Surface-links which bound immersed handlebodies

Kengo Kawamura (OCAMI)

Intelligence of Low-dimensional Topology, RIMS

May 19, 2016

Today's Talk

Singularities in 3- and 4-spaces

- Ribbon singularity and Clasp singularity in 3-space
- Ribbon singularity and Clasp singularity in 4-space

Surface-links

- Ribbon surface-links
- Ribbon-clasp surface-links

Normal forms

- Normal forms for embedded surface-links
- Normal forms for immersed surface-links

Today's Talk

Singularities in 3- and 4-spaces

- Ribbon singularity and Clasp singularity in 3-space
- Ribbon singularity and Clasp singularity in 4-space

Surface-links

- Ribbon surface-links
- Ribbon-clasp surface-links

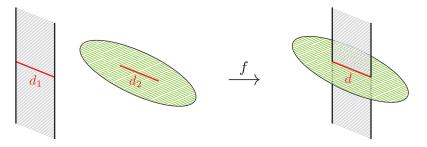
Normal forms

- Normal forms for embedded surface-links
- Normal forms for immersed surface-links

Ribbon singularity in the 3-space

 M^2 : a compact surface with non-empty boundary. $f: M^2 \to \mathbb{R}^3$: an immersion. d: a connected component of $\overline{\{x \in f(M) \mid \#f^{-1}(x) \ge 2\}}$.

d is a ribbon singularity $\stackrel{\text{def.}}{\iff} f^{-1}(d) = d_1 \cup d_2$ satisfies the following:

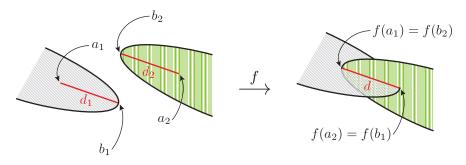


Clasp singularity in the 3-space

 M^2 : a compact surface with non-empty boundary.

- $f: M^2 \to \mathbb{R}^3$: an immersion.
- d: a connected component of $\overline{\{x \in f(M) \mid \#f^{-1}(x) \geq 2\}}$.

d is a clasp singularity $\stackrel{\text{def.}}{\iff} f^{-1}(d) = d_1 \cup d_2$ satisfies the following:

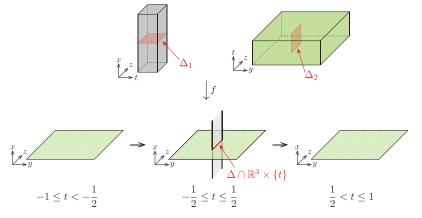


Ribbon singularity in the 4-space

 M^3 : a compact 3-manifold with non-empty boundary. $f:M^3\to \mathbb{R}^4$: an immersion.

 Δ : a connected component of $\overline{\{x \in f(M) \mid \#f^{-1}(x) \geq 2\}}$.

 Δ is a ribbon singularity $\stackrel{\text{def.}}{\Leftrightarrow} f^{-1}(\Delta) = \Delta_1 \cup \Delta_2$ satisfies the following:



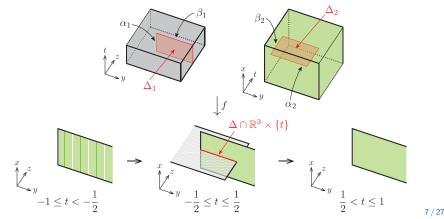
6/27

Clasp singularity in the 4-space

 M^3 : a compact 3-manifold with non-empty boundary. $f: M^3 \to \mathbb{R}^4$: an immersion.

 Δ : a connected component of $\overline{\{x \in f(M) \mid \#f^{-1}(x) \geq 2\}}$.

 Δ is a clasp singularity $\stackrel{\text{def.}}{\Leftrightarrow} f^{-1}(\Delta) = \Delta_1 \cup \Delta_2$ satisfies the following:

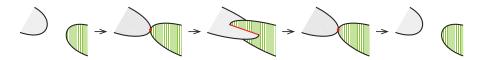


Clasp singularity in the 4-space

 M^3 : a compact 3-manifold with non-empty boundary. $f: M^3 \to \mathbb{R}^4$: an immersion.

