Takahiro Matsushita

Introduction

The topologies of box complexes and the chromatic numbers of graphs

Takahiro Matsushita

University of Tokyo

2014.5.22

Definition of graphs

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 1

A graph is a pair (V, E) s.t.

V is a set.

• *E* is a subset of $V \times V$ s.t. $(x, y) \in E$ implies $(y, x) \in E$. For a graph G = (V, E), *V* is written by V(G), and *E* is written by E(G).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition of graph homomorphisms

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 2

A graph homomorphism from G to H is a map $f: V(G) \rightarrow V(H)$ s.t. $(f \times f)(E(G)) \subset E(H)$.

The following is a classical problem in graph theory.

Problem 1 (The existence problem of graph homomorphisms)

Given two graphs G and H. Consider an easy method to determine whether $\exists f : G \rightarrow H$ or not.

Odd girth $g_0(G)$

Fundamental groups of graphs

Takahiro Matsushita

Introduction

For a positive integer *n*, the *n*-cycle graph C_n is defined by • $V(C_n) = \mathbb{Z}/n\mathbb{Z}$. • $E(C_n) = \{(x, x \pm 1) \mid x \in \mathbb{Z}/n\mathbb{Z}\}.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Odd girth $g_0(G)$

Definition 3

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Let G be a graph. The odd girth $g_0(G)$ of G is defined by $g_0(G) = \inf\{n \ge 1 \mid n \text{ is odd and } \exists C_n \to G.\}$

If $g_0(G) = 1$, then G has a loop. (Hence if G is non-looped, then $g_0(G) \ge 3$.)

Lemma 1

If $\exists G \to H$, then $g_0(G) \ge g_0(H)$.

Proof.

Put $n = g_0(G)$. Then $\exists C_n \to G$, hence $\exists C_n \to H$. Therefore $g_0(H) \le n = g_0(G)$.

Takahiro Matsushita

Introduction

The existence problem of the graph homomorphism is related to the existence problems of the \mathbb{Z}_2 -equivariant maps, via the box complex B(G).

Definition of simplicial complex

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 4

An (abstract) simplicial complex is a pair (V, Δ) satisfying the followings :

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

V is a set.

• Δ is a family of finite subsets of V.

•
$$\forall v, v \in V \Rightarrow \{v\} \in \Delta.$$

• $\forall \sigma \in \Delta, \ \forall \tau \in 2^V, \ \tau \subset \sigma \Rightarrow \tau \in \Delta.$

Geometric realization

Fundamental groups of graphs

Takahiro Matsushita

Introduction

$$V = \{0, 1, 2, 3\}$$
$$\Delta = \{\sigma \mid \sigma \subset \{0, 1, 2\}, \{1, 3\}, \text{ or } \{2, 3\}.\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition of order complex

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 5

A partially ordered set is often called a poset. A subset $\sigma \subset P$ is called a chain if the restriction of the order of P to σ is totally ordered. The order complex $\Delta(P)$ is the simplicial complex

•
$$V(\Delta(P)) = P$$
.

$$\Delta(P) = \{ \sigma \subset P \mid \sigma \text{ is a finite chain of } P. \}.$$

Definition of box complex

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 6

The box complex B(G) of a graph G is a poset

$$B(G) = \{(\sigma, \tau) \mid \sigma, \tau \in 2^{V(G)} \setminus \{\emptyset\}, \sigma \times \tau \subset E(G).\}$$

with the order such that $(\sigma, \tau) \leq (\sigma', \tau') \Leftrightarrow \sigma \subset \sigma'$ and $\tau \subset \tau'$.

Remark that B(G) has the \mathbb{Z}_2 -action $(\sigma, \tau) \leftrightarrow (\tau, \sigma)$. For a graph homomorphism $f : G \to H$, the map $B(G) \to B(H)$, $(\sigma, \tau) \mapsto (f(\sigma), f(\tau))$ is \mathbb{Z}_2 -equivariant. Hence if we can show that $\nexists B(G) \xrightarrow{\mathbb{Z}_2} B(H)$, then we have $\nexists G \to H$.

