Yokota type invariants derived from Costantino-Murakami's invariants

Atsuhiko Mizusawa

Waseda University

May 24, 2013

Joint work with Jun Murakami (Waseda University)

Intelligence of Low-dimensional Topology

Introduction

We define Yokota type invariants for oriented graphs from Costantino-Murakami's invariants (CM invariants).

Let Γ be a plane graph (one component). We conjecture that for appropriate sequence of colors the next equation holds.

$$\frac{\pi}{2}\lim_{n\to\infty}\frac{\log{\langle\Gamma\rangle_{Y'}}}{n}=\mathrm{Vol}(S_{\Gamma}),$$

where S_{Γ} is a hyperbolic polyhedron bounded by Γ whose dihedral angles are corresponds to colors.

Atsuhiko Mizusawa (Waseda Univ.)

May 24, 2013 2 / 38

2 Costantino-Murakami's invariants

Knot and spatial graph

Definition 1.1

A knot is an embedding of a circle into the three-sphere. A spatial graph (a knotted graph) is embedding of a graph (V, E) into the three-sphere. Where V is a set of vertices and E is a set of edges. A plane graph is a spatial graph which can be embedded to the two-sphere.

We treat them through diagrams derived from regular projections to the two-sphere.

Reidemeister moves

There are 5 local moves called Reidemeister moves for knot and spatial graph diagrams.

Theorem 1.2

Two diagrams are transformed to each other by a sequence of Reidemeister moves. ⇔ Two diagrams represent the same knot or spatial graph.

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

May 24, 2013 6 / 38

The *N*-th colored Jones polynomial $J_N(K; q)$ for a knot *K* is defined by an irreducible *N*-dimensional representation of the quantum group $U_q(sl_2)$.

Conjecture 1 ([Kashaev], [H. Mrakami-J. Murakami])

Let K be a hyperbolic knot in the three-sphere. Then

$$2\pi \lim_{N \to \infty} \frac{\log |J_N(K; \exp(2\pi \sqrt{-1}/N))|}{N} = \operatorname{Vol}(S^3 \setminus K)$$

where Vol is the hyperbolic volume.

Yokota's invariants

Let Γ be a trivalent spatial graph. For each edge of Γ we add a natural number called color which corresponds to the dimension of the representation of $\mathcal{U}_{a}(sl_{2})$. Yokota's invariants $\langle \cdot \rangle_{Y}$ are defined through a colored diagram of Γ by the next relation.

Atsuhiko Mizusawa (Waseda Univ.)

relat

Costantino-Murakami's invariants

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

May 24, 2013 9 / 38

This section follows the paper [Costantino-Murakami].

F. Costantino and J. Murakami defined invariants for framed oriented trivalent graphs (i.e. invariants for RII, RIII and RV moves) through non-integral representations of $U_q(sl_2)$ where q is a root of unity.

We prepare notations. Fix a natural number n, $\xi_n := \exp(\frac{\pi\sqrt{-1}}{n})$.

$$\{a\} = \xi_n^a - \xi_n^{-a} \ (a \in \mathbb{C}), \quad [a] = \frac{\{a\}}{\{1\}}, \quad \{k\}! = \prod_{j=1}^k \{j\} \ (k \in \mathbb{N})$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \prod_{j=0}^{a-b-1} \frac{\{a-j\}}{\{a-b-j\}} \quad (a,b \in \mathbb{C} \text{ s.t. } a-b \in \{0,1,\ldots,n-1\})$$

$\mathcal{U}_q(sl_2)$

 $\mathcal{U}_q(sl_2)$ is a Hopf algebra as follows.

Generator: E, F, K, K^{-1}

Relation:

$$[E,F] = \frac{K^2 - K^{-2}}{q - q^{-1}}, \quad KE = qEK, \quad KF = q^{-1}FK, \quad KK^{-1} = K^{-1}K = 1.$$

Structure of a Hopf algebra:

$$\begin{split} \Delta(E) = E \otimes \mathcal{K} + \mathcal{K}^{-1} \otimes E, \ \ \Delta(F) = F \otimes \mathcal{K} + \mathcal{K}^{-1} \otimes F, \ \ \Delta(\mathcal{K}^{\pm 1}) = \mathcal{K}^{\pm 1} \otimes \mathcal{K}^{\pm 1}, \\ S(E) = -qE, \ \ S(F) = -q^{-1}F, \ \ S(\mathcal{K}) = \mathcal{K}^{-1}, \\ \epsilon(E) = \epsilon(F) = 0, \ \ \epsilon(\mathcal{K}) = 1. \end{split}$$

э

Representation of $\mathcal{U}_q(sl_2)$

For each complex number $a \in \mathbb{C} \setminus \frac{1}{2}\mathbb{Z}$, there is a simple representation of $\mathcal{U}_{\xi_n}(sl_2)$ for *n*-dimensional vector space V^a whose basis is $\{e_0^a, e_1^a, \cdots, e_{n-1}^a\}$. The actions are given by

$$E(e_j^a) = [j]e_{j-1}^a, \ F(e_j^a) = [2a-j]e_{j+1}^a, \ K(e_j^a) = \xi_n^{a-j}e_j^a \ (e_{-1}^a = e_n^a = 0)$$

For each edge of a framed spatial graph Γ , we add a complex number $a \in \mathbb{C} \setminus \frac{1}{2}\mathbb{Z}$ corresponds to the representation for V^a . Due to the isomorphism $(V^a)^* \cong V^{n-1-a}$, we can consider *a* colored edge and n-1-a colored opposite direction edge are equal. We put $\overline{a} = n-1-a$.

Admissible condition

For non-half-integers a, b, if a + b is nor half-integer, there is a decomposition $V^a \otimes V^b = \bigoplus_c V^c$ here $a + b - c \in \{0, 1, \dots, n-1\}$.

admissible conditions

If three colors a, b, c of edges at a vertex satisfy the next condition, we call the triple (a, b, c) is admissible.

$$a + b + c \in \{n - 1, n, \dots, 2n - 2\},$$

here the orientations of the three edges are all toward the vertex.

If three colors of a vertex is admissible, we can give a representation canonically at the vertex.

From now on, unless otherwise noted, colors in summations \sum move all admissible colors.

Atsuhiko Mizusawa (Waseda Univ.)

(1, 1)-Tangle

To define Costantino-Murakami's invariants, we cut an edge of the admissibly colored framed spatial graph Γ and make (1, 1)-tangle diagram T. Then we slice T so that each piece has only one singular point (maximal, minimal, crossing point or vertex). The slices are regarded as maps from bottom to top as follows.

$$\bullet \ _a^b R(e_i^a \otimes e_j^b) = \sum_m \{m\}! \xi_n^{2(a-i)(b-j)-m(a-b-i+j)-\frac{m(m+1)}{2}} \begin{bmatrix} i \\ i-m \end{bmatrix} \begin{bmatrix} 2b-j \\ 2b-j-m \end{bmatrix} e_{j+m}^b \otimes e_{i-m}^a$$

where $m \in [0, \min(i, n-1-j)] \cap \mathbb{N}$

• $\cup_{a,b} = \delta_{b,n-1-a} \sum_{i=0}^{n-1} \xi_n^{-(a-i)(n-1)} e_i^a \otimes e_{n-1-i}^b$

•
$$\cap_{a,b}(e_i^a, e_j^b) = \delta_{b,n-1-a} \delta_{i,n-1-j} \xi_n^{-(a-i)(n-1)}$$

•
$$Y_c^{a,b}(e_k^c) = \sum_{\substack{i+j-k \\ =a+b-c}} C_{i,j,k}^{a,b,c} e_i^a \otimes e_j^b$$
 • $Y_{a,b}^c(e_i^a \otimes e_j^b) = \sum_{\substack{i+j-k \\ =a+b-c}} C_{n-1-j,n-1-i,n-1-k}^{n-1-b,n-1-a,n-1-c} e_k^c$

where

$$\begin{split} C_{i,j,k}^{a,b,c} &= \sqrt{-1}^{c-a-b} (-1)^{j-k} \xi_n^{\frac{j(2b-j+1)-i(2a-i+1)}{2}} \left[\begin{array}{c} 2c \\ 2c-k \end{array} \right]^{-1} \left[\begin{array}{c} 2c \\ a+b+c-(n-1) \end{array} \right] \\ &\sum_{z+w=k} (-1)^z \xi_n^{\frac{(2z-k)(2e-k+1)}{2}} \left[\begin{array}{c} a+b-c \\ i-z \end{array} \right] \left[\begin{array}{c} 2a-i+z \\ a2-i \end{array} \right] \left[\begin{array}{c} 2b-j+w \\ 2b-j \end{array} \right] \end{split}$$

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

(日) (同) (三) (三)

Definition of Costantino-Murakami's invariants

We have a morphism $op(T) : V^a \to V^a$ by composing the maps derived from slices of T. By Schur's lemma, op(T) is a scalar multiplied identity $\lambda(T)id_a$. Then Costantino-Murakami's invariant $\langle \cdot \rangle_{CM}$ is defined as

$$\langle \Gamma \rangle_{CM} := \lambda(T) \left[\begin{array}{c} 2a+n\\ 2a+1 \end{array} \right]^{-1}$$

The value is independent of the choice of the edge that was cut.

1. For a half-integer $a \in \frac{1}{2}\mathbb{Z}$,

$$\left[\begin{array}{c} 2a+n\\ 2a+1 \end{array}\right]=0.$$

Hence for half-integer colors, Costantino-Murakami's invariants may become infinity.

2. If graphs are restricted to links, Costantino-Murakami's invariants correspond to Akutsu-Deguchi-Ohtsuki (colored Alexander) invariants. Akutsu-Deguchi-Ohtsuki invariants have a property of volume conjecture for cone manifolds whose singular sets are the links [J. Murakami].

6*j*-symbols

The 6*j*-symbols are the coefficients of the next relation.

They satisfy the following relations. [Orthogonal relation]

$$\sum_{f} \left\{ \begin{array}{cc} a & b & e \\ d & c & f \end{array} \right\} \left\{ \begin{array}{cc} d & b & f \\ a & c & g \end{array} \right\} = \delta_{eg}.$$

[Pentagon relation]

$$\sum_{h} \left\{ \begin{array}{ccc} a & b & f \\ g & c & h \end{array} \right\} \left\{ \begin{array}{ccc} a & h & g \\ e & d & i \end{array} \right\} \left\{ \begin{array}{ccc} b & c & h \\ d & i & j \end{array} \right\} = \left\{ \begin{array}{ccc} f & c & g \\ d & e & j \end{array} \right\} \left\{ \begin{array}{ccc} a & b & f \\ j & e & i \end{array} \right\}.$$

For $a, b, c, d, e, f \in \mathbb{C} \setminus \frac{1}{2}\mathbb{Z}$ and $a + b - c, a + f - e, b + d - f, d + c - e \in \mathbb{Z}$, the 6*j*-symbols are calculated by the next equation.

$$\begin{cases} a & b & c \\ d & e & f \end{cases} = \\ (-1)^{n-1+B_{afe}} \begin{bmatrix} 2f+n \\ 2f+1 \end{bmatrix}^{-1} \frac{\{B_{dce}\}!\{B_{abc}\}!}{\{B_{bdf}\}!\{B_{afe}\}!} \begin{bmatrix} 2c \\ A_{abc}+1-n \end{bmatrix} \begin{bmatrix} 2c \\ B_{ced} \end{bmatrix}^{-1} \\ \times \sum_{z=s}^{s} (-1)^{z} \begin{bmatrix} A_{afe}+1 \\ 2e+z+1 \end{bmatrix} \begin{bmatrix} B_{aef}+z \\ B_{aef} \end{bmatrix} \begin{bmatrix} B_{bfd}+B_{dce}-z \\ B_{bfd} \end{bmatrix} \begin{bmatrix} B_{dec}+z \\ B_{dfb} \end{bmatrix}$$
where $s = \max(0 - B_{bdf} + B_{dce})$, $S = \min(B_{dee}, B_{afe})$, $A_{weg} = x + y + z$

where $s = \max(0, -B_{bdf} + B_{dce})$, $S = \min(B_{dce}, B_{afe})$, $A_{xyz} = x + y + z$, $B_{xyz} = x + y - z$.