 Δ : a connected component of $\overline{\{x \in f(M) \mid \#f^{-1}(x) \geq 2\}}$.

 Δ is a clasp singularity $\stackrel{\text{def.}}{\Leftrightarrow} f^{-1}(\Delta) = \Delta_1 \cup \Delta_2$ satisfies the following:



Today's Talk

1) Singularities in 3- and 4-spaces

- Ribbon singularity and Clasp singularity in 3-space
- Ribbon singularity and Clasp singularity in 4-space

Surface-links

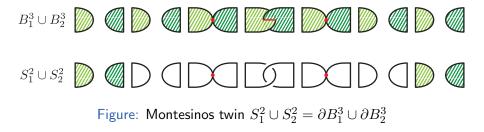
- Ribbon surface-links
- Ribbon-clasp surface-links

Normal forms

- Normal forms for embedded surface-links
- Normal forms for immersed surface-links

- An (immersed) surface-link is a closed, oriented surface generically immersed in ℝ⁴.
- Solution When it is embedded, we also call it an embedded surface-link.
- Two surface-links are said to be equivalent if they are ambient isotopic in R⁴.
- A surface-link is called trivial if it is the boundary of a disjoint union of embedded handlebodies in R⁴.

A Montesinos twin is a surface-link which is the boundary of a pair of embedded oriented 3-disks B₁³ and B₂³ with a single clasp singularity between B₁³ and B₂³.



An *M*-trivial 2-link is a surface-link which is a split union of a trivial 2-link and some (or no) Montesinos twins.

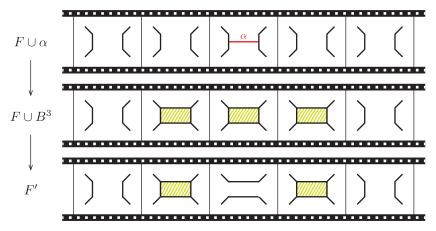
Chord attached to a surface-link

A chord attached to a surface-link F means a simple arc α in ℝ⁴ such that F ∩ α = ∂α, which misses the double points of F.

Two chords attached to F are equivalent if they are ambient isotopic in R⁴ keeping F setwise fixed.

1-handle surgery

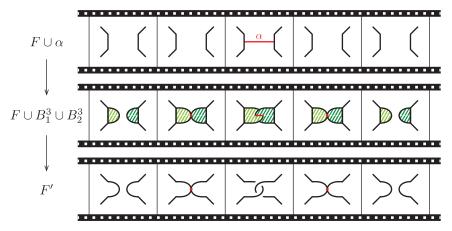
$\alpha:$ a chord attached to a surface-link F.



- F' is obtained from F by 1-handle surgery along α .
- [F'] is uniquely determined by [F] and $[\alpha]$.

Finger move

 $\alpha:$ a chord attached to a surface-link F.



• F' is obtained from F by finger move along α .

• [F'] is uniquely determined by [F] and $[\alpha]$.

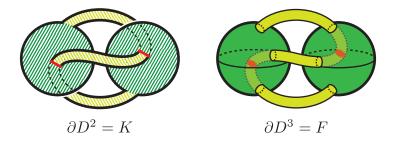
Ribbon 2-knot (Generalization of ribbon 1-knot)

Ribbon 1-knot

 $K \subset \mathbb{R}^3$: a ribbon 1-knot $\stackrel{\text{def.}}{\longleftrightarrow} \exists D^2$: a ribbon singular 2-disk in \mathbb{R}^3 s.t. $\partial D^2 = K$.

Ribbon 2-knot

 $F \subset \mathbb{R}^4$: a ribbon 2-knot $\stackrel{\text{def.}}{\longleftrightarrow} \exists D^3$: a ribbon singular 3-disk in \mathbb{R}^4 s.t. $\partial D^3 = F$.