Definition of K_n

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 7

Let $n \ge 0$. The graph K_n is defined by

•
$$V(K_n) = \{1, \dots, n\}.$$

• $E(K_n) = \{(x, y) \mid x \neq y\}.$

A graph homomorphism $G \to K_n$ is called an *n*-coloring of *G*. The chromatic number $\chi(G)$ of the graph *G* is defined by

$$\chi(G) = \inf\{n \ge 0 \mid \exists G \to K_n.\}.$$

To compute $\chi(G)$ is called the graph coloring problem. Since $g_0(K_n) = 3$ for $n \ge 3$, the odd girth is not useful to this problem.

 K_n

An example of coloring

An example of coloring

An example of coloring

Neighborhood complex

Fundamental groups of graphs

Takahiro Matsushita

Introduction

For a graph G and for $v \in V(G)$, the neighborhood N(v) of v is defined by $N(v) = \{w \in V(G) \mid (v, w) \in E(G)\}.$

Definition 8

The neighborhood complex N(G) of a graph G is the simplicial complex

•
$$V(N(G)) = \{v \in V(G) \mid N(v) \neq \emptyset\}.$$

• $N(G) = \{\sigma \subset V(G) \mid \#\sigma < \infty, \text{ and } \exists v \in V(G) \text{ s.t.} \sigma \subset N(v).\}.$

Theorem 2 (Babson-Kozlov '06)

$$N(G) \simeq B(G).$$

 C_5 and C_6

$N(C_5)$ and $N(C_6)$

 $N(C_5)\simeq S^1$

 $N(C_6) \simeq S^1 \sqcup S^1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lovász's theorem

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Theorem 3 (Lovász)

Let $n \ge -1$. If N(G) is n-connected, then $\chi(G) \ge n+3$.

Proof.

Since $B(G) \simeq N(G)$, B(G) is *n*-connected. By the Gysin sequence, we have $w_1(B(G))^{n+1} \neq 0$. On the other hand, suppose $\exists G \to K_m$. Then $B(G) \xrightarrow{\mathbb{Z}_2} B(K_m) \simeq S^{m-2}$, we have $w_1(B(G))^{m-1} = 0$. Hence we have

$$n + 1 < m - 1$$
.

Kneser graphs

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 9

Let $k \ge 0$ and $n \ge 2k$. The Kneser graph $KG_{n,k}$ is defined by • $V(KG_{n,k}) = \{ \sigma \subset \{1, \dots, n\} \mid \#\sigma = k \}.$ • $E(KG_{n,k}) = \{ (\sigma, \tau) \mid \sigma \cap \tau = \emptyset. \}.$

It is easy to see $\chi(KG_{n,k}) \leq n-2k+2$, and Kneser conjectured $\chi(KG_{n,k}) = n-2k+2$ in 1955 (Kneser's conjecture). Lovász proved that $N(KG_{n,k})$ is (n-2k-1)-connected, and show that $\chi(KG_{n,k}) = n-2k+2$ in 1978.

 $KG_{5,2}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

(\mathbb{Z}_2) -topologies of B(G) and N(G) and $\chi(G)$

Fundamental groups of graphs

Takahiro Matsushita

Introduction

 (Lovász) For a connected graph G, N(G) (or B(G)) is connected iff χ(G) ≥ 3.

Lovász expected that there is a topological invariant of N(G) which is equivalent to $\chi(G)$.

Takahiro Matsushita

Introduction

- (Walker '83) There is no homotopy invariant of N(G) (hence of B(G)) which is equivalent to χ(G).
- (M) There is no topological invariant of N(G) and B(G) which is equivalent to $\chi(G)$.
- (M) There is no \mathbb{Z}_2 -homotopy invariant of B(G) which is equivalent to $\chi(G)$.
- Whether there is a Z₂-topological invariant of B(G) which is equivalent to χ(G) is still open.

r-fundamental groups

Fundamental groups of graphs

Takahiro Matsushita

Introduction

From now on, we fix a positive integer r. A based graph is a pair (G, v) where G is a graph and $v \in V(G)$. The r-fundamental group $\pi_1^r(G, v)$ is a group whose definition is similar to the fundamental group of topological spaces. Especially, the 2-fundamental group is similar to the fundamental group of N(G). But $\pi_1^r(G, v)$ can be directly used to the existence problem of the graph homomorphisms.

r-fundamental groups

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Let L_n denote the graph defined by $V(L_n) = \{0, 1, \dots, n\}$ and $E(L_n) = \{(x, y) \mid |x - y| = 1\}.$

Let (G, v) be a based graph. A graph homomorphism $L_n \to G$ s.t. $0, n \mapsto v$ is called a loop of (G, v) with length n.

r-fundamental groups

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Let L(G, v) denote the set of loops of (G, v). For $\varphi \in L(G, v)$, we write $I(\varphi)$ for the length of φ .

