On annulus twists

Tetsuya Abe¹

¹OCAMI

May 20, 2016

Tetsuya Abe On annulus twists

イロン 不同 とくほう イヨン

Outline

- Dehn surgery and annulus twists
- 2 Knot concordance and annulus twists
- A construction of ribbon disks

・ロト ・ 『 ト ・ ヨ ト

.≣⇒

Adam Levin's question.

Dehn surgery
$$\leftrightarrow$$
 Knot concordance

The following question asks a relation between Knot concordance and Dehn sugery.

Question (Levine, 2016)

If K is concordant to K', then for all n, $S_n^3(K)$ is homology cobordant to $S_n^3(K')$. Is the converse true?

Tetsuya Abe On annulus twists

Dehn surgery 1.

Dehn surgery on knots is a long-standing technique for the construction of 3-manifolds.

The following existence theorem is important.

Theorem (Lickorish, Wallace)

Any closed, oriented and connected 3-manifold is realized by integral surgery on a link in S^3 .

Dehn surgery 1.

Dehn surgery on knots is a long-standing technique for the construction of 3-manifolds.

The following existence theorem is important.

Theorem (Lickorish, Wallace)

Any closed, oriented and connected 3-manifold is realized by integral surgery on a link in S^3 .

Dehn surgery 2.

How about "uniqueness" ???

Question

If two framed links ${\cal L}$ and ${\cal L}'$ gives the same 3-manifold, then ${\cal L}={\cal L}'$?

Question

If two framed knots ${\cal K}$ and ${\cal K}'$ gives the same 3-manifold, then ${\cal K}={\cal K}'$?

Dehn surgery 2.

How about "uniqueness" ???

Question

If two framed links ${\cal L}$ and ${\cal L}'$ gives the same 3-manifold, then ${\cal L}={\cal L}'$?

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Tetsuya Abe

On annulus twists

Positive direction : When the question holds ?

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Restriction 1 : Fix the knot type. Restriction 2 : Consider only an orientation preserving hom.

Yi Ni and Zhongtao Wu. *Cosmetic surgeries on knots in S*³, J. Reine Angew. Math., **706**, (2015), 1–17.

An application of the d-invariant coming from the Heegaard Floer homology.

Positive direction : When the question holds ?

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Restriction 1 : Fix the knot type.

Restriction 2 : Consider only an orientation preserving hom.

Yi Ni and Zhongtao Wu. *Cosmetic surgeries on knots in S*³, J. Reine Angew. Math., **706**, (2015), 1–17.

An application of the d-invariant coming from the Heegaard Floer homology.

Positive direction : When the question holds ?

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Restriction 1 : Fix the knot type. Restriction 2 : Consider only an orientation preserving hom.

Yi Ni and Zhongtao Wu. *Cosmetic surgeries on knots in S*³, J. Reine Angew. Math., **706**, (2015), 1–17.

An application of the d-invariant coming from the Heegaard Floer homology.

Positive direction : When the question holds ?

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Restriction 1 : Fix the knot type. Restriction 2 : Consider only an orientation preserving hom.

Yi Ni and Zhongtao Wu. *Cosmetic surgeries on knots in S*³, J. Reine Angew. Math., **706**, (2015), 1–17.

An application of the d-invariant coming from the Heegaard Floer homology.

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Problem (Clark, Problem 3.6 in Kirby's problem list)

Let n be an integer. Find a 3-manifold obtained by n-surgery on ∞ -many knots.

- In 2006, Osoinach solved this problem for n = 0.
- After the work of Teragaito, Takeuchi, Omae, Kohno, it was solved by Abe-Jong-Luecke-Osoinach in 2015.
- Tool : Twisting along an annulus (=annulus twist)

・ロト ・ 『 ト ・ ヨ ト

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Problem (Clark, Problem 3.6 in Kirby's problem list)

Let n be an integer. Find a 3-manifold obtained by n-surgery on ∞ -many knots.