Ribbon surface-link

Definition

An embedded surface-link is ribbon if it is the boundary of an immersed 3-manifold M^3 in \mathbb{R}^4 such that M^3 is a disjoint union of handlebodies and the singularity is a union of ribbon singularities.

Theorem ([Yanagawa '69], [Kawauchi-Shibuya-Suzuki '83])

An embedded surface-link is ribbon if and only if it is obtained from a trivial 2-link by 1-handle surgeries.

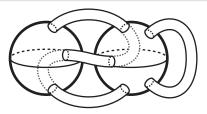


Figure: Ribbon torus-knot

Ribbon-clasp surface-link

Definition

A surface-link is ribbon-clasp if it is the boundary of an immersed 3-manifold M^3 in \mathbb{R}^4 such that M^3 is a disjoint union of handlebodies and the singularity is a union of ribbon singularities and clasp singularities.

Theorem (Kamada-Kawamura)

For a surface-link F, the following conditions are equivalent.

- (1) F is a ribbon-clasp surface-link.
- (2) F is obtained from a ribbon surface-link by finger moves.
- (3) F is obtained from a trivial 2-link by 1-handle surgeries and finger moves.
- (4) F is obtained from an M-trivial 2-link by 1-handle surgeries.

Today's Talk

1 Singularities in 3- and 4-spaces

- Ribbon singularity and Clasp singularity in 3-space
- Ribbon singularity and Clasp singularity in 4-space

Surface-links

- Ribbon surface-links
- Ribbon-clasp surface-links

Normal forms

- Normal forms for embedded surface-links
- Normal forms for immersed surface-links

The realizing surface

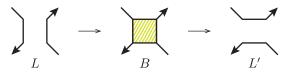


Figure: A band surgery on a link: $L \rightarrow L'$

The realizing surface of a band surgery $L \to L'$ by bands B_1, \ldots, B_m is a compact oriented surface, say F, in $\mathbb{R}^3[a, b]$ defined by:

$$F \cap \mathbb{R}^3 \times \{t\} = \begin{cases} L' \times \{t\} & \text{for } t \in ((a+b)/2, b] \\ (L \cup B_1 \cup \dots \cup B_m) \times \{t\} & \text{for } t = (a+b)/2 \\ L \times \{t\} & \text{for } t \in [a, (a+b)/2). \end{cases}$$

We denote the realizing surface by $F(L \to L')_{[a,b]}$.

Let

$$\mathcal{L}: L_1 \to L_2 \to \cdots \to L_m$$

be a band surgery sequence.

The realizing surface $F(\mathcal{L})_{[a,b]}$ of \mathcal{L} in $\mathbb{R}^3 \times [a,b]$ with a division $a = t_1 < t_2 < \cdots < t_m = b$ is the union of the realizing surfaces $F(L_i \to L_{i+1})_{[t_i,t_{i+1}]}$ for $i = 1, 2, \ldots, m-1$.

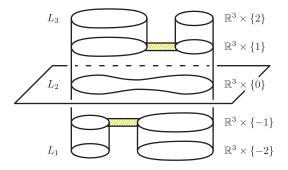


Figure: The realizing surface $F(L_1 \rightarrow L_2 \rightarrow L_3)_{[-2,2]}$

20 / 27

The closed realizing surface

For the realizing surface $F(\mathcal{L})_{[a,b]}$ of a band surgery sequence

$$\mathcal{L}: L_1 \to L_2 \to \cdots \to L_m$$

with trivial links L_1 and L_m , let \mathcal{D} and \mathcal{D}' be any disk systems bounded by L_1 and L_m respectively.

The closed oriented surface

$$\overline{F}(\mathcal{L})_{[a,b]} = F(\mathcal{L})_{[a,b]} \cup \mathcal{D} \times [a] \cup \mathcal{D}' \times [b]$$

is called the closed realizing surface of \mathcal{L} in $\mathbb{R}^3[a, b]$.