Fix a positive integer r, consider the following two conditions (I) and (II)_r for loops φ, ψ .

(1)
$$l(\psi) = l(\varphi) + 2$$
 and $\exists x \in \{0, 1, \dots, n\}$ s.t. $\varphi(i) = \psi(i)$
for $i \le x$ and $\varphi(i) = \psi(i+2)$ for $i \ge x$.

(II)_r $l(\varphi) = l(\psi)$ and # $\{i \in \{0, 1, \cdots, l(\varphi) \mid \varphi(i) = \psi(i)\}\} < r.$

Condition $(II)_r$

Fundamental groups of graphs

Takahiro Matsushita

Introduction

The case r = 3.

r-fundamental group $\pi_1^r(G, v)$

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 10

Let \simeq_r denote the equivalence relation generated by the conditions (I) and (II)_r. Put

$$\pi_1^r(G,v) = L(G,v)/\simeq_r$$

and call this the *r*-fundamental group of the based graph (G, v).

 $\pi_1^r(G, v)$ become a group with compositions of loops.

Parities

Fundamental groups of graphs

Takahiro Matsushita

Introduction

The map

$$\pi_1^r(G, v) \to \mathbb{Z}_2, [\varphi]_r \mapsto (I(\varphi) \mod 2)$$

is a well-defined group homomorphism, and the kernel is written by $\pi_1^r(G, v)_{ev}$, and is called the even part of $\pi_1^r(G, v)$. Let G_0 denote the connected component of G containing v. Then $\pi_1^r(G, v) = \pi_1^r(G, v)_{ev}$ iff $\chi(G_0) \leq 2$.

r-neighborhood complex

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Let G be a graph and $v \in V(G)$. The s-neighborhood $N_s(v)$ is defined as follows.

•
$$N_1(v) = N(v).$$

• $N_{s+1}(v) = \bigcup_{w \in N_s(v)} N(w).$

Definition 11

The *r*-neighborhood complex $N_r(G)$ is the simplicial complex

■
$$V(N_r(G)) = \{v \in V(G) \mid N(v) \neq \emptyset\}.$$

■ $N_r(G) = \{\sigma \subset V(G) \mid \#\sigma < \infty, \exists v \in V(G) \text{ s.t.} \sigma \subset N_r(v).\}.$

In particular, $N_1(G) = N(G)$.

Especially $\pi_1(N(G), v) \cong \pi_1^2(G, v)_{ev}$.

Length and stable length

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Let $\alpha \in \pi_1^r(G, v)$. Put

$$I(\alpha) = \inf\{I(\varphi) \mid \varphi \in \alpha\}$$

and call this the length of α .

Length and stable length

Proposition 5

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of non-negative real numbers s.t.

$$a_{n+m} \leq a_n + a_m \ (\forall n, m \in \mathbb{N}).$$

Then $\lim_{n\to\infty} a_n/n$ exists and

$$\lim_{n\to\infty}\frac{a_n}{n}=\inf_{n\in\mathbb{N}}\frac{a_n}{n}.$$

For $\alpha \in \pi_1^r(G, v)$, the sequence $(I(\alpha^n))_{n \in \mathbb{N}}$ satisfies the above hypothesis, and we define the stable length of α by

$$l_{s}(\alpha) := \lim_{n \to \infty} \frac{l(\alpha^{n})}{n}.$$

・ロト・雪ト・雪ト・雪・ 今日・

Application of π_1^r

Fundamental groups of graphs

Takahiro Matsushita

Introduction

r-fundamental groups can be applied to the existence problem of graph homomorphisms.

Let $f : (G, v) \to (H, w)$ be a based graph homomorphism. Then the map $f_* : \pi_1^r(G, v) \to \pi_1^r(H, w)$, $[\varphi]_r \mapsto [f \circ \varphi]_r$ is well-defined, and satisfies the followings:

- (0) f_* is a group homomorphism.
- (1) f_* preserves parities.
- (2) $l(f_*(\alpha)) \le l(\alpha)$.
- (3) $I_s(f_*(\alpha)) \leq I_s(\alpha)$.

