (A+, A−) is idA+⊗A− ∈ C(A+ ⊗ A−, A+ ⊗ A−). The
composition of f ∈ Int C((A+, A−), (B+, B−)) = C(A+ ⊗ B−, B+ ⊗ A−) and
g ∈ Int C((B+, B−), (C+, C−)) = C(B+ ⊗ C−, C+ ⊗ B−) is given by�� ���

B−

����
f

����
g

����C−

A+ B+
�A−

�C+

�
�

�
�

�
�

�
�

Uniformity on Traced Categories 1013

The unit of the monoidal structure is (I, I). The tensor product on objects is
(A+, A−) ⊗ (B+, B−) = (A+ ⊗ B+, A− ⊗ B−), and on arrows f : (A+, A−) →
(B+, B−) and g : (C+, C−) → (D+, D−) we have

D−

B−

C+

A+

����

g

f
����

�C−

�A−

�D+

�B+

The symmetry from (A+, A−) ⊗ (B+, B−) to (B+, B−) ⊗ (A+, A−) in Int C
is cA+,B+ ⊗ cA−,B− in C. The duality (−)∗ : (Int C)op → Int C is given by
(A+, A−)∗ = (A−, A+) and f∗ = cB+,A− ◦ f ◦ cB−,A+ for f : (A+, A−) →
(B+, B−). The unit and counit

η(A+,A−) : (I, I) → (A+, A−) ⊗ (A+, A−)∗ = (A+ ⊗ A−, A− ⊗ A+)

ε(A+,A−) : (A+, A−)∗ ⊗ (A+, A−) = (A− ⊗ A+, A+ ⊗ A−) → (I, I)

are given by the suitable isomorphisms in C.
Like any compact closed category3, Int C has a unique trace, called canon-

ical trace [16]. To be explicit, for f : (A+, A−) ⊗ (X+, X−) → (B+, B−) ⊗
(X+, X−), its trace Tr(X+,X−)(f) : (A+, A−) → (B+, B−) is given as follows.�

�
�
	

�
X−�� ��� X+

fB−

A+

���� ���� �A−

�B+

Acknowledgements

I thank John Power and Peter Selinger for helpful suggestions, and Gheo-
rghe Ştefǎnescu for pointers to related work.

References

[1] Abramsky, S., Retracing some paths in process algebra, Proc. Concurrency Theory
(CONCUR’96), Springer Lecture Notes in Comput. Sci., 1119 (1996), 1-17.

3It seems to be folklore that any compact closed category (in fact any tortile category)
has a unique trace.

�
�

�
�

�
�

�
�

1014 Masahito Hasegawa

[2] Arbib, A. M. and Manes, E. G., Partially additive categories and flow diagram semantics,
J. Algebra, 62 (1980), 203-227.

[3] Bloom, S. and Ésik, Z., Iteration Theories, EATCS Monographs on Theoretical Com-
puter Science, Springer-Verlag, 1993.

[4] Borceux, F., Handbook of Categorical Algebra 2: Categories and Structures, Encyclope-
dia Math., 51, Cambridge University Press, 1994.

[5] Girard, J.-Y., Geometry of interaction I: interpretation of system F, Proc. Logic Collo-
quium (1989), pp. 221-260.

[6] Gunter, C. Semantics of Programming Languages, MIT Press, 1992.
[7] Haghverdi, E., A Categorical Approach to Linear Logic, Geometry of Interaction and

Full Completeness, PhD thesis, University of Ottawa, 2000.
[8] Hasegawa, M., Recursion from cyclic sharing: traced monoidal categories and models

of cyclic lambda calculi, Proc. Typed Lambda Calculi and Applications (TLCA’97),
Springer Lecture Notes in Comput. Sci., 1210 (1997), pp. 196-213.

[9] , Models of Sharing Graphs: A Categorical Semantics of let and letrec, PhD the-
sis ECS-LFCS-97-360, University of Edinburgh, 1997/Distinguished Dissertation Series,
Springer-Verlag, 1999.

[10] , The uniformity principle on traced monoidal categories, Proc. Category Theory
and Computer Science (CTCS’02), Electron. Notes Theor. Comput. Sci., 69 (2003).

[11] Hermida, C. and Mateus, P., Paracategories I: internal paracategories and saturated
partial algebras, Theoret. Comp. Sci., 309 (2003), 125-156.

[12] , Paracategories II: adjunctions, fibrations and examples from probabilistic au-
tomata theory, Theoret. Comp. Sci., 311 (2004), 71-103.

[13] Hildebrandt, T. T., Panangaden, P. and Winskel, G., A relational model of non-
deterministic dataflow, Proc. Concurrency Theory (CONCUR’98), Springer Lecture
Notes in Comput. Sci., 1466 (1998), 613-628.

[14] Joyal, A. and Street, R., Geometry of tensor calculus I, Adv. Math., 88 (1991), 55-113.
[15] , Braided tensor categories, Adv. Math., 102 (1993), 20-78.
[16] Joyal, A., Street, R. and Verity, D., Traced monoidal categories, Math. Proc. Cambridge

Phil. Soc., 119 (1996), 447-468.
[17] Kelly, G. M., Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture

Note Ser., 64, Cambridge University Press, 1982.
[18] Kelly, G. M. and Laplaza, M. L., Coherence for compact closed categories, J. Pure Appl.

Algebra, 19 (1980), 193-213.
[19] Mac Lane, S., Categories for the Working Mathematician, Grad. Texts in Math. 5,

Springer-Verlag, 1971.
[20] Plotkin. G. D., Domains, The “Pisa” Notes, 1983.
[21] Selinger, P., Categorical structure of asynchronomy, Proc. 15th Mathematical Founda-

tions of Programming Semantics (MFPS), Electron. Notes Theor. Comput. Sci., 20
(1999).

[22] Shum, M. C., Tortile tensor categories, J. Pure Appl. Algebra, 93 (1994), 57-110.
[23] Simpson, A. and Plotkin, G., Complete axioms for categorical fixed-point operators,

Proc. 15th Logic in Computer Science (LICS 2000), pp. 30-41.
[24] Ştefǎnescu, G., Network Algebra, Discrete Mathematics and Theoretical Computer Sci-

ence Series, Springer-Verlag, 2000.
[25] Yetter, D. N., Functorial Knot Theory, World Scientific, 2001.