Note that by Horibe-Yanagawa's lemma, $\overline{F}(\mathcal{L})_{[a,b]}$ does not depend on choices of disk systems \mathcal{D} and \mathcal{D}' .

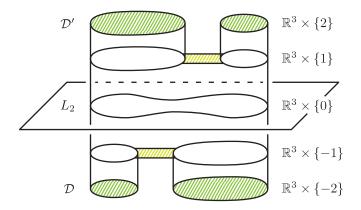


Figure: The closed realizing surface $\overline{F}(L_1 \to L_2 \to L_3)_{[-2,2]}$

Normal forms for embedded surface-links

Theorem (Normal form, [Kawauchi-Shibuya-Suzuki '83])

Every embedded surface-link with μ components and g total genus is equivalent to the closed realizing surface of a band surgery sequence

$$O \to L_- \to L_0 \to L_+ \to O',$$

where O and O' are trivial links, L_{-} and L_{+} are μ -component links and L_{0} is a $(\mu + g)$ -component link.

Theorem (Ribbon normal form, [KSS '83])

An embedded surface-link is ribbon if and only if it is equivalent to the closed realizing surface of a band surgery sequence

$$O \to L \to O$$
,

where O is a trivial link and the band surgery $L \to O$ is the inverse of $O \to L.$

H-trivial link and Hopf-splitting deformation

- An *H*-trivial link is a split union of a trivial link and some (or no) Hopf links.
- A Hopf-splitting deformation is a crossing change deformation from an *H*-trivial link into a trivial link such that each crossing change occurs for a Hopf link to change it into a trivial 2-component link.

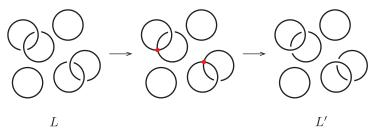


Figure: A Hopf-splitting deformation: $L \rightarrow L'$

$$\mathcal{L}: L_1 \to L_2 \to \cdots \to L_m$$

be a band surgery sequence with H-trivial links L_1 and L_m .

Let

$$\mathcal{L}': L_1' \to L_1 \to L_2 \to \cdots \to L_m \to L_m'$$

denote a sequence of links, where $L'_1 \rightarrow L_1$ is the inverse operation of a Hopf-splitting deformation and $L_m \rightarrow L'_m$ is a Hopf-splitting deformation.

Then, we can construct the "realizing surface" $F(\mathcal{L}')_{[a,b]}$ of \mathcal{L}' in $\mathbb{R}^3[a,b]$.

The closed oriented surface

$$\overline{F}(\mathcal{L})_{[a,b]} = F(\mathcal{L}')_{[a,b]} \cup \mathcal{D} \times [a] \cup \mathcal{D}' \times [b]$$

is called the closed realizing surface of \mathcal{L} in $\mathbb{R}^3[a, b]$.

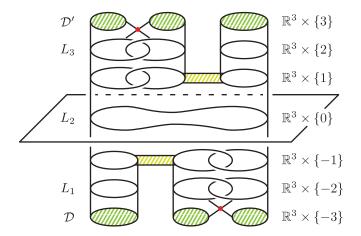


Figure: The closed realizing surface $\overline{F}(L_1 \to L_2 \to L_3)_{[-3,3]}$

Normal forms for immersed surface-links

Theorem (Normal form, [Kamada-Kawamura])

Every immersed surface-link with μ components and g total genus is equivalent to the closed realizing surface of a band surgery sequence

$$O \to L_- \to L_0 \to L_+ \to O',$$

where O and O' are H-trivial links, L_{-} and L_{+} are μ -component links and L_{0} is a $(\mu + g)$ -component link.

Theorem (Ribbon-clasp normal form, [K-K])

An immersed surface-link is ribbon-clasp if and only if it is equivalent to the closed realizing surface of a band surgery sequence

$$O \to L \to O$$
,

where O is an H-trivial link and the band surgery $L \rightarrow O$ is the inverse of $O \rightarrow L$.