Surface-links and marked graph diagrams

Sang Youl Lee

Pusan National University

May 20, 2016

Intelligence of Low-dimensional Topology 2016 RIMS, Kyoto University, Japan

Outline

Surface-links

• Marked graph diagrams of surface-links

• Polynomials for marked graph diagrams via classical link invariants []

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ → ヨー の々ぐ

Ideal coset invariants for surface-links

Surface-links

- ► A surface-link is a closed surface smoothly embedded in \mathbb{R}^4 (or in S^4).
- A surface-knot is a one component surface-link.
 - · A 2-sphere-link is sometimes called a 2-link.
 - A 2-link of 1-component is called a 2-knot.
- ► Two surface-links *L* and *L'* in ℝ⁴ are equivalent if they are ambient isotopic, i.e.,

 $\exists \text{ orient. pres. homeo. } h: \mathbb{R}^4 \to \mathbb{R}^4 \text{ s.t. } h(\mathscr{L}) = \mathscr{L}'$

 $\iff \exists \text{ a smooth family of diffeomorphisms } f_s : \mathbb{R}^4 \to \mathbb{R}^4$ $(s \in [0,1]) \text{ s.t. } f_0 = \operatorname{id}_{\mathbb{R}^4} \text{ and } f_1(\mathscr{L}) = \mathscr{L}'.$

If each component ℋ_i of a surface-link
ℒ = ℋ₁ ∪ · · · ∪ ℋ_µ is oriented, ℒ is called an oriented surface-link. Two oriented surface-links ℒ and ℒ' are equivalent if the restriction h|ℒ : ℒ → ℒ' is also orientation preserving.

Examples of surface-knots

Artin's spinning construction:

・ロト ・ 同ト ・ ヨト ・ ヨト

Methods of describing surface-links

- Motion pictures (Movies)
- Normal forms
- Broken surface diagrams/Roseman moves
- Charts/Chart moves
- Two dimensional braids/Markov equivalence
- Braid charts/Braid chart moves
- Marked graph diagrams/Yoshikawa moves

Some known invariants of surface-links

- The complement $X = \mathbb{R}^4 \mathscr{L}$
 - \implies Homotopy type of *X*: $\pi_1(X)$, $\pi_2(X)$, etc. Homology of infinite cyclic covering X_{∞} of *X*: Alexander module $H_*(X_{\infty}; \mathbb{Z}[t, t^{-1}])$
- Normal Euler number,
- Broken surface diagram ⇒
 Triple point number, Quandle cocycle invariants, Fundamental biquandles,
- ► Braid presentation of orientable surface-link \mathscr{L} ⇒ Braid index $b(\mathscr{L}),$
- Marked vertex diagrams => ch-index, Quandle cocycle invariants, Fundamental biquandles,

Marked graphs in \mathbb{R}^3

- A marked graph is a spatial graph G in \mathbb{R}^3 which satisfies the following
 - ► G is a finite regular graph possibly with 4-valent vertices, say v₁, v₂,..., v_n.
 - Each v_i is a rigid vertex, i.e., we fix a sufficiently small rectangular neighborhood

$$N_i \cong \{(x, y) \in \mathbb{R}^2 | -1 \le x, y \le 1\},\$$

where v_i corresponds to the origin and the edges incident to v_i are represented by $x^2 = y^2$.

► Each v_i has a marker, which is the interval on N_i given by $\{(x, 0) \in \mathbb{R}^2 | -\frac{1}{2} \le x \le \frac{1}{2}\}.$

Orientations of marked graphs

- ► An orientation of a marked graph *G* is a choice of an orientation for each edge of *G* in such a way that every vertex in *G* looks like or .
- A marked graph is said to be orientable if it admits an orientation. Otherwise, it is said to be non-orientable.
- By an oriented marked graph we mean an orientable marked graph with a fixed orientation.

► Two (oriented) marked graphs are said to be equivalent if they are ambient isotopic in ℝ³ with keeping the rectangular neighborhoods, (orientation) and markers.