• In 2006, Osoinach solved this problem for n = 0.

• After the work of Teragaito, Takeuchi, Omae, Kohno, it was solved by Abe-Jong-Luecke-Osoinach in 2015.

• Tool : Twisting along an annulus (=annulus twist)

ヘロト ヘアト ヘヨト

.≣⇒

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Problem (Clark, Problem 3.6 in Kirby's problem list)

Let n be an integer. Find a 3-manifold obtained by n-surgery on ∞ -many knots.

• In 2006, Osoinach solved this problem for n = 0.

• After the work of Teragaito, Takeuchi, Omae, Kohno, it was solved by Abe-Jong-Luecke-Osoinach in 2015.

• Tool : Twisting along an annulus (=annulus twist)

ヘロト ヘアト ヘヨト

.≣⇒

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Problem (Clark, Problem 3.6 in Kirby's problem list)

Let n be an integer. Find a 3-manifold obtained by n-surgery on ∞ -many knots.

- In 2006, Osoinach solved this problem for n = 0.
- After the work of Teragaito, Takeuchi, Omae, Kohno, it was solved by Abe-Jong-Luecke-Osoinach in 2015.

• Tool : Twisting along an annulus (=annulus twist)

ヘロト 人間 ト ヘヨト ヘヨト

Question

If two framed knots κ and κ' gives the same 3-manifold, then $\mathcal{K}=\mathcal{K}'$?

Problem (Clark, Problem 3.6 in Kirby's problem list)

Let n be an integer. Find a 3-manifold obtained by n-surgery on ∞ -many knots.

- In 2006, Osoinach solved this problem for n = 0.
- After the work of Teragaito, Takeuchi, Omae, Kohno, it was solved by Abe-Jong-Luecke-Osoinach in 2015.
- Tool : Twisting along an annulus (=annulus twist)

Osoinach's result.

Theorem (Osoinach, 2006)

(1) The sequence $\{K_n\}$ contains ∞ -many hyperbolic knots. (2) We have the following:

 $\mathcal{S}^3_0(\mathcal{K}_0) pprox \mathcal{S}^3_0(\mathcal{K}_1) pprox \mathcal{S}^3_0(\mathcal{K}_2) pprox \mathcal{S}^3_0(\mathcal{K}_3) pprox \cdots$

• K₀ is the connected sum of two figure eight knots.

• Takioka proved that K_n are mutually distinct for $n \ge 0$.

Osoinach's result.

Theorem (Osoinach, 2006)

(1) The sequence $\{K_n\}$ contains ∞ -many hyperbolic knots. (2) We have the following:

 $\mathcal{S}^3_0(\mathcal{K}_0) pprox \mathcal{S}^3_0(\mathcal{K}_1) pprox \mathcal{S}^3_0(\mathcal{K}_2) pprox \mathcal{S}^3_0(\mathcal{K}_3) pprox \cdots$

- K_0 is the connected sum of two figure eight knots.
- Takioka proved that K_n are mutually distinct for $n \ge 0$.

Osoinach's result.

Theorem (Osoinach, 2006)

(1) The sequence $\{K_n\}$ contains ∞ -many hyperbolic knots. (2) We have the following:

 $S_0^3(\mathcal{K}_0) pprox S_0^3(\mathcal{K}_1) pprox S_0^3(\mathcal{K}_2) pprox S_0^3(\mathcal{K}_3) pprox \cdots$

- K_0 is the connected sum of two figure eight knots.
- Takioka proved that K_n are mutually distinct for $n \ge 0$.

Basic lemmas

Proof of $S_0^3(K_n) \approx S_0^3(K_0)$.

Tetsuya Abe On annulus twists

ヘロト 人間 とくほとくほとう

æ

Proof of $S_0^3(K_n) \approx S_0^3(K_0)$.

