A note on the biadjunction between 2-categories of traced monoidal categories and tortile monoidal categories

BY MASAHITO HASEGAWA AND SHIN-YA KATSUMATA

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan. e-mail: hassei@kurims.kyoto-u.ac.jp, sinya@kurims.kyoto-u.ac.jp

(Received 16 January 2009; revised 25 February 2009)

Abstract

We illustrate a minor error in the biadjointness result for 2-categories of traced monoidal categories and tortile monoidal categories stated by Joyal, Street and Verity. We also show that the biadjointness holds after suitably changing the definition of 2-cells.

In the seminal paper "Traced Monoidal Categories" by Joyal, Street and Verity [4], it is claimed that the Int-construction gives a left biadjoint of the inclusion of the 2-category **TortMon** of tortile monoidal categories, balanced strong monoidal functors and monoidal natural transformations in the 2-category **TraMon** of traced monoidal categories, traced strong monoidal functors and monoidal natural transformations [4, proposition 5-2]. However, this statement is not correct. We shall give a simple counterexample below.

Notation. We follow notations and conventions used in [4]. We write Int \mathcal{V} for the tortile monoidal category obtained by the Int-construction on a traced monoidal category \mathcal{V} , and $N : \mathcal{V} \to \text{Int } \mathcal{V}$ for the canonical functor defined by N(X) = (X, I) and N(f) = f.

Example 1. Let $\mathbf{N} = (\mathbf{N}, 0, +, \leq)$ be the traced symmetric monoidal partially ordered set of natural numbers. Then the compact closed preordered set Int \mathbf{N} is equivalent to the compact closed partially ordered set $\mathbf{Z} = (\mathbf{Z}, 0, +, -, \leq)$ of integers. The biadjointness would imply that **TraMon**(\mathbf{N}, \mathbf{Z}) is equivalent to **TortMon**(Int \mathbf{N}, \mathbf{Z}), which in turn is equivalent to **TortMon**(\mathbf{Z}, \mathbf{Z}). However, some calculation shows that **TraMon**(\mathbf{N}, \mathbf{Z}) is isomorphic to the partially ordered set of natural numbers, while **TortMon**(\mathbf{Z}, \mathbf{Z}) is isomorphic to a discrete category with countably many objects.

It is possible to recover the biadjointness, by introducing the 2-category $TraMon_g$ of traced monoidal categories, traced strong monoidal functors and *invertible* monoidal natural transformations. Note that the 2-cells of **TortMon** are invertible because of the presence of duals [3, 5], and the inclusion of **TortMon** in **TraMon** factors through **TraMon**_g.

PROPOSITION 1. The inclusion of the 2-category **TortMon** in the 2-category **TraMon**_g has a left biadjoint with unit having component at a traced monoidal category \mathcal{V} by $N: \mathcal{V} \rightarrow$ Int \mathcal{V} .

Proof. What we need to show is, for each traced monoidal category \mathcal{V} and tortile monoidal category \mathcal{W} , composition with N induces an equivalence of categories from

108 MASAHITO HASEGAWA AND SHIN-YA KATSUMATA

TortMon(Int \mathcal{V}, \mathcal{W}) to **TraMon**_{*g*}(\mathcal{V}, \mathcal{W}). We prove that this induced functor is essentially surjective on objects, and is fully faithful.

For showing that it is essentially surjective, the proof of [4, proposition 5.2] is sufficient. For a traced monoidal functor $F: \mathcal{V} \to \mathcal{W}$, let K: Int $\mathcal{V} \to \mathcal{W}$ be the balanced strong monoidal functor sending (X, U) to $FX \otimes (FU)^{\vee}$ and $f: (X, U) \to (Y, V)$ to

$$FX \otimes (FU)^{\vee} \xrightarrow{1 \otimes \eta \otimes 1} FX \otimes FV \otimes (FV)^{\vee} \otimes (FU)^{\vee} \xrightarrow{Ff \otimes 1} FY \otimes FU \otimes (FV)^{\vee} \otimes (FU)^{\vee} \xrightarrow{1 \otimes c^{-1} \otimes 1} FY \otimes (FV)^{\vee} \otimes FU \otimes (FU)^{\vee} \xrightarrow{1 \otimes c^{\prime}} FY \otimes (FV)^{\vee}.$$

That *K* is a balanced strong monoidal functor is shown exactly in the same manner as in the proof of [4, proposition 5.2]. Clearly $KN \simeq F$ holds.

For showing the full faithfulness, for an invertible monoidal natural transformation $\beta: KN \to K'N$ with balanced strong monoidal functors K, K': Int $\mathcal{V} \to \mathcal{W}$, let $\overline{\beta}: K \to K'$ be the monoidal natural transformation whose (X, U)-component is given by

$$K(X,U) \xrightarrow{\simeq} KNX \otimes (KNU)^{\vee} \xrightarrow{\beta_X \otimes (\beta_U^{-1})^{\vee}} K'NX \otimes (K'NU)^{\vee} \xrightarrow{\simeq} K'(X,U).$$

That $\overline{\beta}$ is a monoidal natural transformation is verified by direct calculation. We have $\overline{\alpha N} = \alpha$ for a monoidal natural transformation α : $K \to K'$, as

$$\begin{split} & K(X,U) \xrightarrow{\overline{\alpha N}_{(X,U)}} K'(X,U) \\ &= K(X,U) \xrightarrow{\simeq} KNX \otimes (KNU)^{\vee} \xrightarrow{(\alpha N)_X \otimes ((\alpha N)_U^{-1})^{\vee}} K'NX \otimes (K'NU)^{\vee} \xrightarrow{\simeq} K'(X,U) \\ &= K(X,U) \xrightarrow{\simeq} KNX \otimes (KNU)^{\vee} \xrightarrow{\alpha_{NX} \otimes (\alpha_{NU}^{-1})^{\vee}} K'NX \otimes (K'NU)^{\vee} \xrightarrow{\simeq} K'(X,U) \\ &= K(X,U) \xrightarrow{\simeq} KNX \otimes (KNU)^{\vee} \xrightarrow{\simeq} KNX \otimes (K((NU)^{\vee}))^{\vee \vee} \\ &\xrightarrow{\alpha_{NX} \otimes \alpha_{(NU)^{\vee}}^{\vee}} K'NX \otimes (K'((NU)^{\vee}))^{\vee \vee} \xrightarrow{\simeq} K'NX \otimes (K'(NU)^{\vee} \xrightarrow{\simeq} K'(X,U) \\ &= K(X,U) \xrightarrow{\simeq} KNX \otimes K((NU)^{\vee}) \xrightarrow{\alpha_{NX} \otimes \alpha_{(NU)^{\vee}}} K'NX \otimes K'((NU)^{\vee}) \xrightarrow{\simeq} K'(X,U) \\ &= K(X,U) \xrightarrow{\alpha_{(X,U)}} K'(X,U) \end{split}$$

where we have omitted some details on the structural isomorphisms. Note the isomorphism $(X, U) \simeq (X, I) \otimes (I, U) = NX \otimes (NU)^{\vee}$; also note that, for a 2-cell $\alpha : K \to K'$ in **TortMon**, its inverse $\alpha^{-1} : K' \to K$ is given by (cf. [3, proposition 7.1], [5, corollary 2.2])

$$K'C \xrightarrow{\simeq} (K'(C^{\vee}))^{\vee} \xrightarrow{(\alpha_{C^{\vee}})^{\vee}} (K(C^{\vee}))^{\vee} \xrightarrow{\simeq} KC.$$

On the other hand, it is easy to see that $\overline{\beta}N = \beta$ holds. Hence the mapping $\alpha \mapsto \alpha N$ is a bijection, and the functor induced by composition with N is full and faithful.

Remark. This biadjointness result has been frequently quoted in the literature, often with no mention of 2-cells. However, there are some cases where the incorrect statement in [4] is inherited, with explicit mention of 2-cells. For example, in [2], the biadjunction is incorrectly stated for non-invertible 2-cells [2, section $5 \cdot 1$], although the technical development there does not depend on the choice of 2-cells and the error has no effect on the results. Another case is [1] in which the biadjointness of a variant of the Int-construction for linearly

distributive categories is stated [1, proposition 27]; it contains the same problem as [4, proposition $5 \cdot 2$], and we expect that a similar change in the definition of 2-cells will make the claim correct. Again, this error has no effect on the other results in [1].

Acknowledgements. This research was partly supported by the Grant-in-Aid for Scientific Research (C) 20500010 (Hasegawa) and the Grant-in-Aid for Young Scientists (B) 20700012 (Katsumata).

REFERENCES

- R. F. BLUTE, J. R. B. COCKETT and R. A. G. SEELY. Feedback for linearly distributive categories: traces and fixpoints. *J. Pure Appl. Algebra* 154 (2000), 27–69.
- [2] M. HASEGAWA, M. HOFMANN and G. D. PLOTKIN. Finite dimensional vector spaces are complete for traced symmetric monoidal categories. *In Pillars of Computer Science: Essays Dedicated to Boris* (*Boaz*) Trakhtenbrot on the Occasion of His 85th Birthday. Lecture Notes in Comput. Sci. vol. 4800 (Springer-Verlag, 2008), pp. 367–385.
- [3] A. JOYAL and R. STREET. Braided tensor categories. Adv. Math. 102 (1993), 20-78.
- [4] A. JOYAL, R. STREET and D. VERITY. Traced monoidal categories. Math. Proc. Cam. Phil. Soc. 119 (1996), 447–468.
- [5] M.-C. SHUM. Tortile tensor categories. J. Pure Appl. Algebra 93 (1994), 57-110.