Oriented marked graph diagrams

- ► An oriented marked graph G in R³ can be described as usual by a diagram D in R², which is an oriented link diagram in R² possibly with some marked 4-valent vertices whose incident edges are oriented illustrated as above, and is called an oriented marked graph diagram (simply, oriented MG diagram) of G.
- Two oriented MG diagrams in R² represent equivalent oriented marked graphs in R³ if and only if they are transformed into each other by a finite sequence of the oriented rigid vertex 4-regular spatial graph moves (simply RV4 moves) Γ₁, Γ'₁, Γ₂, Γ₃, Γ₄, Γ'₄ and Γ₅ shown in Figure below.

RV4 moves

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Unoriented marked graph diagrams

- ► An unoriented marked graph diagram or simply a marked graph diagram (MG diagram) means a nonorientable or an orientable but not oriented marked graph diagram in ℝ², and so it represents marked graphs in ℝ³ without orientations.
- Two MG diagrams in ℝ² represent equivalent marked graphs in ℝ³ if and only if they are transformed into each other by a finite sequence of the moves Ω₁,Ω₂,Ω₃,Ω₄,Ω'₄ and Ω₅, where Ω_i stands for the move Γ_i without orientation.

Admissible MG diagrams

For an (oriented) MG diagram D, let $L_{-}(D)$ and $L_{+}(D)$ be the (oriented) link diagrams obtained from D by replacing each marked vertex with (and , respectively.

- ► We call L₋(D) and L₊(D) the negative resolution and the positive resolution of D, respectively.
- ► An (oriented) MG diagram D is admissible if both resolutions L₋(D) and L₊(D) are trivial link diagrams.

Surface-links from adm. MG diagrams

Let *D* be a given admissible MG diagram with marked vertices v_1, \ldots, v_n . Define a surface $F(D) \subset \mathbb{R}^3 \times [-1, 1]$ by

$$(\mathbb{R}^3_t, F(D) \cap \mathbb{R}^3_t) = \begin{cases} (\mathbb{R}^3, L_+(D)) & \text{for } 0 < t \le 1, \\ \left(\mathbb{R}^3, L_-(D) \cup \begin{pmatrix} n \\ \cup \\ i=1 \end{pmatrix} \right) & \text{for } t = 0, \\ (\mathbb{R}^3, L_-(D)) & \text{for } -1 \le t < 0, \end{cases}$$

where $\mathbb{R}^3_t := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_4 = t\}$ and $B_i(1 \le i \le n)$ is a band attached to $L_-(D)$ at each marked vertex v_i as

We call F(D) the proper surface associated with D.

Surface-links from adm. MG diagrams

- ▶ When *D* is oriented, $L_{-}(D)$ and $L_{+}(D)$ have the orientations induced from the orientation of *D*. We assume that the proper surface F(D) is oriented so that the induced orientation on $L_{+}(D) = \partial F(D) \cap \mathbb{R}^{3}_{1}$ matches the orientation of $L_{+}(D)$.
- Since D is admissible, we can obtain a surface-link from F(D) by attaching trivial disks in ℝ³ × [1,∞) and another trivial disks in ℝ³ × (-∞, 1]. We denote the resulting (oriented) surface-link by ℒ(D), and call it the (oriented) surface-link associated with D.
- It is well known that the isotopy type of L(D) does not depend on the choices of trivial disks (Horibe-Yanakawa Lemma).

Adm. MG diagram $D \longrightarrow$ Surface-link $\mathscr{L}(D)$

イロト 不得 トイヨト イヨト 二日

Surface-links presented by MG diagrams

Definition

Let \mathscr{L} be an (oriented) surface-link in \mathbb{R}^4 . We say that \mathscr{L} is presented by an (oriented) MG diagram *D* if \mathscr{L} is ambient isotopic to the (oriented) surface-link $\mathscr{L}(D)$ in \mathbb{R}^4 .

► Let *D* be an admissible (oriented) MG diagram. By definition, *L*(*D*) is presented by *D*.

From now on, we explain that any (oriented) surface-link is presented by an admissible (oriented) MG diagram.