Tetsuya Abe

On annulus twists

æ

Proof of $S_0^3(K_n) \approx S_0^3(K_0)$.

Tetsuya Abe

On annulus twists

Dehn surgery and annulus twists Knot concordance and annulus twists

A construction of ribbon disks

How to generalize?

Lemma (Osoinach)

Tetsuya Abe On annulus twists

Dehn surgery and annulus twists Knot concordance and annulus twists

A construction of ribbon disks

How to generalize?

Lemma (Osoinach)

$S_0^3(K_n') \approx S_0^3(K_0').$

Tetsuya Abe C

On annulus twists

A general case.

A general case.

Knot concordance group C.

The knot concordance group was introduced by Fox and Milnor in 1966.

Two oriented knots K and K' are concordant $\stackrel{\text{def}}{\iff}$ they cobound a properly embedded annulus in $S^3 \times I$.

The knot concordance group is

 $\mathcal{C} = \{\mathsf{Knots}\} / \sim$

Knot concordance group C.

The knot concordance group was introduced by Fox and Milnor in 1966.

Two oriented knots K and K' are concordant $\stackrel{\text{def}}{\longleftrightarrow}$ they cobound a properly embedded annulus in $S^3 \times I$.

The knot concordance group is

 $\mathcal{C} = \{\mathsf{Knots}\} / \sim$

Knot concordance group C.

The knot concordance group was introduced by Fox and Milnor in 1966.

Two oriented knots K and K' are concordant $\stackrel{\text{def}}{\longleftrightarrow}$ they cobound a properly embedded annulus in $S^3 \times I$.

The knot concordance group is

$$\mathcal{C} = \{\text{Knots}\} / \sim$$

Akbulut-Kirby's conjecture.

Question (Levine, 2016)

If K is concordant to K', then for all n, $S_n^3(K)$ is homology cobordant to $S_n^3(K')$. Is the converse true?

Conjecture (Akbulut-Kirby)

If two knots K and K' have the same 0-surgery, then K and K' are concordant.

After Abe-Tagami's work, Yasui solved this conjecture.

Notation: $X_n(K)$ is the 2-handleboby obtained from $K \subset S^3$ with framing *n*.

Akbulut-Kirby's conjecture.

Question (Levine, 2016)

If K is concordant to K', then for all n, $S_n^3(K)$ is homology cobordant to $S_n^3(K')$. Is the converse true?

Conjecture (Akbulut-Kirby)

If two knots K and K' have the same 0-surgery, then K and K' are concordant.

After Abe-Tagami's work, Yasui solved this conjecture.

Notation: $X_n(K)$ is the 2-handleboby obtained from $K \subset S^3$ with framing *n*.

Akbulut-Kirby's conjecture.

Question (Levine, 2016)

If K is concordant to K', then for all n, $S_n^3(K)$ is homology cobordant to $S_n^3(K')$. Is the converse true?

Conjecture (Akbulut-Kirby)

If two knots K and K' have the same 0-surgery, then K and K' are concordant.

After Abe-Tagami's work, Yasui solved this conjecture.

Notation: $X_n(K)$ is the 2-handleboby obtained from $K \subset S^3$ with framing *n*.

Yasui's result.

(A picture from Yasui's paper)

Theorem (Yasui, 2015)

(1) $X_0(K)$ and $X_0(K')$ are exotic (home. but not diffeo.). (2) $\tau(K) \neq \tau(K')$.

A remaining conjecture.

Conjecture

If $X_0(K) \approx X_0(K')$, then K and K' are concordant.

Theorem (Abe-Jong-Omae-Takeuchi, 2013, Abe-Tagami, 2015)

(1) The 4-manifold $X_0(K_0)$ and $X_0(K_1)$ are diffeomorphic. (2) If the slice-ribbon conjecture is true, K_0 and K_1 are not concordant.

A remaining conjecture.

Conjecture

If $X_0(K) \approx X_0(K')$, then K and K' are concordant.

Theorem (Abe-Jong-Omae-Takeuchi, 2013, Abe-Tagami, 2015)

(1) The 4-manifold $X_0(K_0)$ and $X_0(K_1)$ are diffeomorphic. (2) If the slice-ribbon conjecture is true, K_0 and K_1 are not concordant.

Observation (Abe-Tagami, 2015)

If the slice-ribbon conjecture is true, the set of prime tight fibered knots is linearly independent in $Con(S^3)$.

If the slice-ribbon conjecture is true, then following is true.

- The set of the algebraic knots is linearly independent.
- The set of L-space knots is linearly independent.

Conclusion

The slice-ribbon conjecture has information on $Con(S^3)$.

Observation (Abe-Tagami, 2015)

If the slice-ribbon conjecture is true, the set of prime tight fibered knots is linearly independent in $Con(S^3)$.

If the slice-ribbon conjecture is true, then following is true.

- The set of the algebraic knots is linearly independent.
- The set of L-space knots is linearly independent.

Conclusion

The slice-ribbon conjecture has information on $Con(S^3)$.

Observation (Abe-Tagami, 2015)

If the slice-ribbon conjecture is true, the set of prime tight fibered knots is linearly independent in $Con(S^3)$.

If the slice-ribbon conjecture is true, then following is true.

- The set of the algebraic knots is linearly independent.
- The set of L-space knots is linearly independent.

Conclusion

The slice-ribbon conjecture has information on $Con(S^3)$.

Observation (Abe-Tagami, 2015)

If the slice-ribbon conjecture is true, the set of prime tight fibered knots is linearly independent in $Con(S^3)$.

If the slice-ribbon conjecture is true, then following is true.

- The set of the algebraic knots is linearly independent.
- The set of L-space knots is linearly independent.

Conclusion

The slice-ribbon conjecture has information on $Con(S^3)$.

The definition of a slice knot.

B^4 : the 4-ball s.t $\partial B^4 = S^3$

A knot $K \subset S^3$ is (smoothly) slice $\stackrel{\text{def}}{\longleftrightarrow}$ it bounds a smoothly embedded disk in B^4 .

• A knot K is slice iff [K] is the unit element of C.

< ロ > < 同 > < 三 >

The definition of a slice knot.

B^4 : the 4-ball s.t $\partial B^4 = S^3$

A knot $K \subset S^3$ is (smoothly) slice $\stackrel{\text{def}}{\longleftrightarrow}$ it bounds a smoothly embedded disk in B^4 .

• A knot K is slice iff [K] is the unit element of C.

The definition of a slice knot.

B^4 : the 4-ball s.t $\partial B^4 = S^3$

A knot $K \subset S^3$ is (smoothly) slice $\stackrel{\text{def}}{\longleftrightarrow}$ it bounds a smoothly embedded disk in B^4 .

• A knot K is slice iff [K] is the unit element of C.

The definition of a slice knot.

 B^4 : the 4-ball s.t $\partial B^4 = S^3$

A knot $K \subset S^3$ is (smoothly) slice $\stackrel{\text{def}}{\longleftrightarrow}$ it bounds a smoothly embedded disk in B^4 .

• A knot K is slice iff [K] is the unit element of C.

The definition of a ribbon disk.

A knot in S^3 is ribbon $\stackrel{def}{\iff}$ it bounds an immersed disk in S^3 with only ribbon singularities.

₋emma

A ribbon knot $R \subset S^3$ bounds a smoothly embedded disk in B^4 . In particular, R is slice.

This disk is called a ribbon disk for Review a one

The definition of a ribbon disk.

A knot in S^3 is ribbon $\stackrel{\text{def}}{\longleftrightarrow}$ it bounds an immersed disk in S^3 with only ribbon singularities.

Lemma

A ribbon knot $R \subset S^3$ bounds a smoothly embedded disk in B^4 . In particular, R is slice.

This disk is called a ribbon disk for Revenue a sec

The definition of a ribbon disk.

A knot in S^3 is ribbon $\stackrel{\text{def}}{\longleftrightarrow}$ it bounds an immersed disk in S^3 with only ribbon singularities.

Lemma

A ribbon knot $R \subset S^3$ bounds a smoothly embedded disk in B^4 . In particular, R is slice.

This disk is called a ribbon disk for Reverse a second

The slice-ribbon conjecture.

- Any ribbon knot is slice.
- The slice-ribbon conjecture states that any slice knot is ribbon.

Using annulus twists technique, we can construct potential counterexamples of slice-ribbon conjecture.

T. Abe and M. Tange, *A construction of slice knots via annulus twists*, accepted by the Michigan Mathematical Journal.

ヘロト ヘアト ヘヨト

The slice-ribbon conjecture.

- Any ribbon knot is slice.
- The slice-ribbon conjecture states that any slice knot is ribbon.

Using annulus twists technique, we can construct potential counterexamples of slice-ribbon conjecture.

T. Abe and M. Tange, *A construction of slice knots via annulus twists*, accepted by the Michigan Mathematical Journal.

ヘロト ヘアト ヘヨト ヘ

A construction of ribbon disks.

Let $U \subset S^3$ be the unknot, and $\Delta \subset S^3 = \partial B^4$ a spanning disk for *U*. Regard B^4 as a 0-handle h^0 . Consider an *m*-component unlink $L = L_1 \sqcup L_2 \sqcup \cdots \sqcup L_m$ such that $L \cap \Delta = \emptyset$. Regard the unlink *L* as dotted 1-handles h_i^1 ($i = 1, 2, \cdots, m$). Attach 2-handles h_i^2 ($i = 1, 2, \cdots, m$) along circles in $S^3 \setminus (L \cup U)$ so that, the resulting 2-handlebody

$$h^0 \bigcup h_1^1 \cup \cdots \cup h_m^1 \bigcup h_1^2 \cup \cdots \cup h_m^2$$

is represented by the handle diagram in Figure 1 after isotopy, where γ_i is the framing of a 2-handle h_i^2 ($i = 1, 2, \dots, m$).

A construction of ribbon disks.

By the handle canceling theorem, the 2-handlebody

$$h^0 \bigcup h_1^1 \cup \cdots \cup h_m^1 \bigcup h_1^2 \cup \cdots \cup h_m^2$$

is diffeomorphic to B^4 . Note that

$$\Delta \subset h^0 \subset h^0 \bigcup h_1^1 \cup \cdots \cup h_m^1 \bigcup h_1^2 \cup \cdots \cup h_m^2 \approx B^4.$$

Therefore we obtain a new slice disk *D* in B^4 (which is Δ in $h^0 \bigcup h_1^1 \cup \cdots \cup h_m^1 \bigcup h_1^2 \cup \cdots \cup h_m^2$).

Theorem (Abe-Tange, cf. Hitt, Asano-Marumto-Yanagawa)

Any slice disk obtained by the above construction is ribbon. Conversely, any ribbon disk is obtained by this construction.

ヘロト ヘ戸ト ヘヨト ヘヨト

A schematic picture of this construction for m = 1.

Figure: The spanning disk Δ in $S^3 = \partial B^4$, the 2-handlebody $h^0 \cup h^1 \cup h^2$ which is diffeomorphic to B^4 , and a new slice disk *D* in B^4 .

ヘロト ヘヨト ヘヨト

.≣⇒

A concrete example of this construction for m = 2.

Let *n* be an integer.

Tetsuya Abe

ъ

A concrete example of this construction for m = 2.

Let *n* be an integer.

Theorem (Abe-Tange)

(1) The exteriors of D_n are the same. (2) D_n is a ribbon disk. (2) $\partial D_n = K_n$.

Tetsuya Abe On annulus twists

ъ