An explicit relation between knot groups in lens spaces and those in $S^{3} \label{eq:spaces}$

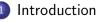
Yuta Nozaki

University of Tokyo / JSPS research fellow DC

May 20, 2016

Intelligence of Low-dimensional Topology

Contents



- Background
- Main results
- 2 Sketch of ProofsProof of TheoremProof of Corollaries

3 Related problems

Background

Motivation

K: a knot in S^3 .

Problem

Does there exist a free action $\mathbb{Z}_n \curvearrowright (S^3, K)$?

In other words,

Problem

Does there exist a knot $K' \subset L(p,q)$ for some q s.t. $\pi^{-1}(K') \sim K$?

 $\pi: S^3 \to L(p,q)$: the p-fold cyclic covering. Fix a prime knot K and $p \in \mathbb{Z}_{>2}$.

Remark (Sakuma '86, Boileau-Flapan '87)

If $\exists K' \& \exists q$, then they are unique.

Background

Background

Problem (Matveev '15 in ILDT, cf. Fox '61)

Do there exist non-equivalent knots in $\mathbb{R}P^3$ such that their lifts to S^3 are equivalent knots?

Remark

Since $\text{Diff}^+(\mathbb{R}P^3)/\text{diffeotopy} = \{[\text{id}_{\mathbb{R}P^3}]\},\$ K_0 is ambient isotopic to K_1 iff $(\mathbb{R}P^3, K_0) \cong (\mathbb{R}P^3, K_1)$.

In this talk...

We do not focus on Uniqueness, but Existence.

Theorem (Conner-Raymond '72 & Burde-Zieschang '66) If Out(G(K)) = 1, then the answer is NO for any p.

Remark (see Kawauchi (ed.) '96, Kodama-Sakuma '92) Out(G(K)) = 1 for 9_{32} , 9_{33} or 10_n (n = 80, 82-87, 90-95, 102, 106, 107, 110, 117, 119, 148-151, 153) (or their mirror images).

Theorem (Hartley '81)

In the case of $K = T_{m,n}$, the answer is YES iff gcd(mn, p) = 1. (Moreover, the answer for prime knots with $c(K) \leq 10$ is given.)

The aim of this talk

To deduce the above theorems from a single result.

Main results

Definition

- $\begin{array}{l} G: \text{ a group. } \mathrm{C}^p(G) := \left\langle \{g^p \mid g \in G\} \cup \{[g,h] \mid g,h \in G\} \right\rangle \lhd G. \\ \text{A group } H \text{ is called a } \mathrm{C}^p\text{-}\mathsf{group } \text{ if } \exists G \text{ s.t. } \mathrm{C}^p(G) \cong H. \end{array}$
- $\pi \colon \Sigma \to \Sigma'$: a *p*-fold cyclic covering, where Σ is a $\mathbb{Z}HS^3$.

Theorem (N.)

K': a knot in Σ' with connected preimage $K := \pi^{-1}(K')$. Then,

$$\operatorname{Im}[\pi_* \colon \pi_1(\Sigma \setminus K) \rightarrowtail \pi_1(\Sigma' \setminus K')] = \operatorname{C}^p(\pi_1(\Sigma' \setminus K')).$$

In particular, $\pi_1(\Sigma \setminus K)$ is a \mathbb{C}^p -group.

Contents

1 Introduction

- Background
- Main results
- Sketch of Proofs
 Proof of Theorem
 - Proof of Corollaries

3 Related problems

Basic properties of C^p

$$\mathbf{C}^p(G) := \langle \{g^p \mid g \in G\} \cup \{[g,h] \mid g,h \in G\} \rangle \lhd G.$$

Remark

$$C^p(G) = \text{Ker}[G \twoheadrightarrow G_{ab}/pG_{ab}].$$
 Indeed, we have $ab^{-1}(pG_{ab}) = C^p(G)$, where $ab \colon G \twoheadrightarrow G_{ab}.$

Example

•
$$G = \mathbb{Z}_n \rightsquigarrow G/\mathcal{C}^p(G) \cong \mathbb{Z}_{gcd(n,p)}.$$

•
$$G = \mathbb{R}_{>0} \rightsquigarrow G/\mathcal{C}^p(G) = 0.$$

•
$$G = \mathbb{Q}_{>0} \rightsquigarrow G/\mathbb{C}^p(G) \cong \mathbb{Z}_p^{\oplus \{\text{prime numbers}\}}$$

Proof of Theorem

 $\pi: \Sigma \to \Sigma'$: a *p*-fold cyclic covering, where Σ is a $\mathbb{Z}HS^3$. $G := \pi_1(\Sigma \setminus K), G' := \pi_1(\Sigma' \setminus K').$

Lemma

$$H_1(\Sigma') = \langle [K'] \rangle \cong \mathbb{Z}_p$$
, and $H_1(\Sigma' \setminus K') \cong \mathbb{Z}$.