(日) (日) (日) (日) (日) (日) (日)

MG diagrams from surface-links

- It is well known that any surface link ℒ in ℝ⁴ = ℝ³ × ℝ can be deformed into a surface link ℒ', called a hyperbolic splitting of ℒ, by an ambient isotopy of ℝ⁴ in such a way that the projection p : ℒ' → ℝ satisfies the followings:
 - all critical points are non-degenerate,
 - ► all the index 0 critical points (minimal points) are in \mathbb{R}^{3}_{-1} ,
 - ▶ all the index 1 critical points (saddle points) are in \mathbb{R}^3_0 ,
 - all the index 2 critical points (maximal points) are in \mathbb{R}^3_1 .

MG diagrams from surface-links

Then the cross-section

$$\mathscr{L}'_0 = \mathscr{L}' \cap \mathbb{R}^3_0$$
 at $t = 0$

is a spatial 4-valent regular graph in \mathbb{R}^3_0 . We give a marker at each 4-valent vertex (saddle point) that indicates how the saddle point opens up above as illustrated in Figure:

$$\times \stackrel{/>c}{\boxtimes}$$

When ℒ is an oriented surface-link, we choose an orientation for each edge of ℒ'₀ so that it coincides with the induced orientation on the boundary of ℒ' ∩ ℝ³ × (-∞,0] by the orientation of ℒ' inherited from the orientation of ℒ.

MG diagrams from surface-links

- ► The resulting (oriented) marked graph G := L'₀ is called an (oriented) marked graph presenting L.
- ► A diagram D of an (oriented) marked graph G := L'₀ is clearly admissible, and is called an (oriented) MG diagram or (oriented) ch-diagram presenting L.

In conclusion,

Theorem (Kawauchi-Shibuya-Suzuki)

- (i) Let D be an admissible (oriented) MG diagram. Then there is an (oriented) surface-link ℒ presented by D.
- (ii) Let L be an (oriented) surface-link. Then there is an admissible (oriented) MG diagram D presenting L.

Surface-links & MG diagrams

{adm. (ori) MG diag. D} $\xrightarrow{(i)}$ {(ori) surface-link $\mathscr{L}(D)$ } ? Morse modification{adm. (ori) MG diag. D'} $\xleftarrow{(ii)}$ {hyperbolic split. $\mathscr{L}'(D)$ }

Theorem (Kearton-Kurlin, Swenton)

Two (oriented) marked graph diagrams present the same (oriented) surface-link if and only if they are transformed into each other by a finite sequence of RV4 moves (called (oriented) Yoshikawa moves of type I) and (oriented) Yoshikawa moves of type II in Figure below.

Oriented Yoshikawa moves of type I (=RV4 moves)

・ロト・(型ト・(ヨト・(ヨト・)の(の))

Oriented Yoshikawa moves of type II

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Classical link invariants

Let *R* be a commutative ring with the additive identity 0 and the multiplicative identity 1 and let

 $[]: \{ classical knots and links in \mathbb{R}^3 \} \longrightarrow R$

be a regular or an ambient isotopy invariant such that for a unit $\alpha \in R$ and $\delta \in R$,

$$\begin{bmatrix} & & \\ &$$

where $K \bigcirc$ denotes any addition of a disjoint circle \bigcirc to a classical knot or link diagram *K*.

Polynomial [[]] for MG diagrams via []

Let *D* be an (oriented) MG diagram.

Let [[D]](x,y) ([[D]] for short) be the polynomial in R[x,y] defined by the following two rules:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - つくで

(L1) [[D]] = [D] if D is an (oriented) link diagram,

$$(L2) \quad [[]] = [[]] x + [[]] (]]y,$$

 $[[\rightarrow]] = [[\rightarrow]]x + [[\rightarrow]]y.$

Self-writhe for MG diagrams

▶ Let $D = D_1 \cup \cdots \cup D_m$ be an oriented link diagram and let $w(D_i)$ be the usual writhe of the component D_i . The self-writhe sw(D) of D is defined to be the sum

$$sw(D) = \sum_{i=1}^m w(D_i).$$

Let D be a MG diagram. We choose an arbitrary orientation for each component of L₊(D) and L₋(D). Define the self-writhe sw(D) of D by

$$sw(D) = \frac{sw(L_+(D)) + sw(L_-(D))}{2},$$

where $sw(L_+(D))$ and $sw(L_-(D))$ are independent of the choice of orientations because the writhe $w(D_i)$ is independent of the choice of orientation for D_i .