- く伺 ト くき ト くき ト … き

$$\left\langle \begin{array}{c} a & f \\ b & d \end{array} \right\rangle_{CM} = \begin{bmatrix} 2f+n \\ 2f+1 \end{bmatrix} \left\{ \begin{array}{c} a & b & c \\ d & e & f \end{array} \right\} =: \left\{ \begin{array}{c} a & b & c \\ d & e & f \end{array} \right\}_{tet}$$

It is proved that this value is well-defined for half-integer colors. From the symmetry of the tetrahedron for rotations, we have

$$\left\{\begin{array}{rrr} a & b & c \\ d & e & f \end{array}\right\}_{tet} = \left\{\begin{array}{rrr} \overline{d} & \overline{b} & \overline{f} \\ \overline{a} & \overline{e} & \overline{c} \end{array}\right\}_{tet}$$

Atsuhiko Mizusawa (Waseda Univ.)

May 24, 2013 20 / 38

٠

Relations

We can calculate Costantino-Murakami's invariants axiomatically by using following relations.

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

May 24, 2013 21 / 38

Shapes of hyperbolic tetrahedra are determined by their 6 dihedral angles.

A vertex at an infinity point of hyperbolic space is called ideal vertex. The tetrahedra whose 4 vertices are all ideal are called ideal tetrahedra. Two dihedral angles of the opposite edges of ideal tetrahedra are equal. Hence a shape of ideal tetrahedron is determined by three dihedral angle α, β, γ ($\alpha + \beta + \gamma = \pi$).

We can consider a vertex outside the infinity points of hyperbolic space. This vertex appears in the projective model of hyperbolic space. For the three faces around the vertex, there is a geodesic surface which is perpendicular to them. Cutting the tetrahedron at each vertex by the surface, we have a finite polyhedron. This polyhedron is called truncated tetrahedron.

Theorem 2.1

Let S be a hyperbolic tetrahedron and Γ be a graph made of edges of S. $\theta_a, \dots, \theta_f$ are dihedral angles of S. Let a_n, \dots, f_n be sequences of integral colors such that $\lim_{n\to\infty} \frac{2\pi a_n}{n} = \pi - \theta_a, \dots, \lim_{n\to\infty} \frac{2\pi f_n}{n} = \pi - \theta_f$. If S is ideal (i.e. dihedral angles of opposite edges are equal),

$$\operatorname{Vol}(S) = \lim_{n \to \infty} \frac{\pi}{n} \log \left((-1)^{n-1} \left\{ \begin{array}{cc} a_n & b_n & c_n \\ a_n & b_n & c_n \end{array} \right\}_{tet} \right)$$
$$= \lim_{n \to \infty} \frac{\pi}{n} \log \left((-1)^{n-1} \left\{ \begin{array}{cc} \overline{a_n} & \overline{b_n} & \overline{c_n} \\ \overline{a_n} & \overline{b_n} & \overline{c_n} \end{array} \right\}_{tet} \right).$$

If S is a truncated tetrahedron,

$$\operatorname{Vol}(S) = \lim_{n \to \infty} \frac{\pi}{2n} \log \left(\left\{ \begin{array}{cc} a_n & b_n & c_n \\ d_n & e_n & f_n \end{array} \right\}_{tet} \left\{ \begin{array}{cc} \overline{a_n} & \overline{b_n} & \overline{c_n} \\ \overline{d_n} & \overline{e_n} & \overline{f_n} \end{array} \right\}_{tet} \right).$$
(1)

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

Yokota type invariants

Definition

Let Γ be admissibly colored oriented trivalent graph and D be its diagram. Yokota type invariant $\langle \cdot \rangle_{Y'}$ is defined from Costantino-Murakami's invariants by the next relation.

$$\langle \Gamma \rangle_{\mathbf{Y}'} = \langle D \rangle_{CM} \left\langle \overline{D}^{r} \right\rangle_{CM},$$

where $\overline{}$ means a mirror image, \cdot^r means reversing orientations. For more than 3-valent vertices, we reduce the valence to three by the next relation.

$$\left\langle \underbrace{-}_{\mathbf{Y}'}\right\rangle_{\mathbf{Y}'} = \sum_{i} \left[\begin{array}{c} 2i+n\\ 2i+1 \end{array} \right]^{-1} \left\langle \underbrace{-}_{\mathbf{Y}'}\right\rangle_{\mathbf{Y}'},$$

where we omit colors and orientations of surrounding edges. We assume they have the same colors and orientations in the both sides. The orientation of the i colored edge is arbitrary.