Proof of
$$\operatorname{Im}[\pi_* \colon G \rightarrowtail G'] = C^p(G').$$

Therefore, $\operatorname{Im} \pi_* = \operatorname{Ker}[G' \twoheadrightarrow G'_{ab}/pG'_{ab}] \xrightarrow{\operatorname{Remark}} \operatorname{C}^p(G').$

Proof of the 1st corollary

Definition

A group G is complete if
$$Z(G) = 1$$
 & $Out(G) = 1$.

Lemma (Generalization of Haugh-MacHale '97)

If G is complete & $C^p(G) \neq G$, then G is not a C^p -group.

Lemma

If
$$G_{ab} \cong \mathbb{Z}$$
, then $G/\mathbb{C}^p(G) \cong \mathbb{Z}_p$.

Proof of "
$$\operatorname{Out}(G(K)) = 1 \Rightarrow \nexists K'$$
".
 $\operatorname{Out}(G(K)) = 1 \rightsquigarrow K \text{ is not a torus knot}$
 $\rightsquigarrow Z(G(K)) = 1 \rightsquigarrow G(K) \text{ is complete}$
 $\xrightarrow{\operatorname{Lemmas \& Theorem}} \nexists K'.$

Proof of the 2nd corollary

Lemma

Let $m, n, p \in \mathbb{Z}_{\geq 2}$ with gcd(m, n) = 1. If there is a group G satisfies (a) $C^p(G) \cong \mathbb{Z}_m * \mathbb{Z}_n$, (b) $G/C^p(G) \cong \mathbb{Z}_n$ and (c) $H_*(G) \cong H_*(\mathbb{Z}_{mnn})$, then gcd(mn, p) = 1.

The key steps are as follows:

- $\operatorname{Ad}_{q}|_{\mathbb{Z}_{m}*\mathbb{Z}_{n}} \in \operatorname{Inn}(\mathbb{Z}_{m}*\mathbb{Z}_{n}).$
- The five-term exact sequence for

$$1 \to \mathbb{Z}_m * \mathbb{Z}_n \hookrightarrow G \to \mathbb{Z}_p \to 1.$$

 $= \mathbb{Z}_m * \mathbb{Z}_n / \mathbb{C}^p(\mathbb{Z}_m * \mathbb{Z}_n) \twoheadrightarrow \mathbb{Z}_{mn} / \mathbb{C}^p(\mathbb{Z}_{mn}) = \mathbb{Z}_{gcd(mn,p)}.$

We can obtain a group G as above from K'.

Proof of " $\exists K' \subset L(p,q) \Rightarrow \gcd(mn,p) = 1$ ".

 $1 \to G(T_{m,n}) \xrightarrow{\pi_*} \pi_1(L(p,q) \setminus K') \to \mathbb{Z}_p \to 1$ (exact).

Taking the quotients by $Z := Z(G(T_{m,n})) \cong \mathbb{Z}$,

$$1 \to \mathbb{Z}_m * \mathbb{Z}_n \to \pi_1(L(p,q) \setminus K')/Z \to \mathbb{Z}_p \to 1$$
 (exact).

Set $G := \pi_1(L(p,q) \setminus K')/Z$. Theorem \rightsquigarrow (a) & (b). Lyndon-Hochschild-Serre spectral sequence for

 $1 \to Z \to \pi_1(L(p,q) \setminus K') \to G \to 1$ (exact).

 \rightsquigarrow (c) $H_*(G) \cong H_*(\mathbb{Z}_{mnp}).$

Contents

1 Introduction

- Background
- Main results
- 2 Sketch of Proofs• Proof of Theorem
 - Proof of Corollaries

3 Related problems

The *n*th symmetric group \mathfrak{S}_n

Let $n \geq 3$. We have

$$\mathcal{C}^p(\mathfrak{S}_n) = egin{cases} \mathfrak{S}_n & ext{if } p ext{ is odd,} \\ \mathfrak{A}_n & ext{if } p ext{ is even.} \end{cases}$$

Hence, \mathfrak{S}_n is a \mathbf{C}^p -group for odd p.

