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Adam Levin’s question.

Dehn surgery Knot concordance

The following question asks a relation
between Knot concordance and Dehn sugery.

Question (Levine, 2016)

If K is concordant to K ′, then for all n,
S3

n(K ) is homology cobordant to S3
n(K ′).

Is the converse true?
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Dehn surgery 1.

Dehn surgery on knots is a long-standing technique
for the construction of 3-manifolds.

The following existence theorem is important.

Theorem (Lickorish, Wallace)
Any closed, oriented and connected 3-manifold is realized by
integral surgery on a link in S3.
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Dehn surgery 2.

How about "uniqueness" ???

Question
If two framed links L and L′ gives the same 3-manifold, then

L = L′ ?

Question
If two framed knots K and K′ gives the same 3-manifold, then

K = K′ ?
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Positive direction : When the question holds ?

Question
If two framed knots K and K′ gives the same 3-manifold, then

K = K′ ?
Restriction 1 : Fix the knot type.
Restriction 2 : Consider only an orientation preserving hom.

Yi Ni and Zhongtao Wu.
Cosmetic surgeries on knots in S3,
J. Reine Angew. Math., 706, (2015), 1–17.

An application of the d-invariant coming from the Heegaard
Floer homology.
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Negative direction : Find the worst situation

Question
If two framed knots K and K′ gives the same 3-manifold, then

K = K′ ?
Problem (Clark, Problem 3.6 in Kirby’s problem list)
Let n be an integer.
Find a 3-manifold obtained by n-surgery on∞-many knots.

• In 2006, Osoinach solved this problem for n = 0.

• After the work of Teragaito, Takeuchi, Omae, Kohno,
it was solved by Abe-Jong-Luecke-Osoinach in 2015.

• Tool : Twisting along an annulus (=annulus twist)
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Osoinach’s result.

Theorem (Osoinach, 2006)

(1) The sequence {Kn} contains∞-many hyperbolic knots.
(2) We have the following:

S3
0(K0) ≈ S3

0(K1) ≈ S3
0(K2) ≈ S3

0(K3) ≈ · · · .

• K0 is the connected sum of two figure eight knots.
• Takioka proved that Kn are mutually distinct for n ≥ 0.
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Basic lemmas

(1)

(2)

(3)
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Proof of S3
0(Kn) ≈ S3

0(K0).
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How to generalize?

Lemma (Osoinach)

S3
0(K ′

n) ≈ S3
0(K ′

0).
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A general case.

m
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Knot concordance group C.

The knot concordance group was introduced by
Fox and Milnor in 1966.

Two oriented knots K and K ′ are concordant
def⇐⇒ they cobound a properly embedded annulus

in S3 × I.

The knot concordance group is

C = {Knots}/ ∼
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Akbulut-Kirby’s conjecture.

Question (Levine, 2016)

If K is concordant to K ′, then for all n,
S3

n(K ) is homology cobordant to S3
n(K ′).

Is the converse true?

Conjecture (Akbulut-Kirby)

If two knots K and K ′ have the same 0-surgery,
then K and K ′ are concordant.

After Abe-Tagami’s work, Yasui solved this conjecture.

Notation: Xn(K ) is the 2-handleboby obtained from K ⊂ S3

with framing n.
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Yasui’s result.

(A picture from Yasui’s paper)

Theorem (Yasui, 2015)

(1) X0(K ) and X0(K ′) are exotic (home. but not diffeo.).
(2) τ(K ) 6= τ(K ′).
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A remaining conjecture.

Conjecture

If X0(K ) ≈ X0(K ′), then K and K ′ are concordant.

Theorem (Abe-Jong-Omae-Takeuchi, 2013, Abe-Tagami, 2015)

(1) The 4-manifold X0(K0) and X0(K1) are diffeomorphic.
(2) If the slice-ribbon conjecture is true, K0 and K1 are not
concordant.
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Another consequence of the slice-ribbon conjecture.

Observation (Abe-Tagami, 2015)

If the slice-ribbon conjecture is true, the set of prime tight
fibered knots is linearly independent in Con(S3).

If the slice-ribbon conjecture is true, then following is true.

The set of the algebraic knots is linearly independent.
The set of L-space knots is linearly independent.

Conclusion

The slice-ribbon conjecture has information on Con(S3).
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The definition of a slice knot.

B4 : the 4-ball s.t ∂B4 = S3

A knot K ⊂ S3 is (smoothly) slice
def⇐⇒ it bounds a smoothly embedded disk in B4.

• A knot K is slice iff [K] is the unit element of C.

Tetsuya Abe On annulus twists



Dehn surgery and annulus twists
Knot concordance and annulus twists

A construction of ribbon disks

The definition of a slice knot.

B4 : the 4-ball s.t ∂B4 = S3

A knot K ⊂ S3 is (smoothly) slice
def⇐⇒ it bounds a smoothly embedded disk in B4.

• A knot K is slice iff [K] is the unit element of C.

Tetsuya Abe On annulus twists



Dehn surgery and annulus twists
Knot concordance and annulus twists

A construction of ribbon disks

The definition of a slice knot.

B4 : the 4-ball s.t ∂B4 = S3

A knot K ⊂ S3 is (smoothly) slice
def⇐⇒ it bounds a smoothly embedded disk in B4.

• A knot K is slice iff [K] is the unit element of C.

Tetsuya Abe On annulus twists



Dehn surgery and annulus twists
Knot concordance and annulus twists

A construction of ribbon disks

The definition of a slice knot.

B4 : the 4-ball s.t ∂B4 = S3

A knot K ⊂ S3 is (smoothly) slice
def⇐⇒ it bounds a smoothly embedded disk in B4.

• A knot K is slice iff [K] is the unit element of C.

Tetsuya Abe On annulus twists



Dehn surgery and annulus twists
Knot concordance and annulus twists

A construction of ribbon disks

The definition of a ribbon disk.

A knot in S3 is ribbon
def⇐⇒ it bounds an immersed disk in S3

with only ribbon singularities.

Lemma
A ribbon knot R ⊂ S3 bounds a smoothly
embedded disk in B4. In particular, R is slice.

This disk is called a ribbon disk for R.
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The slice-ribbon conjecture.

• Any ribbon knot is slice.

• The slice-ribbon conjecture states that any
slice knot is ribbon.

Using annulus twists technique, we can construct
potential counterexamples of slice-ribbon conjecture.

T. Abe and M. Tange, A construction of slice knots via annulus
twists, accepted by the Michigan Mathematical Journal.
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A construction of ribbon disks.

Let U ⊂ S3 be the unknot, and ∆ ⊂ S3 = ∂B4 a spanning disk
for U. Regard B4 as a 0-handle h0. Consider an m-component
unlink L = L1 t L2 t · · · t Lm such that L ∩∆ = ∅. Regard the
unlink L as dotted 1-handles h1

i (i = 1,2, · · · ,m). Attach
2-handles h2

i (i = 1,2, · · · ,m) along circles in S3 \ (L ∪ U) so
that, the resulting 2-handlebody

h0
⋃

h1
1 ∪ · · · ∪ h1

m

⋃
h2

1 ∪ · · · ∪ h2
m

is represented by the handle diagram in Figure 1 after isotopy,
where γi is the framing of a 2-handle h2

i (i = 1,2, · · · ,m).
γ1 γ2 γm

Figure: A handle diagram.
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A construction of ribbon disks.

By the handle canceling theorem, the 2-handlebody

h0
⋃

h1
1 ∪ · · · ∪ h1

m

⋃
h2

1 ∪ · · · ∪ h2
m

is diffeomorphic to B4. Note that

∆ ⊂ h0 ⊂ h0
⋃

h1
1 ∪ · · · ∪ h1

m

⋃
h2

1 ∪ · · · ∪ h2
m ≈ B4.

Therefore we obtain a new slice disk D in B4 (which is ∆ in
h0 ⋃h1

1 ∪ · · · ∪ h1
m
⋃

h2
1 ∪ · · · ∪ h2

m).

Theorem (Abe-Tange, cf. Hitt, Asano-Marumto-Yanagawa)
Any slice disk obtained by the above construction is ribbon.
Conversely, any ribbon disk is obtained by this construction.
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A schematic picture of this construction for m = 1.

h0

∆
h2 D

Figure: The spanning disk ∆ in S3 = ∂B4, the 2-handlebody
h0 ∪h1 ∪h2 which is diffeomorphic to B4, and a new slice disk D in B4.
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A concrete example of this construction for m = 2.

Let n be an integer.

h11

h11

h12
h21

h22

∆

Figure: The slice disk Dn.

Then the 2-handlebody

h0
⋃

h1
1 ∪ h1

2

⋃
h2

1 ∪ h2
2

satisfies the condition in this section and is diffeomorphic to B4.
A new slice disk, denoted by Dn, is the shaded disk in Figure 3.
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A concrete example of this construction for m = 2.

Let n be an integer.

Theorem (Abe-Tange)

(1) The exteriors of Dn are the same.
(2) Dn is a ribbon disk.
(2) ∂Dn = Kn.
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