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Abstract. Milner introduced action calculi as a framework for repres-
enting models of interactive behaviour. He also introduced the higher-
order action calculi, which add higher-order features to the basic setting.
We present type theories for action calculi and higher-order action cal-
culi, and give the categorical models of the higher-order calculi. As ap-
plications, we give a semantic proof of the conservativity of higher-order
action calculi over action calculi, and a precise connection with Moggi’s
computational lambda calculus and notions of computation.

1 Introduction

Milner introduced action calculi as a framework for representing models of inter-
active behaviour [Mil96]. He also introduced two conservative extensions: higher-
order action calculi [Mil94a], which add higher-order features to the basic setting,
and reflezive action calculi [Mil94b], which give recursion in the presence of the
higher-order features. Various examples, which explore the role of action calculi
as a general framework, include the m-calculus [Mil96], Petri nets [Mil96] and
their higher-order extensions [Mil94a], call-by-name and call-by-value versions of
PCF [Jen95], and a type theory with ML-style references [CJLS97]. Tt remains
an on-going research area to fully understand the dynamics of action calculi and
obtain, for example, a general theory of bisimulation.

This paper focusses on higher-order action calculi; analogous results for the
reflexive extension are given in [Has97b]. We solve two open problems: the con-
nection between higher-order action calculi and typed A-calculi, and the iden-
tification of the categorical models for the higher-order case. Milner first pos-
tulated the relationship between higher-order action calculi and typed A-calculi
in [Mil94a]. He showed how to obtain a cartesian closed category from a higher-
order action calculi with an extra axiom corresponding to n-equality. However,
he also observed that this extra axiom collapses the higher-order structure, in
that the conservativity result over action calculi is lost.

One important fact about higher-order action calculi is that we can only
substitute names and codes of the form a7, where a is a process. This restriction



is necessary, because arbitrary processes can cause side-effects and hence should
not be duplicated nor discarded freely. We give a type-theoretic presentation
of higher-order action calculi, where variables and A-abstractions are the only
terms that are substituted and the dynamics corresponds to term rewriting.

We also identify a class of categorical models of higher-order action calculi, by
extending Power’s models of action calculi [Pow96]. We use a cartesian category
for interpreting the names and the codes, a symmetric monoidal category with
a local preorder for interpreting arbitrary processes and their dynamics, and a
symmetric monoidal adjunction for describing the interplay between the two cat-
egories. We give a sound interpretation of our higher-order type theory in these
models. To show completeness, we require an extra axiom which corresponds to
a 7 axiom for names.

There are two immediate applications of these results. First, we give a simple
semantic proof of the conservativity of (static) higher-order action calculi over
action calculi using standard results from category theory. Second, we observe
that our type theory is very similar to Moggi’s computational A-calculus [Mog88],
and make this intuition precise by relating the class of the models of higher-order
theories and Moggi’s semantic framework called notions of computation [Mog91].
Our results also clarify the difference between the two approaches. Moggi de-
scribes computational behaviour using monads in a category, whereas the dy-
namics of action calculi are interpreted by preorders.

This paper is organized as follows. In Section 2, we review action calculi and
higher-order action calculi. Section 3 describes the type theories, and Section
4 the corresponding models. We give two applications of these results. Section
5 gives a semantic proof of conservativity of higher-order action calculi over
action calculi, and in Section 6 we relate our type theories with Moggi’s work by
comparing the semantic models. We conclude in Section 7 by showing how our
results fit the broader picture.

2 Preliminaries

In this section we review action calculi and higher-order action calculi. Most of
the ideas can be found in Milner’s original work [Mil96,Mil94a], although there
are a few novel features including an additional axiom for higher-order action
calculi.

2.1 Action Calculi

An action calculus is defined by a set of terms, an equational theory on the terms
and a preorder on the equivalence classes of terms, called the reaction relation
or the dynamics. It is generated from a signature K = (P, K), which consists of a
set P of (basic) primes denoted by p, q, ... and a set K of control operators. Each
control operator K of K is equipped with an arity rule ((my,n41),...(m,,n,)) —

(m,n), where the m’s and n’s are finite sequences of primes called (tensor)
arities; we write € for the empty sequence, (infix) ® for concatenation and write



M for the set of arities. We overload primes with arities of length one, and
call them prime arities. We assume a fixed denumerable set X of names, each of
which is equipped with a prime. We let 2, y, . . . range over names, and sometimes
write zP to indicate that x has the prime arity p.

Definition 1. Terms a, b, c...are constructed from the basic operators: identity
idy, composition -, tensor @, permutation p,, ,,, abstraction (2?), datum (z?) and
the control operators K. A term a is assigned a pair of arities (m,n), for which
we write for @ : m — n, using the following rules:

a: k=1 b:l>m a:k—>m b:lon
id,, :m —m a-b:k—m a@Rb: kRl —-m®n
a:m-—n
P, mM@®n—>n@m (zP)a:p@m = n (zP):e—p
a1 :Mmy SN ... Gp My —> Ny
K(ar,...,a,):m—>n
where, in the derivation of K(aq,...,a,), the arity rule of the control operator
KeKis ((mi,n1),...,(mr,n.)) = (m,n). O

Notation. We omit the arity subscripts on the basic operators when apparent.
The notions of free and bound name are standard: (z) binds x and () represents
a free occurrence of . We write a{b/(z)} to denote the usual capture-avoiding
substitution. The set of names free in a, b, ... is denoted by fn(a,b,...). Given a
(possibly empty) sequence of names ® = z!*, ... 2P~ (we use bold letters like ,
y for sequences of names), we write |2| for p1®...®p,. All terms and expressions
used are well formed, and all equations are between terms of the same arity. We
let (z)a denote (x1)---(z,)a, where the z;’s are distinct, and let () denote
(1) ® -+ @ (@), where ( )ais a and () is id..

Definition 2. The equational theory AC is the congruence relation on terms
generated by the axioms of a strict monoidal category with a symmetry p:

a-id=a=1id-a a-(b-c)=(a-b)-c

a®id. =a=1d. ® a a®(b®c)=(a®b)®c
idoid=id (a-b)@ (@ -b)=(a®d)-(bV)
pm,n'(b®a):(a®b)'pm’,n’ pl(g)mn:(ldl® ) (pln®ld )

Pmn Panm = idm@”

together with the following two axioms (o) and (4):

(o) ((y>®1d ) (2)a = a{(y)/(x)}
(d) ()((z) ® idy,) - a) a where z & fn(a)



It is an immediate consequence of these axioms that id,, = (z)(z) and p,, , =
(zy)(yx), where |&| = m and |y| = n. Our axiomatisation is slightly different
from the original presentation [Mil96] in the choice of primitive term constructors
and axioms, but it is routine to see that these two versions are equivalent.

Definition 3. The actions are given by the equivalence classes obtained by
quotienting the terms (Definition 1) by the equational theory AC (Definition 2).
We overload notation and use a, b, ¢, ... to denote actions as well as terms. An
action calculus AC(KK) consists of the actions and a preorder “\ on actions which
preserves the arities and is closed under composition, tensor and abstraction,
such that id N\, @ implies @ = id. The preorder \ is also called the dynamics or
the reaction relation of the action calculus. O

A static action calculus is an action calculus with the trivial dynamics (i.e. the
identity relation on actions).

Ezample 4. A simple example of non-deterministic behaviour can be described
in an action calculus by a control operator plus : ((m,n), (m,n)) = (m,n) with
the dynamics generated by the rules:

plus(a,b) \y a and plus(a,b) N\ b.

This behaviour 1s analogous to a choice operator 4 in process calculi with reduc-
tion rules P4+ @Q — P and P 4+ @Q — Q. We refer to [Mil96] for more interesting
examples, including the m-calculus and Petri nets, which explore the use of ac-
tion calculi as a framework for interactive behaviour. The simple example given
here is enough to illustrate the ideas presented in this paper. O

2.2 Higher-Order Action Calculi

Higher-order action calculi [Mil94a] extend action calculi so that actions as well
as names are substituted for names. The idea is that given an action @ : m — n,
we package up the action in a code "a” : ¢ — (m = n), which uses the arity
(m = n) to keep a record of the arity structure of a. Such a “closure” of an
action can be copied and discarded via substitution, and unpacked using an
application control ap.

Definition 5. The higher-order action calculus HAC(K), where K = (P,K) is a
signature, is given by extending the definition of action calculi as follows:

1. the set of higher-order primes and the set of higher-order arities are con-
structed from the following grammars:

(basic) primes po,qo... €P
higher-order primes  p,q... == po|m=n
higher-order arities m,n... := p|mQ®n]|e¢



2. the set of terms is generated by the rules in Definition 1, plus the rules

a:m-—n
"aml:e > m=>n ap:(m=n)®m —n

3. the equational theory is the set of equations upon terms generated from the
axioms in Definition 2, plus the higher-order axioms

(0code) (Ta"@id) - (2)b = b{"a"/(2)}
(8) ("a"®id) rap = a
(Tmame) "(z)®id)-ap” = ()

4. the dynamics is defined in the same way as the dynamics for action calculi.

O

In addition to the original axioms in [Mil94a], we include the axiom 7jname. Notice
that, for a code "a™ , we can prove "(Ta”" ® id) - ap™ = Ta” using the f-axiom.
The axiom 7name states the analogous equality for higher-order names. With this
axiom, names and codes thus behave in a similar fashion. In section 4, we give
further justification for nname by studying the models.

Remark 6. In [Mil94a], Milner shows that adding a “strong” 7 axiom of the form
"(a ®id) - ap™ = a collapses the structure, in the sense that HAC(K) with the
strong n-axiom is not a conservative extension of AC(K). In section 5, we prove
the conservativity result for our weaker axiom nname. O

While it is possible to regard the higher-order axioms as a part of dynamics and
study the properties of the reduction theory (as given in [Mil94a]), we concen-
trate in this paper on the study of equational theory, since our primary concern
is to identify the semantic models of the calculi.

3 Type Theory

We introduce type theories corresponding to the closed fragments of action cal-
culi and higher-order action calculi. In particular, let-bindings are used to rep-
resent the sharing of terms and the equational theory distinguishes between
those terms which can be copied and discarded at will, the values, and those
which cannot. Since action calculi are completely determined by the closed frag-
ment [Gar95,Gar96], our type theories are as expressive as the corresponding
action calculi. Tt is possible to work with type theories which relate to action
calculi directly (see Remark 16, [BGHP96] and [BGHPIT7]); the type theories
given here are simpler.

3.1 First-Order Theory

Let us fix a signature K = (P, X) as introduced in the last section. The type
theory T(K), to be introduced below, consists of sequents of the form I' -1 : n,



where the contert I' = 2", ..., zf™ is a sequence of distinct names (sometimes

written &™), ¢ is a term as introduced below and n is an arity. This sequent
corresponds to a closed action a : |I'| = n in AC(K), where |I'| denotes p1 ®
o @ P

Definition 7. The set of type-theoretic terms (usually just called terms) over K
is defined by the following grammar:

tu=z|0|t@t]|letxbetint|K((x)t,..., (x)t;1)

where we assume that t® 0=0®t =t and s® (t ® u) = (s ® t) ® u for terms
s, t and u (strict associativity). O

The term K((#1)t1, .., (®,)t,; t) binds the variables from sequence @; in t;. Plotkin
has pointed out that this can be viewed as a variant of Aczel’s general binding
operators [Acz80], and this issue is discussed in [BGHP97]. See Example 15 for
a concrete example. The term let @ be s in ¢ binds the variables from sequence
z in . We allow a-conversion, and write t{u/z} for the standard capture-free
substitution.

Definition 8. A term is well-typed if 1t can be shown to annotate a sequent
using the following rules.

I'Fs:m I'Ft:n I'ts:m Ixmkt:n

Izl Fax:p I'FO0:e I'Fs®t:m®n I'Fletxbesint:n
Naxtsn; (1<i<r) I'kFt:m Izl y?!, "t :m
I'FK((z1)s1,...,(x,)sr5t) i n Iyl xt I"Ft:m

where, in the derivation of K(...), K has arity rule ((m1,n1),...,(m,,n,)) —

(m,n). O

The equality of the type theory should present no surprises; it gives the behaviour
of the let-bindings, which describes the sharing of resources. For example, the
term let x be ¢ in x ® x describes a term ¢ which is shared by two z’s. It does
not equal the term ¢t ® ¢ in general.

Definition 9. The equality judgement I' F s = t : n, where I' F s : n and
I' =t : n, is defined as a congruence relation on well-typed terms of the same
arity under the same context generated from the following axioms.

let © be yint = t{y/z}
let  be t in x t

let @ be (let y be sint)in u

let z,y be s®@t inu

s® (let @ be t in u)

(let zbe sint)®u

K((®1)t1, ..., (@ )tr;let @ be s in 1)

let y be s in let ® be t in u

let  be s in let y be t in u

let ebetins@u

let ebe sint@u

let @ be s in K((®1)t1,..., (@)t t)

O



Note that both sides of an axiom must have the same type under the same
context. For instance, in the fourth axiom, the variables in the @ cannot be free
in t (written ® ¢ fn(t)), and in the last axiom = & |J;_, fn((=:)t;).

We give the formal justification of our assertion that the type theory T(KK)
corresponds to closed actions of AC(K), by giving translations between these two
systems which are sound and inverse to each other.

Definition 10. For every a : m — n in AC(K) and sequence of distinct names
x with |&| = m which are not free in a, we define a term @ (a) by induction on
the structure of a:

@m(idm) ==z
Dy(a-b) = let y be &5 (a) in Dy(b), where y & fn(b)
Pa,y(a@b) = Pa(a) @ Py(h)
Doy (P ) =—y®x, where g =mand |y|=n
Pors((y7)a) = Pa(a){z/y}
Py (7)) =

D (K(at,...,ar)) = K((#1)Ps, (a1), ..., () Px, (ar); ®)

O

Proposition 11.

1. For a : m — n such that fn(a) is contained in y (with |y| = 1), we have
y 2™ dy(a) i n

2. Ifa=1"5b:m — n and fn(a,b) is contained in y (with |y| = 1), we have
Y 2™ @y(a) = Pp(b) i n. O

Definition 12. Given a sequent I F ¢ : n in T(K), we define a closed term
W(I'kt:n):|I'l = n by induction on the derivation of sequents', where we
write A, for the action (2){(zx) : m — m ® m, and w,, for (x)id. : m — ¢

v(I,z" l—x p) =wr ®id,
L[/(FF—O :w|p|
W(F}-s®t ni @ n2) =Ar-@W{U'Fs:n)@VY('Ft:n))
Y(I'Fletybesint:n) =Ap -(id@¥(I'Fs:m)) - ¥(l,y"Ft:n)
g’([‘f— K((w1)51,...,t) : ) = A|p| . (id|p| ®&T/(F|—t: m))

(®)K(((#) @ idym, ) - W( 2] F sy :my),...)
U(Ly',z?, "+t n) = (idjr| @ Py, @id|r|) - ¥ (L, 27,y [ F t: n)

O
! We are being slightly loose with notation. We should use a notation which incorpor-

ates derivations of sequents, and show that every derivation of a sequent gives rise
to equal actions via ¥.



Proposition 13.

1. Given I' k-t : n, it follows that U(I" - ¢ : n) is a closed term of arity |I'| — n.
2. Gwven 't s=1t:n, it follows that W(I' s :n) =¥(['Ft:n). O

Theorem 14.

1. Gwen 't :n, we have I' - @p(P(I'Ft:n)) =t:n in T(K).
2. Given a closed term a : m — n and a fresh distinct sequence of names ™,
we have ¥(Py(a)) =a. O

These results establish the connection between the static action calculus and
our type theory. It is routine to extend them to include the dynamics. The
dynamics on the type theory T(K) is a preorder Y\, on the equivalence classes
of the well-typed terms which respects the types and contexts, and is closed
under all term constructions except controls, such that ® N\, 7 implies t = .
It is easy to see that the dynamics of an action calculus determines that of the
corresponding type theory, and vice versa. Such dynamics can be regarded as a
graph rewriting system on sharing graphs (see [Has97b,Mil96]).

Ezxample 15. The control plus for non-determinism in Example 4 can be accom-
modated in our type theory as

remkts:n INy"kt:n I'Fu:m
'k plus((x)s, (y)t;u) 1 n

with dynamics given by

plus((®)s, (y)t;u) N\ let @ be uin s and plus((z)s, (y)t;u) \ let y be uin t.

O

Remark 16. An alternative choice is to work with a two-context type theory,
whose sequents have the form I'; ¥ F ¢ : n. Such a type theory is introduced
in [BGHP96,BGHP97]. Tt has a direct connection with the corresponding action
calculus, in that the above sequent corresponds to an action a : | X| — n with free
names contained in I". Tt also gives a simple connection with intuitionistic linear
type theories with two contexts [Ben95,Bar96]. From the results in [Gar95], we
know that these type theories are equivalent. O

3.2 Higher-Order Theory

We extend the type theory T(K) above to incorporate higher-order features. As
before, we fix a signature K = (P, K).

Definition 17. The higher-order theory HT (K) is given by extending the defin-
ition of the first-order theory T(K) as follows:



1. the types are the higher-order arities given in Definition 5;
2. the terms are those for T(K) plus lambda abstraction Ax.t and application
st where s and ¢ are terms; the associated typing rules are

I'a™+t:n I'ts:m=>n I'tt:m
I'EAXet:m=n I'kFst:n

3. the equality judgement is defined as Definition 9, with additional axioms:

(o) let  be Ay.sint = t{\y.s/z}
(8 (Ax.s)t = letxbetins
(m0) Az.yz =y
(let  be sint)u = let @ be sin tu
s(let x be tinu) = let® betin su

O

Tt is straightforward to extend the translations between T(K) and the closed ac-
tions of AC(KK) to translations between HT(KK) and the closed actions of HAC(K),
which are sound and inverse to each other. We define the translations below. It is
easy to extend the results given in Proposition 11, Proposition 13 and Theorem
14 to the higher-order setting.

Definition 18.

For every action a : m — n in HAC(K) and a sequence of distinct names # with
|#| = m which are not free in a, we define a term @ (a) by induction on the
structure of a, using definition 10 and the additional cases:

Pyp("a?) = Ae.Px(a) where ® ¢ fn(a)
Dy »(ap) = yx

Given a sequent I' - ¢ : n in HT(K), we define a closed action #(I" ¢ : n) :
|I'| = n by induction on the derivation of sequents, using definition 12 and the
additional cases:

U(I'EAyt:m=n)=(z) () ®idy) - ¥(I,y™ Ft:n)" where || = |I'|
V(I st:n) :A|p|~(LD(F|—5:mzn)®W(Fl—t:m))-ap

O

4 Categorical Models

We base our models of higher-order action calculi on Power’s models of action
calculi [Pow96]. Power’s models consist of a cartesian category for interpreting
the names, a symmetric monoidal category for interpreting arbitrary actions,
and a functor for relating the cartesian category with the symmetric monoidal
category. We extend Power’s idea to the higher-order case, where the cartesian



category interprets the values (the names and codes), and adjunctions describe
the interplay between the two categories. This approach enables us to describe
the models of action calculi and higher-order action calculi in a simple uniform
way. We also note that similar structure has been used for describing models of
intuitionistic linear type theory [Ben95,Bar96] in a slightly different but related
context (see [BGHP96], [BGHP97] and Section 7).

4.1 Models of The First-Order Theories

First we describe the models for action calculi, which we call action models.
The carrier of an action model is a triple (C, S, F), where C is a strict cartesian
category, S is a strict symmetric monoidal category, and F : C — S is an identity-
on-objects strict symmetric monoidal functor. Therefore we identify Obj(C) with
Obj(8): F maps the terminal object of C to the unit object of &, and binary
products to monoidal products, preserving the symmetry. In addition, each ac-
tion model is specified by a signature KK and provides an interpretation function
of the prime arities as objects of C, and of control operators as natural trans-
formations.

Remark 19. In [Pav96], Pavlovic gives related models of action calculi, consisting
of a single symmetric monoidal category with a sub-cartesian category. O

Definition 20. An action model over signature KK, denoted by A, is a carrier
(C, S, F) equipped with a function [Jp : P — Obj(C), and for each operator K
with arity rule ((mq,n4),..., (m,,n,)) = (m,n), a natural transformation

Kl : S(FQ) @ [ma], [ma]) x - x S(F(L) @ [me], [na]) = S(F() @ [m], [n])

where [m] is defined inductively by [¢] = I (the terminal object of C, equivalently
the unit object of §) and [p @ m] = [p]p @ [m]. An action model is faithful if
the functor F is faithful. Tt is small if the categories C, S are small. O

Notation. Where convenient, we omit the subscripts from [Jp and [Jx. We
sometimes write [J# to emphasise the particular action model A under consid-
eration.

Definition 21. An action morphism f : A1 — As between two action models
over signature K is a pair (f., f;) where f. : (1 — Cs is a functor preserving
finite products strictly, and f; : S — 82 1s a strict symmetric monoidal functor

such that Fs o f. = f, o Fy, for each p € P we have f(,([[p]]ffl) = [p]22, and,

)
for each operator K with arity rule ((mq,n4),...,(m,,n,)) = (m,n), we have

£ (IR O () = (KT s (£ (). B

The category of small action models, AMod(K), is the category whose objects
are the small action models, and whose morphisms are the action morphisms,
with the obvious identities and composition.



Now we give the interpretation of the type theory T(K) in an arbitrary ac-
tion model A, and state the soundness and completeness results. Given the
interpretation of arities [.] : M — Obj(C), we extend this to contexts by defining

(1=

Definition 22. Given type theory T(K) and action model A, the interpretation
[] of sequents I' - ¢ : m in the type theory as morphisms [I'] — [m] in § is
defined by induction on the derivation of sequents:

[ zP 2 p] (7r|[F]| [p]])
[I'F0:€] F('iry
[IMFs®t:m®n] (Al[p]l),([[F"SlTﬂ]]@[[F"tin]])
[+ let « be sint: n]] F(Arm); Gdpry @ [I'F s cm]); [ 2™ Bt :n]
[I'FK((®1)s1, ..., (®:)sp3t) :n] =
F(Arry); (idpry @ [I'F 2 m]);

IKlpey (L5, 2 Fosyooma], oo [T @0 & s 2y ])

[ y?«?, "t n] = (idr) @ crqppy @ i) [T, 2P, 98, I =t n]

where 7/, | and A are the projection, terminal map and diagonal map in the
cartesian category C respectively, and ¢ is the symmetry of §. O

The proof of the soundness of the interpretation is routine. Completeness is
proved by defining a term model constructed from T(K) (or the closed fragment
of AC(K) [Gar95,Pow96]). The basic idea is that the morphisms in the cartesian
category C are constructed from (the equivalence classes of) sequents of the
form I' F @ : m and the symmetric monoidal category § is constructed from
(the equivalence classes of) arbitrary sequents I" F ¢ : m. The functor F is the
obvious inclusion functor from C to 8. The interpretation [_Jp and []x are then
determined routinely.

Theorem 23.

1. (Soundness) Given I' - s =t : n in T(K), we have [I'Fs:n] = [I'Ft:n]
mn any action model.

2. (Completeness) Given derivations I' b s : n and I' - t : n in T(K), if
[k s:n]=[IF1t:n] in every action model then I' s =1 : n.

3. (Initiality) There is an initial term model Ay in AMod(K). O

The results above only deal with the static part of the type theory (hence
action calculi). We can give a semantic interpretation of dynamics in an action
model as a local preorder on the symmetric monoidal category, such that the
arrows coming from the cartesian category are minimal.

FErample 24. Tointerpret an action calculus with non-determinism primitive plus
in Example 4, one may choose C as (the strict equivalent of) the category of sets
and functions, and § as (the strict equivalent of) the category of sets and total
relations; F is then the obvious inclusion functor. The interpretation of plus is



simply given by the union of relations. We can then interpret the dynamics by the
local preorder of the inclusion of relation; obviously a total relation is minimal
with respect to this preorder if and only if it is a function, i.e. it comes from C.
A key feature of action calculi is that the dynamics are not usually closed under
the control operators. Notice that in this model the preorder is closed under the
natural transformation, so the model does not capture this feature. O

4.2 Higher-Order Extension

The intuition behind the definition of an action model with carrier (C,S,F) is
that the cartesian category C describes the behaviour of names in action calculi.
In the higher-order case, the codes (A-terms) have a similar behaviour to the
names in that they can be substituted for names of the appropriate arity. Our
definition of higher-order models extends action models to reflect this fact, by
requiring that the functor F(.) ® X : C — S has a right adjoint representing
the arrow construction, which naturally extends the definition of exponents in
cartesian closed categories given by right adjoint of the product functors (-) x X.

Definition 25. A higher-order action model over signature KK is an action model
with carrier (C, S, F) such that the functor F(L)® X : C — & has a (chosen) right
adjoint X = _: 8§ — C for each object X, where the definition of [mn] is adapted
to the higher-order case by an additional requirement that [m=n] = [m] = [r].
Again, a higher-order action model is faithful when the functor F is faithful, and
it is small if the categories C and § are small. O

We write ap : (X=>Y)® X = Y (in §) for (components of) the counit of the
adjunction, and f* : A - X = B in C for the adjunct of f : A® X — B in §,
i.e. f* is the unique arrow satisfying (F(f*) ® X);ap = f.

Definition 26. Let #; with carrier (C,S,F) and Hg with carrier (C', S, F’)
be higher-order action models over the same signature K. A higher-order action
morphism f : H1 — Ho is an action morphism (fe, fs) such that it is a map of
adjoints ([MLT1], p. 97) from F(L)@X 4 X = () to F' (1)@ fs (X) 1 f:(X)="(1):
that is, fo(X = () = f:(X)="f: () holds and the following diagram commutes
for each X, A and B.

Eh

S(F(A) ® X, B) - C(A, X = B)
fs (_) fc(—)
S((F(A) @ X), £.(B)) (M) 1 (X = BY)

I * !
S(FUL(A) & £(X), fo(B) —— DL (f(4), ()= £(B)




The category of small higher-order action models, HAMod(K), is the category
whose objects are the small higher-order action models, and whose morphisms
are the higher-order action morphisms, with the obvious identities and compos-
ition.

The interpretation of the type theory HT(K) in an arbitrary higher-order ac-
tion model H is given as an extension of Definition 22 to account for A-abstraction
and application.

Definition 27. Given type theory HT(K) and higher-order action model #,
the interpretation [] of sequents I' F ¢ : m in the type theory as morphisms
[I'Et:m]:[I]— [m] in S is defined by induction on the structure of the
derivation of sequents, as given in definition 22 and the additional cases:

[I'FAet:m=n]=F(,«"Ft:n])
[I'F st:n] =F(Am); ([I'Fs:m=n]@[I'Ft:m]);ap

O

While soundness of the interpretation is routinely checked, the construction of
the term model from the type theory (or the closed fragment of the higher-
order action calculus) requires some careful calculation. In this case the cartesian
category part is given by the values: that is, the variables and A-abstractions.
The non-trivial part is to check that X = (_) does give a right adjoint of F(_)®X,
which requires the axiom 7y (fname in higher-order action calculi). Without this
axiom, X = (_) fails to be a functor, though still it is a semifunctor, and in fact
gives rise to a right semiadjoint [Hay85] of F(_) ® X. In this sense, the semantic
role of the axiom 7y (name) is similar to that of the  axiom of the simply typed
lambda calculus.

Theorem 28.

1. (Soundness) Given 't s =t :n in HT(K), we have [I'Fs:n] =[I'Ft:n]
mn any higher-order action model.

2. (Completeness) Given derivations I't s :n and I' =t : n in HT(K), f [T F
s:n] =[I'kt:n] in every higher-order action model then I' - s =t : n in
HT(K).

3. (Initiality) There is an initial term model Ho in HAMod(K). O

Remark 29. In a higher-order action model, it is easy to show using the Yoneda
lemma that

Sets” ([T,=:., S(F() ® Ai, Bi), S(F() ® A, B))

S(Qi=1,.» F(Ai= Bi) ® A, B)
C([lizy ,(Ai=Bi),A=B)

11

This fact means that it is possible to interpret the control operators as morphisms
rather than natural transformations in the higher-order setting. Syntactically,



this means that we can replace parameterized controls by non-parameterized
(higher-order) ones without changing the equational theory. We do not know
how this affects the dynamics in general. O

FErample 30. The semantic model of the calculus with non-determinism primitive
plus, given in Example 24, is in fact a higher-order action model: let X =Y be
the set of total relations from X to Y, and for a total relation R : A® X — B (the
tensor product is just the direct product of sets) its adjunct R* : A - X = B
(in C, hence a function) is determined by xR*(a)b if and only if (a, z)Rb. The
above remark about the controls tells us that the interpretation of plus can be
given as a total relation from ([m] = [n]) ® ([m] = [n]) ® [m] to [n]; explicitly
it is given by the relation R where (r, s, )Ry if and only if z(r U s)y. D

5 A Semantic Proof of Conservativity

Since the higher-order theories (higher-order action calculi or our higher-order
type theories) are obtained from the first-order ones by adding new constructs
and additional axioms, there is an obvious sound translation from the first-order
theories to the higher-order ones. A non-trivial fact is that this translation is
(statically) conservative. In [Mil94a], Milner gives a syntactic proof by appealing
to a normal form result on higher-order action calculi, using the so-called higher-
order molecular forms. It is easy to extend his syntactic result to incorporate
our axiom Nyame-

Here we give another proof, using the properties of our semantic models. The
conservativity result is achieved by constructing a higher-order action model into
which the term model of the first-order theory faithfully embeds. In the case of
standard algebraic type theory, the corresponding result is well-known. Given
a cartesian category C, the presheaf category [C°P,Sets| is a cartesian closed
category and the Yoneda embedding is fully faithful and preserves products.
Applying this fact to the term model for a first-order algebraic theory, it follows
that the algebraic type theory can be faithfully embedded in the correspond-
ing higher-order type theory.? Additional care is required for our setting, since
we have a symmetric monoidal category and a functor, as well as a cartesian
category, and our theory contains parameterized control operators which do not
exist in standard algebraic theories.

We start with a known fact about the Yoneda construction (free cocomple-
tion) on symmetric monoidal categories [Day70]. A systematic account can be

found in [PR96].

Lemma 31. Let C, D be small (strict) symmetric monoidal categories and F :
C—>D an identity-on-objects strict symmetric monoidal functor. There exists a
small (strict) symmetric monoidal closed category C, a small (strict) symmetric
monoidal category D and fully faithful strict symmetric monoidal functors ine

% For achieving the fullness, a little bit more categorical machinery (the gluing con-
struction) is required, but here we do not need it for our purpose.



C—C and inp : D_—)’?, together with an identity-on-objects strict symmetric
monoidal functor F : C—D such that F oin¢ = inp o F and F has a right
adjoint. Moreover in¢ is dense.

Proof: Let C be the presheaf category [C°P, Sets] and inc be the Yoneda em-
bedding (which is dense [MLT71]). Tt is well-known that C is the free symmetric
monoidal cocompletion of C and in¢ is strict symmetric monoidal [Day70,TK86].
(Tf C is strict, let C be the strict equivalent of [C°P, Sets].) Then F extends to
a strict symmetric monoidal functor F : C—[D°P, Sets] with a right adjoint
U = [F°P, Sets], so that F strictly commutes with F. Although F may not be
the identity on objects, we can factorize it as F = Jo F so that F : C—D is the
identity on objects and J : D—[D°P, Sets] is fully faithful. A right adjoint of
F is then given by U o J : D—C. The categories obtained above are not small,
but we can cut down them to be small and still retain the required structure. O

Proposition 32. Given an action model A over signature K, there is a higher-
order action model H 4 over the same signature K such that there is a faithful
action morphism from A to H 4.

Proof: We just apply the previous lemma. Let (C,S,F) be the carrier of A.
Since C is cartesian closed and F has a right adjoint (say U), the functor
F(.) ® X also has a right adjoint X = (1) = (U(.))*. We show that this
carrier (C, S, F) gives a higher-order action model. We choose the interpretation
of arities []" so that [m]’ = inc([m]) for first-order arity m. Now we con-
sider the interpretation of controls. For simplicity, we consider just the case of
single parameter. Assume that there is a family of functions Kx : S(F(X) ®
A, B)—S8(F(X) ® C, D) (natural in X in C). Since ing is fully faithful strict
symmetric monoidal and F o in¢ = ing o F, this induces a family of functions
K%« S(F(ine(X)) @ ins(A),ins(B))—S(F(inc (X)) @ ins(C), ins(D)) nat-
ural in X in C. Since in¢ is dense, we can extend K’ to a family of functions
K% S(F(X) @ins(A),ins(B))—S(F(X) @ ins(C),ins(D)) natural in X in
C. Thus given an interpretation of a control in A, we have an interpretation of
the control in H 4 of the carrier (C,S,F). And (inc,ins) is a faithful action

morphism. O

Taking A as the term model Ay, we obtain a higher-order action model # 4,
into which A faithfully embeds. Because H is initial in HAMod(K), there is a
unique higher-order action morphism from Hg to H_4,. On the other hand, since
Ap is initial in AMod(K) and also HAMod(K) is a subcategory of AMod(K),
the following diagram commutes in AMod(K):

faithful

-/40 HAD

initial map in AMod(]BQ\ /:ﬁtial map in HAMod(K)

Ho



Therefore the unique action morphism from Ag to Hy must be faithful.

Theorem 33. The higher-order theory HT (K) is a conservative extension of the
first-order theory T(K). O

6 Notions of Computation

We show that the higher-order action calculi conservatively extend Moggi’s com-
putational A-calculus [Mog88], with an additional axiom for commuting let-
bindings. Whilst it is possible to give a syntactic proof of this result, we give
a simpler comparison by showing that the models of higher-order action cal-
culi correspond to Moggi’s semantic framework called notions of computation
[Mog91].

Independently, Pavlovic has also mentioned the connection between his mod-
els of action calculi and notions of computation [Pav96].

6.1 The Computational Lambda Calculus

We reproduce the computational lambda calculus (A.-calculus) below, using the
simply typed version as found in [MOTW95].

Definition 34. The computational lambda calculus is determined by the follow-
ing data.

1. [Types] The set of types over the set P (called base types) is defined by the
grammar
c:=peP|lo=>o
2. [Terms and Values] The sets of terms and values over the set of variables V'
is defined by the grammar

terms ¢ =z €V | Az |tt|let x betint
values v =z | Azt

3. [Typing judgements] We say that a term is well-typed if it can be shown to
annotate a sequent using the rules

Iz7 k.t
IzF.z:0 'k, det:o=>T1
I'res:o=>1 I'tet:o T'bkes:o Hz®Fot:r
IbFost:r I'k.letzxbesint:r

F,x”,yol,F’l—ct:T
F,y”l,xo,F’l—ct:T




4. [Equality judgements] We define an equality judgement I' . s = ¢ : o,
where I'F. s : o and I' k. t : o, as the congruence relation generated by the
axioms:

(By)  (Azt)v = t{v/z}
)  Az.ozx v, for z not free in v
let,) let z be vint t{v/z}

¢

id) let z be ¢ in x
comp) let y be (let z be sint)inu = letx besinletybetinu
let.1) et let z be € in zt
let.2) we = letz beecinve

SN N TN N N S

where e ranges over non-values: that is, applications and let-blocks.

It is not hard to see that the obvious translation from the computational
lambda calculus (with the base types P) to our higher-order type theory HT(KK)
(with K = (P,K)) is sound. However, this translation is not conservative. To
achieve conservativity, we need to strengthen the equational theory of the com-
putational lambda calculus, by assuming an additional axiom for commuting

let-bindings.

Definition 35. The commutative computational lambda calculus is obtained
by adding the following axiom:

(comm) let z be sinlet ybetinu = let ybetinlet x besinu

(As in other axioms, both sides of the axiom must have the same type under the
same context, therefore # cannot be free in ¢t and y cannot be free in s.) O

Theorem 36. HT(K) is a conservative extension of the commutative computa-
tional lambda calculus. O

This theorem can be proved syntactically by comparing the normal forms
in these calculi. Although there seems to be no simple confluent terminating
rewriting system for the commutative computational A-calculus, it is possible
to define a notion of normal form which closely resembles Milner’s higher-order
molecular forms [Mil94a]. Rather than presenting this syntactic proof, we give a
semantic proof of conservativity by relating the models.

6.2 Comparison with A.-Models

We show the connection between faithful higher-order action models and Moggi’s
models of the computational lambda calculus, called A.-models [Mog88]. This
observation relies on fairly standard category theory, and is a special instance
of the results given in [PR96]. To recall from Moggi’s work, a monad (7', 7, u)
satisfies the mono requirement if each component of 7 is a monomorphism. A



tensorial strength for a monad 7" on a symmetric monoidal category is a natural
transformation with components 64 p : A @ TB — T(A @ B) subject to the
coherence conditions as found in [Koc70,Mog88,Mog91]. It is commutative if the
evident two natural transformations from TA ® TB to T(A ® B) agree.

Definition 37. A A.-model is a cartesian category C with a strong monad
(T, m, 1) which satisfies the mono requirement and has Kleisli exponents: that
is, for each object A, the functor J(A x ) : C = Cr has a (chosen) right adjoint
A = (), where Cr is the Kleisli category of T'and J : C — Cr is given by
J(f) = f;n. A Ac-model is said to be commutative if the tensorial strength is
commutative. O

Proposition 38. To giwve a carrier (C,S,F) such that F is faithful and F() ®
X has a right adjoint for each X is to give a commutative A.-model in which
cartesian products are strictly assoctative. O

Sketch of Proof: Given such a carrier (C,S,F), we have a commutative strong
monad on € as the composition of F with its right adjoint, which satisfies the
mono requirement and has Kleisli exponents. Conversely, given a commutative
Ac-model T over a cartesian category C, we have a carrier (C, Cr, J) which satis-
fies the properties above. Moreover these constructions are inverse to each other.

(See [PR96] for a detailed account.) O

Together with the observation in Remark 29, we can specify a higher-order
action model as a commutative A.-model with the interpretation of primes and
controls.

Theorem 39. To give a faithful higher-order action model over the signature
K = (P,K) is to give a commutative A.-model in which products are strictly
associative, an object [p]p for each p € P and an arrow

Klx: ] (Emd=Ind) — [ml =[]

i=1,...,r

for each control K with arity rule ((m1,n4),...,(mr,n,)) = (m,n) where [m]
1s defined inductively as in the higher-order action models. O

Our result shows that the models of a static higher-order action calculus cor-
respond to commutative A.-models, with interpretation functions for the primes
and controls. To interpret the dynamics, we require an additional preorder en-
richment of the Kleisli category, which is not present in Moggi’s work.

Ezample 40. The model of plus (Example 4) given in Example 24 can be under-
stood as a commutative A.-model: the corresponding monad is the non-empty
powerset monad on the category of sets and functions. The interpretation [plus]
is given routinely, again by the union of relations. The local preorder on the
Kleisli category (the category of sets and total relations) is derived from the
subset inclusion on powersets. O



This example, used repeatedly in this paper, gives an elementary account of non-
determinism. We can construct more sophisticated models of non-determinism
along this line using various powerdomain monads. (In particular, the connec-
tion with models of the m-calculus studied in [FMS96,5ta96] requires further
investigation.)

7 Conclusions and Related Work

In this paper we have given type-theoretic and categorical presentations of Mil-
ner’s higher-order action calculi. We have also given a semantic proof of the
conservativity of (static) higher-order action calculi over action calculi, and have
related our higher-order models with Moggi’s A.-models. We hope that the type-
theoretic and categorical presentations of action calculi studied here will provide
useful criteria for assessing which dynamic relations describe interesting inter-
active behaviour.

Our results form part of a broader picture. First, there is work by Barber,
Gardner, Hasegawa and Plotkin [BGHP96,BGHP97], which links action calculi
with intuitionistic linear type theory [Bar96,Ben95], and proves conservativity
results for various extensions of action calculi incorporating the results given
here. This work focusses more extensively on relating type theories by comparing
their categorical models. (See also [BW96] for a related work on linear type
theory and notions of computation.)

Second, it is natural to extend our theories by replacing the let-bindings in
the type theories by recursive letrec-bindings: that is, introducing cyclic sharing
as studied in graph rewriting theory, see for instance [AA95]. In action calculi,
the corresponding construct is given by adding a reflezion operator to action
calculi [Mil94b,Mif96]. The semantic models of cyclic sharing can be described
in terms of traced symmetric monoidal categories [JSV96). In [Has97a,Has97b],
Hasegawa studies such structures and shows the connection with traditional
models of recursion.

Third, whilst in this paper symmetric monoidal categories are sufficient for
describing models of action calculi, Power and Robinson focus on premonoidal
categories [PR9O6] for expressing computational behaviour, in which the tensor
product need not be bifunctorial. They argue that this weaker structure is more
natural for describing computational behaviour such as imperative features. It
might be fruitful to seek the premonoidal version of action calculi as well as type
theories, although it remains to be seen whether their weaker structure can be
justified from the action calculi perspective.
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