Lemma (Recall) If G is complete & $C^p(G) \neq G$, then G is not a C^p -group.

Corollary

 \mathfrak{S}_n is not a \mathbb{C}^p -group for even p.

Remark

The case n = 6 requires an additional argument.

Y. Nozaki (Univ. of Tokyo) Knot groups in lens spaces and those in S^3

The nth braid group B_n

Definition

$$H \leq G$$
 is characteristic if $f(H) = H$ for $\forall f \in Aut(G)$.

Lemma (Generalization of Sun '79)

If G: a C^p -group, $f : G \twoheadrightarrow G'$: a homomorphism, Ker f: characteristic, then G' is also a C^p -group.

$$\operatorname{Ker}[f \colon B_n \twoheadrightarrow \mathfrak{S}_n] = P_n$$
 is characteristic in B_n (Artin '47).

Corollary

 B_n is not a C^p -group for even p.

In particular, $G(T_{3,2})$ is not a \mathbb{C}^p -group if $2 \mid p$. On the other hand, $G(T_{3,2})$ is a \mathbb{C}^p -group if gcd(6, p) = 1 (Hartley '69). (The case $3 \mid p \& 2 \nmid p$ is unknown.)

Y. Nozaki (Univ. of Tokyo)

G: a group. $p \in \mathbb{Z}_{\geq 2}$ (not necessarily prime).

Definition (Cochran-Harvey '08) The derived *p*-series of *G* is defined by

$$G^{(0)} := G, \quad G^{(n+1)} := \mathcal{C}^p(G^{(n)}).$$

(cf. Stallings ('63) introduced the *p*-lower central series.)

Theorem (Cochran-Harvey '08)

p: a prime. *A*, *B*: finitely generated groups. If $\phi: A \to B$ induces an isomorphism (resp. monomorphism) on $H_1(-;\mathbb{Z}_p)$ and an epimorphism on $H_2(-;\mathbb{Z}_p)$, then for each $n \in \mathbb{Z}_{\geq 0}$, it induces an isom (resp. monom) $A/A^{(n)} \to B/B^{(n)}$, and a monom $A/A^{(\omega)} \to B/B^{(\omega)}$.

$$G^{(\omega)} := \bigcap_{n \ge 0} G^{(n)} \le G.$$

Corollary

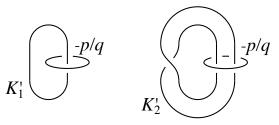
p: a prime. G: a f.g. group with $H_1(G)$: free & $H_2(G) = 0$. Then $G^{(\omega)} = [G, G]$.

G(K) and B_n satisfies the above conditions ($p \neq 2$ is required when $n \geq 4$).

Remark

Let
$$6 \mid p$$
 and $G := G(T_{3,2}) = B_3$. Then $f : G \twoheadrightarrow \mathfrak{S}_3$ induces $G/G^{(\omega)} \twoheadrightarrow \mathfrak{S}_3/\mathfrak{S}_3^{(\omega)} = \mathfrak{S}_3$. Hence, $G^{(\omega)} \lneq [G,G]$.

If G(K) surjects onto $G(T_{3,2})$, then $G(K)^{(\omega)} \leq [G(K), G(K)]$ (6 | p). Let p > 3 be an odd and $q := (p \pm 1)/2$ ($\rightsquigarrow \gcd(p, q) = 1$).



Theorem (Manfredi '14)

 K'_1 is not isotopic to K'_2 , but their preimages are the unknot.

Proof.

$$2[K'_1] = [K'_2] \in H_1(L(p,q)) \rightsquigarrow [K'_1] \neq [K'_2].$$

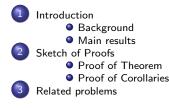
Remark

$$(L(p,q),K'_1)$$
 is diffeomorphic to $(L(p,q),K'_2)$.

Future research

I would like to

- ▶ know whether the converse of " $\exists K' \subset L(p,q) \Rightarrow G(K)$ is a C^p -group" is true.
- replace knots K with links.
- ▶ study C^p from an algebraic point of view.
- find a relation with some invariants of knots.



Y. Nozaki, An explicit relation between knot groups in lens spaces and those in $S^3, \mbox{ arXiv:}1602.05884$

Y. Nozaki (Univ. of Tokyo)