For example, let us consider the existence of graph homomorphisms to odd cycles.

$\pi_1^r(C_n)$

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Proposition 6

The followings hold. (1) For odd $n \ge 3$, we have

$$\pi_1^r(C_n) = \begin{cases} \mathbb{Z}\alpha & (r < n) \\ \mathbb{Z}/2 & (r \ge n), \end{cases}$$

and the generator α is odd and $l_s(\alpha) = n$ if r < n. (2) For even $n \ge 4$, we have

$$\pi_1^r(C_n) = \begin{cases} \mathbb{Z}\alpha & (r < n/2) \\ 1 & (r \ge n/2). \end{cases}$$

and the generator α is even and $l_s(\alpha) = n$ if r < n/2.

Takahiro Matsushita

Introduction

Theorem 7 (M)

Let n be an odd integer s.t. $n \ge 3$, and G a connected graph. If $\exists G \to C_n$, then $l_s(\beta) \ge n$ for any r < n and any odd element β of $\pi_1^r(G, v)$.

Proof.

Suppose there is a graph homomorphism $f : G \to C_n$. Since $f_*(\beta)$ is odd, $\exists k \in \mathbb{Z}$ s.t. $f_*(\beta) = \alpha^{2k+1}$. Hence

$$I_{\mathfrak{s}}(\beta) \geq I_{\mathfrak{s}}(f_{\ast}(\beta)) = I_{\mathfrak{s}}(\alpha^{2k+1}) = |2k+1|I_{\mathfrak{s}}(\alpha) \geq I_{\mathfrak{s}}(\alpha) = n.$$

Examples

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Recall that $\chi(KG_{n,k}) = n - 2k + 2$. Hence $\exists KG_{2k+1,k} \to K_3 \cong C_3$. For a positive integer $k \ge 1$, $\pi_1^3(KG_{2k+1,k}) \cong \mathbb{Z}/2$. Hence by the previous theorem, we have $\exists KG_{2k+1,k} \to C_5$. On the other hand, it is known that the odd girth $g_0(KG_{2k+1,k})$ is equal to 2k + 1.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = 三 - のへで

Takahiro Matsushita

Introduction

Let β denote the generator of $\pi_1^2(X) \cong \mathbb{Z}$.

Then we have $l_s(\beta) = \frac{7}{3}$.

Takahiro Matsushita

Introduction

Let β denote the generator of $\pi_1^2(X) \cong \mathbb{Z}$.

Then we have $l_s(\beta) = \frac{7}{3}$.

Takahiro Matsushita

Introduction

Let β denote the generator of $\pi_1^2(X) \cong \mathbb{Z}$.

Then we have $l_s(\beta) = \frac{7}{3}$.

Takahiro Matsushita

Introduction

Let β denote the generator of $\pi_1^2(X) \cong \mathbb{Z}$.

Then we have $l_s(\beta) = \frac{7}{3}$.

Takahiro Matsushita

Introduction

From the following, we have $I(\beta^{3n}) \approx 7n$.

Hence we have
$$l_s(\beta) = \lim_{n \to \infty} \frac{l(\beta^{3n})}{3n} = \lim_{n \to \infty} \frac{7n}{3n} = \frac{7}{3}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Takahiro Matsushita

Introduction

Hence the stable length of the generator β of $\pi_1^2(X) \cong \mathbb{Z}$ is smaller than 3. Since β is odd, we have $\not\exists X \to C_3 \cong K_3$. This implies that $\chi(X) > 3$. Since $\pi_1^2(G)_{ev} \cong \pi_1(N(G)), \pi_1(N(K_3)) \to \pi_1(N(X))$ is an isomorphism. Indeed, this $N(G) \hookrightarrow N(X)$ is homotopy equivalence (hence $B(G) \hookrightarrow B(X)$ is \mathbb{Z}_2 -homotopy equivalence) s.t. $\chi(G) \neq \chi(X)$.

r-covering maps

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Recall that the s-neighborhood $N_s(v)$ is defined by

$$N_1(v) = N(v)$$
 and $N_{s+1}(v) = \bigcup_{w \in N_s(v)} N(w).$

Definition 12

A graph homomorphism $p: G \to H$ is said to be an *r*-covering map if for any $v \in V(G)$,

$$p|_{N_s(v)}: N_s(v) \rightarrow N_s(p(v))$$

is bijective for $1 \leq s \leq r$.

r-covering maps

Fundamental groups of graphs

Takahiro Matsushita

Introduction

There is similar relations between $\pi_1^r(G, v)$ and *r*-covering maps, as is the case of covering space theory.