Normalization of [[]]

Let *D* be a MG diagram. Then sw(D) is invariant under the Yoshikawa moves except the move $\overline{\Gamma}_1$. For $\overline{\Gamma}_1$ and its mirror move,

$$sw\left(\begin{array}{c} \searrow \\ & \end{pmatrix} = sw\left(\begin{array}{c} \\ \\ \end{pmatrix} \right) + 1,$$
$$sw\left(\begin{array}{c} \swarrow \\ & \end{pmatrix} = sw\left(\begin{array}{c} \\ \\ \end{pmatrix} \right) - 1.$$

Definition

Let *D* be an (oriented) MG diagram. We define $\ll D \gg (x, y)$ ($\ll D \gg$ for short) to be the polynomial in variables *x* and *y* with coefficients in *R* given by

$$\ll D \gg = \alpha^{-sw(D)}[[D]](x,y).$$

State-sum formula for $\ll \gg$

Let *D* be an (oriented) MG diagram. A state of *D* is an assignment of T_{∞} or T_0 to each marked vertex in *D*. Let $\mathscr{S}(D)$ be the set of all states of *D*. For $\sigma \in \mathscr{S}(D)$, let D_{σ} denote the link diagram obtained from *D* by

Then

$$\ll D \gg = \alpha^{-sw(D)} \sum_{\sigma \in \mathscr{S}(D)} [D_{\sigma}] x^{\sigma(\infty)} y^{\sigma(0)},$$

where $\sigma(\infty)$ and $\sigma(0)$ denote the numbers of the assignment T_{∞} and T_0 of the state σ , respectively.

Polynomial invariants for marked graphs in \mathbb{R}^3

Theorem (L)

Let *G* be an (oriented) marked graph in \mathbb{R}^3 and let *D* be an (oriented) marked graph diagram representing *G*. For any given regular or ambient isotopy invariant

 $[]: \{ classical (oriented) links in \mathbb{R}^3 \} \longrightarrow R$

with the properties (1) and (2), the associated polynomial

$$\ll D \gg = \alpha^{-sw(D)} \sum_{\sigma \in \mathscr{S}(D)} [D_{\sigma}] x^{\sigma(\infty)} y^{\sigma(0)} \in R[x, y],$$

is an invariant for (oriented) Yoshikawa moves of type I, and therefore it is an invariant of the (oriented) marked graph G.

n-tangle diagrams

An oriented *n*-tangle diagram $(n \ge 1)$ we mean an oriented link diagram \mathscr{T} in the rectangle $I^2 = [0,1] \times [0,1]$ in \mathbb{R}^2 such that \mathscr{T} transversely intersect with $(0,1) \times \{0\}$ and $(0,1) \times \{1\}$ in *n* distinct points, respectively, called the endpoints of \mathscr{T} .

Let $\mathscr{T}_3^{\text{ori}}$ and $\mathscr{T}_4^{\text{ori}}$ denote the set of all oriented 3- and 4-tangle diagrams such that the orientations of the arcs of the tangles intersecting the boundary of I^2 coincide with the orientations as shown in Figure (a) and (b) below, respectively.

Closing operations of 3- and 4-tangles

For $U \in \mathscr{T}_3^{\text{ori}}$ and $V \in \mathscr{T}_4^{\text{ori}}$, let $R(U), R^*(U), S(V), S^*(V)$ denote the oriented link diagrams obtained from the tangles *U* and *V* by closing as shown in Figures below:

Let \mathscr{T}_3 and \mathscr{T}_4 denote the set of all 3- and 4-tangle diagrams without orientations, respectively. For $U \in \mathscr{T}_3$ and $V \in \mathscr{T}_4$, let $R(U), R^*(U), S(V), S^*(V)$ be the link diagrams defined as above forgetting orientations. **Ideals of** R[x, y] **ass. w/ classical link invariants**

Definition

For any given regular or ambient isotopy invariant

 $[]: \{ classical oriented links in \mathbb{R}^3 \} \longrightarrow R$

with the properties (1) and (2). The []-obstruction ideal (or simply [] ideal), denoted by *I*, is defined to be the ideal of R[x, y] generated by the polynomials:

$$P_{1} = \delta x + y - 1,$$

$$P_{2} = x + \delta y - 1,$$

$$P_{U} = ([R(U)] - [R^{*}(U)])xy, U \in \mathscr{T}_{3}^{\text{ori}}$$

$$P_{V} = ([S(V)] - [S^{*}(V)])xy, V \in \mathscr{T}_{4}^{\text{ori}}.$$

Ideal coset invariants for surface-links

Theorem (Joung-Kim-L) The map

 $\overline{[]}$: { (oriented) MG diagrams} $\longrightarrow R[x,y]/I$

defined by

$$\overline{[\]}(D)=\overline{[D]}:=\ll D\gg +I$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ - つくで

is an invariant for (oriented) surface-links.

Ideal coset invariants for surface-links

Remark. Let *F* be an extension field of *R*. By Hilbert Basis Theorem, the [] ideal *I* is completely determined by a finite number of polynomials in F[x, y], say $p_1, p_2, ..., p_r$, i.e.,

$$I = < p_1, p_2, \ldots, p_r > .$$

Y. Joung, J. Kim and S. Y. Lee, Ideal coset invariants for surface-links in ℝ⁴, *J. Knot Theory Ramifications* 22 (2013), no. 9, 1350052 (25 pages).

Example (Kauffman bracket ideal)

Let *K* be a virtual knot or link diagram. The Kauffman bracket polynomial of *K* is a Laurent polynomial $\langle K \rangle = \langle K \rangle (A) \in R = \mathbb{Z}[A, A^{-1}]$ defined by the following rules:

(B1)
$$\langle \bigcirc \rangle = 1$$
,
(B2) $\langle \bigcirc K' \rangle = \delta \langle K' \rangle$, where $\delta = -A^2 - A^{-2}$,
(B3) $\langle \checkmark \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \checkmark \rangle$,

where $\bigcirc K'$ denotes any addition of a disjoint circle \bigcirc to a knot or link diagram K'.

Example (Kauffman bracket ideal)

► The Kauffman bracket ideal *I* is the ideal of $\mathbb{Z}[A, A^{-1}][x, y]$ generated by

$$(-A^2 - A^{-2})x + y - 1,$$

 $x + (-A^2 - A^{-2})y - 1,$
 $(A^8 + A^4 + 1)xy.$

The map

 $\overline{\langle \ \rangle}$: {marked graph diagrams} $\longrightarrow \mathbb{Z}[A, A^{-1}][x, y]/I$ defined by $\overline{\langle D \rangle} = \ll D \gg + I$ is an invariant for unoriented surface-links.

S. Y. Lee, Towards invariants of surfaces in 4-space via classical link invariants, *Trans. Amer. Math. Soc.* 361 (2009), no. 1, 237–265.

Example (Quantum A₂ bracket ideal)

Theorem (Kuperberg, 1994)

There is a regular isotopy invariant $\langle \cdot \rangle_{A_2} \in \mathbb{Z}[a, a^{-1}]$ for links and TTG diagrams, called the quantum A_2 bracket, which is defined by the following recursive rules:

Example (Quantum A₂ bracket ideal)

► The quantum A₂ bracket ideal I is the ideal of Z[a,a⁻¹][x,y] generated by

$$(a^{-6} + 1 + a^6)x + y - 1,$$

 $x + (a^{-6} + 1 + a^6)y - 1,$
 $(a^{12} + 1)(a^6 + 1)^2xy.$

The map

 $\overline{\langle \ \rangle}_{A_2}$: {oriented MG diagrams} $\longrightarrow \mathbb{Z}[a, a^{-1}][x, y]/I$

defined by $\langle D \rangle_{A_2} = \ll D \gg + I$ is an invariant for oriented surface-links.

Y. Joung, S. Kamada, A. Kawauchi and S. Y. Lee, Polynomial of an oriented surface-link diagram via quantum *A*₂ invariant, arXiv:1602.01558.

Question:

Is there a classical link invariant [] such that the [] ideal is trivial?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thank you!