The invariance of Yokota type invariants for RII, RIII and RV are from that of Costantino-Murakami's invariants. Invariance for RI:

$$\begin{pmatrix} \left| \bigcup_{a} \right\rangle_{Y'} = \left\langle \left| \bigcup_{a} \right\rangle_{CM} \left\langle \left| \bigcup_{\overline{a}} \right\rangle_{CM} \right\rangle \\ = \xi_{n}^{-2a\overline{a}} \left\langle \left| \right|_{a} \right\rangle_{CM} \xi_{n}^{2a\overline{a}} \left\langle \left| \right|_{\overline{a}} \right\rangle_{CM} \\ = \left\langle \left| \right|_{a} \right\rangle_{CM} \left\langle \left| \bigcup_{\overline{a}} \right\rangle_{CM} = \left\langle \left| \right|_{a} \right\rangle_{Y'} .$$

The invariance for RIV is shown in a similar way.

Extension to more than 3-valent vertices

We show that the values of Yokota type invariants are independent of the way to expand an edge at the more than 3-valent vertices. It is enough to see the next equations. (cf. [Yetter])

Extension to more than 3-valent vertices

$$\begin{split} \bullet & \sum_{g} \left\{ \begin{array}{c} \overline{a} & \overline{b} & \overline{e} \\ \overline{c} & \overline{d} & g \end{array} \right\} \left\langle \begin{array}{c} \overline{b} & \overline{g} \\ \overline{a} & \overline{g} \\ \overline{d} & \overline{g} \\ \overline{d} & \overline{d} \\ \end{array} \right\rangle_{CM} \\ & = & \sum_{g} \left[\begin{array}{c} 2g+n \\ 2g+1 \end{array} \right]^{-1} \left\{ \begin{array}{c} \overline{a} & \overline{b} & \overline{e} \\ \overline{c} & \overline{d} & g \end{array} \right\}_{tet} \left\langle \begin{array}{c} \overline{b} & \overline{g} \\ \overline{a} & \overline{d} \\ \end{array} \right\rangle_{CM} \\ & = & \sum_{g} \left[\begin{array}{c} 2g+n \\ 2g+1 \end{array} \right]^{-1} \left\{ \begin{array}{c} c & b & \overline{g} \\ a & d & e \end{array} \right\}_{tet} \left\langle \begin{array}{c} \overline{b} & \overline{g} \\ \overline{a} & \overline{d} \\ \end{array} \right\rangle_{CM} \\ & = & \sum_{g} \left[\begin{array}{c} 2g+n \\ 2g+1 \end{array} \right]^{-1} \left[\begin{array}{c} 2e+n \\ 2e+1 \end{array} \right] \left\{ \begin{array}{c} c & b & \overline{g} \\ a & d & e \end{array} \right\} \left\langle \begin{array}{c} \overline{b} & \overline{g} \\ \overline{a} & \overline{d} \\ \end{array} \right\rangle_{CM} \\ & \bullet \left[\begin{array}{c} 2\overline{f}+n \\ 2\overline{f}+1 \end{array} \right] = \cdots = \left[\begin{array}{c} 2f+n \\ 2f+1 \end{array} \right]. \end{split}$$

Atsuhiko Mizusawa (Waseda Univ.)

Extension to more than 3-valent vertices

$$(2 \text{ prev. slide}) = \sum_{f} \sum_{g} \left[2g + n \\ 2g + 1 \right]^{-1} \sum_{e} \left\{ a \ b \ e \\ c \ d \ f \right\} \left\{ c \ b \ \overline{g} \\ a \ d \ e \right\}$$

$$= \sum_{f} \sum_{g} \left[2g + n \\ 2g + 1 \right]^{-1} \delta_{f\overline{g}} \left\langle b \ f^{c} \\ a \ d \right\rangle_{CM} \left\langle \overline{b} \ \overline{g}^{c} \\ \overline{a} \ \overline{d} \right\rangle_{CM}$$

$$= \sum_{f} \left[2\overline{f} + n \\ 2\overline{f} + 1 \right]^{-1} \left\langle b \ f^{c} \\ a \ d \right\rangle_{CM} \left\langle \overline{b} \ \overline{f}^{c} \\ \overline{a} \ \overline{d} \right\rangle_{CM}$$

$$= \sum_{f} \left[2f + n \\ 2f + 1 \right]^{-1} \left\langle b \ f^{c} \\ a \ d \right\rangle_{CM} \left\langle \overline{b} \ \overline{f}^{c} \\ \overline{a} \ \overline{d} \right\rangle_{CM}$$

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

In Theorem 2.1, the value inside $log(\cdot)$ of Equation (1) is the value of Yokota type invariants for tetrahedron graphs. Using the Yokota type invariants, we conjecture the extension of Theorem 2.1.

Conjecture 2

Let Γ be a plane graph and S_{Γ} be a hyperbolic convex polyhedron which is bounded by Γ . If sequences of integral colors of Γ are taken as in Theorem 2.1 for corresponding dihedral angles of S_{Γ} ,

$$\operatorname{Vol}(S_{\Gamma}) = \lim_{n \to \infty} \frac{\pi}{2n} \log \left(\langle \Gamma \rangle_{Y'} \right).$$

Examples

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Square pyramids

We did algebraic and numerical calculations for following two cases.

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

$$=\sum_{i} \begin{bmatrix} 2i+n\\2i+1 \end{bmatrix}^{-1} \left\{ \begin{array}{cc} a_{n} & e_{n} & d_{n}\\ i & c_{n} & b_{n} \end{array} \right\}_{tet} \left\{ \begin{array}{cc} d_{n} & g_{n} & h_{n}\\ f_{n} & c_{n} & i \end{array} \right\}_{tet} \\ \times \left\{ \begin{array}{cc} \overline{a_{n}} & \overline{e_{n}} & \overline{d_{n}}\\ \overline{i} & \overline{c_{n}} & \overline{b_{n}} \end{array} \right\}_{tet} \left\{ \begin{array}{cc} \overline{d_{n}} & \overline{g_{n}} & \overline{h_{n}}\\ \overline{f_{n}} & \overline{c_{n}} & \overline{i} \end{array} \right\}_{tet} \right\}$$

Atsuhiko Mizusawa (Waseda Univ.)

Yokota type invs. from CM invs.

Regularity of formula for square pyramids

We calculated the above formula as a rational function of q, reduced the numerator and the denominator by common factors then substituted $q = \xi_n$.

$$\Gamma_1: n = 24, \{a, b, c, d, e, f, g, h\} = \{9, 8, 9, 9, 8, 8, 8, 9\}$$

2702553921462776104873773262573943868288 4144454025633775

$$\Gamma_2: n = 12, \{a, b, c, d, e, f, g, h\} = \{4, 4, 4, 4, 4, 4, 4, 4\}$$

947855223915886648400

206606306907

 $\Gamma_2: n = 24, \{a, b, c, d, e, f, g, h\} = \{8, 8, 8, 8, 8, 8, 8, 8, 8\}$

1841727671678193906056765234366258287027200

19743796020815679008287

Table: Numerical calculations at $\varepsilon = 0.0000001$

n	$\pi/2n * \log(\langle \Gamma_{1,n} \rangle_{Y'})$	n	$\pi/2n * \log(\langle \Gamma_{2,n} \rangle_{\mathbf{Y}'})$
24	3.440464669	24	2.597872961
48	3.653713460	48	2.603015626
72	3.741391100	72	2.594719877
120	3.824413802	120	2.581962148
240	3.900859202	240	2.566523650
600	3.959111190	600	2.552634909
900	3.986845579	900	2.548604997
1200	3.983212953	1200	2.546357950
Vol.	4.01536	Vol.	2.53735

э

Problem

Prove Conjecture 2 for some polyhedra which have more than 3-valent vertices.