- (1) If $p: (G, v) \to (H, w)$ is an *r*-covering map, then $p_*: \pi_1^r(G, v) \to \pi_1^r(H, w)$ is injective.
- (2) For each $\Gamma \leq \pi_1^r(G, \nu)$, there is an *r*-covering map $(G_{\Gamma}, \nu_{\Gamma}) \rightarrow (G, \nu)$ s.t. G_{Γ} is connected, and $p_*(\pi_1^r(G_{\Gamma}, \nu_{\Gamma})) = \Gamma$, and this is unique up to isomorphisms.
- (3) Suppose $f : (T, x) \to (H, w)$ is a graph homomorphism and $p : (G, v) \to (H, w)$ an *r*-covering map. If *T* is connected and $f_*\pi_1^r(T, x) \subset p_*\pi_1^r(G, v)$, then $\exists g : (T, x) \to (G, v)$ s.t. $p \circ g = f$.

r-covering maps

Fundamental groups of graphs

Takahiro Matsushita

Introduction

The 2nd projection $K_2 \times G \to G$ is an *r*-covering map for any $r \geq 1$. If G is connected and $\chi(G) \geq 3$, then $K_2 \times G$ is connected, and the associated subgroup of $\pi_1^r(G)$ is the even part $\pi_1^r(G)_{ev}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆□ ▶ ◆□ ● ● ● ●

Introduction

(ロ)、(型)、(E)、(E)、 E) の(の)

▲□▶ <畳▶ < Ξ▶ < Ξ▶ < Ξ · 9 Q @</p>

Examples

Fundamental groups of graphs

Takahiro Matsushita

Introduction

- π₁²(K_n) ≃ ℤ/2 for n ≥ 4, connected 2-covering over K_n (n ≥ 4) is G or K₂ × G.
- Since $\pi_1^3(KG_{2k+1,k}) \cong \mathbb{Z}/2$, connected 3-covering over $KG_{2k+1,k}$ is $KG_{2k+1,k}$ or $K_2 \times KG_{2k+1,k}$. But since $\pi_1^2(KG_{2k+1,k})$ is a free group, and hence there are many connected 2-covering maps over $KG_{2k+1,k}$.

Takahiro Matsushita

Introduction

Hence if $K_2 \times G \cong K_2 \times H$, we have

$$\pi_1^r(G)_{ev}\cong\pi_1^r(K_2 imes G)\cong\pi_1^r(K_2 imes H)\cong\pi_1^r(H)_{ev}.$$

Since $\pi_1^2(N(G))_{ev} \cong \pi_1^2(G)_{ev}$, we have that if $K_2 \times G \cong K_2 \times H$, then $\pi_1(N(G)) \cong \pi_1(N(H))$. Indeed, we can say that if $K_2 \times G \cong K_2 \times H$, then $N(G) \cong N(H)$ and $B(G) \cong B(H)$ as poset.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Takahiro Matsushita

Introduction

(ロ)、(型)、(E)、(E)、 E) の(の)

(ロ)、(型)、(E)、(E)、 E) の(の)

For further researches

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Let n be a positive integer, and G a connected graph s.t.
#N(v) = n for v ∈ V(G). Consider the following property.
(*) For v, w ∈ V(G) with N(v) ∩ N(w) ≠ 0, then #(N(v) ∩ N(w)) > n/2.
Then the diameter of G is smaller than 4. (Especially G is

Then the diameter of G is smaller than 4. (Especially, G is finite.)

For further researches

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Definition 13

A graph property (P) is said to be *r*-local if for a surjective *r*-covering map $p: G \rightarrow H$, *G* satisfies (P) if and only if *H* satisfies (P).

Then the condition (*) is a 2-local property. Suppose a 2-local property (P) implies the finiteness of connected graphs. Suppose a connected graph G satisfies (P). Then the universal 2-covering of G satisfies it and is finite. Hence $\pi_1^2(G)$ is finite. This implies that $\chi(G) \neq 3$.

For further researches

Fundamental groups of graphs

Takahiro Matsushita

Introduction

Problem 2

Find the *r*-local property s.t. a connected graph satisfying such a property is finite.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで