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Introduction : History

I [Kho00] M. Khovanov, “A categorification of the Jones
polynomial”.

I Khovanov homology - a bigraded link homology theory,
constructed combinatorially from a planar link diagram.

I Its graded Euler characteristic gives the Jones polynomial.

I [Lee05] E. S. Lee, “An endomorphism of the Khovanov
invariant”.

I Lee homology - a variant of Khovanov homology, originally
introduced to prove the “Kight move conjecture” for the
Q-Khovanov homology of alternating knots.

I [Ras10] J. Rasmussen, “Khovanov homology and the slice
genus”.

I s-invariant - an integer valued knot invariant obtained from
Lee homology.

I s gives a combinatorial proof for the Milnor conjecture.



Introduction : Khovanov homology

Khovanov homology HKh is a bigraded link homology theory,
constructed combinatorially from a planar link diagram.

Theorem ([Kho00, Theorem 1])

For any diagram D of an oriented link L, the isomorphism class of
H ··Kh(D;R) (as a bigraded R-module) is an invariant of L.

Proposition ([Kho00, Proposition 9])

The graded Euler characteristic of H ··Kh(L;Q) gives the
(unnormalized) Jones polynomial of L:∑

i ,j

(−1)iqj dimQ(H ij
Kh(L;Q)) = (q + q−1)V (L)|√t=−q.



Introduction : Khovanov homology

Example (1)

Figure 1: HKh(K ;Q) for K = 01, 31, 41



Introduction : Khovanov homology

Example (2)

Figure 2: HKh(K ;Q) for K = 942



Introduction : Lee homology and Lee’s classes
Lee homology HLee is a variant of Khovanov homology. Although
the construction is similar, when R = Q the structure of HLee is
strikingly simple.

For a
:::::
knot

::::::::
diagram D, there are two distinct classes [α], [β]

constructed combinatorially from D.

Theorem ([Lee05, Theorem 4.2])

When R = Q, the two classes [α], [β] form a basis of HLee(D;Q).

Remark

For a
::
link

:::::::
diagram D with ` components, there are 2` distinct classes [α(D, o)]

one for each alternative orientation o of D. These form a basis of HLee(D;Q).



Introduction : Rasmussen’s s-invariant

Rasmussen introduced in [Ras10] an integer-valued knot invariant,
called the s-invariant, based on Q-Lee homology.

HLee is
:::
not

::::::::
bigraded (unlike HKh), but admits a filtration by

q-degree. For a knot K , the s-invariant is defined by

s(K ) :=
qmax + qmin

2
,

where qmax (resp. qmin ) denotes the maximum (resp. minimum)
q-degree of HLee(K ;Q).

Many properties of s are proved from the fact that [α], [β] are

::::::::
invariant

::::
(up

::
to

::::::
unit) under the Reidemeister moves. Hence

Rasmussen called them the “canonical generators” of
HLee(K ;Q).



Introduction : Properties of s

Theorem ([Ras10, Theorem 2])

s defines a homomorphism from the knot concordance group in S3

to 2Z:
s : Conc(S3)→ 2Z.

Theorem ([Ras10, Theorem 1])

s gives a lower bound of the slice genus:

|s(K )| ≤ 2g∗(K ).

Theorem ([Ras10, Theorem 4])

If K is a positive knot, then

s(K ) = 2g∗(K ) = 2g(K ).



Introduction : Properties of s

With the above three properties of s, one obtains:

Corollary (The Milnor Conjecture, [Mil68])

The (smooth) slice genus and the unknotting number of the (p, q)
torus knot are both equal to (p − 1)(q − 1)/2.

Remark

The Milnor Conjecture was first proved by Kronheimer and
Mrowka in [KM93] using gauge theory, but Rasmussen’s result was
notable since it provided a purely combinatorial proof.



Our observations

Now we consider
:::
Lee

::::::::::
homology

::::
over

::
Z. Let D be a knot diagram,

and denote
HLee(D;Z)f = HLee(D;Z)/Tor .

The two classes [α], [β] can be defined over Z, but they
::
do

::::
not

form a basis of HLee(D;Z)f ∼= Z2.

We created a computer program1 that calculates the components
of [α], [β] with respect to some basis of HLee(D;Z)f . It turned
out, that for any prime knot diagram of crossing number up to 11,
only 2-powers appear in those components.

Question

Where does the 2-powers come from, and what information can we
extract from the 2-divisibility of [α], [β]?

1https://github.com/taketo1024/SwiftyMath

https://github.com/taketo1024/SwiftyMath


Computational results

Figure 3: Computational results2

2https://git.io/fphro

https://git.io/fphro


Overview of our results (1/2)

We consider the question in a more generalized setting. There
exists a family of Khovanov-type homology theories {Hc(−;R)}c∈R
over a commutative ring R parameterized by c ∈ R.

For each c ∈ R, Lee’s classes [α], [β] of a knot diagram D can also
be defined in Hc(D;R).

If
::
R

::
is

:::
an

:::::::
integral

::::::::
domain and

::
c

::
is

:::::::::
non-zero,

:::::::::::::
non-invertible, then

we can define the c-divisibility of [α] (modulo torsions) by the
exponent of its c-power factor. We denote it by kc(D).

By inspecting the variance of kc under the Reidemeister moves, we
prove that

sc(K ) := 2kc(D) + w(D)− r(D) + 1

is a knot invariant, where w is the writhe, and r is the number of
Seifert circles.



Overview of our results 2/2
Again by computations, we saw that

::::::
values

::
of

:::::::::
s2(−;Z)

::::::::
coincide

::::
with

::::::
values

:::
of

:
s for all prime knots of crossing number up to 11.

Question

Are all sc equal to s?

The following theorems support the affirmative answer.

Theorem (S.)

Each sc possesses properties common to s. In particular, the each
sc can be used to reprove the Milnor conjecture.

Theorem (S.)

If (R, c) = (Q[h], h), then the knot invariant s ′h coincides with s

s(K ) = s ′h(K ;Q[h]).



Conventions

In this talk, all knots and links are assumed to be oriented. For
simplicity, we mainly focus on knots, but many of the results can
be generalized to links.
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Frobenius algebra (1/2)

Let R be a commutative ring with unity. A Frobenius algebra
over R is a quintuple (A,m, ι,∆, ε) satisfying:

1. (A,m, ι) is an associative R-algebra with multiplication
m : A⊗ A→ A and unit ι : R → A,

2. (A,∆, ε) is a coassociative R-coalgebra with comultiplication
∆ : A→ A⊗ A and counit ε : A→ R, and

3. the Frobenius relation holds:

∆ ◦m = (id ⊗m) ◦ (∆⊗ id) = (m ⊗ id) ◦ (id ⊗∆).



Frobenius algebra (2/2)

A commutative Frobenius algebra A gives a 1+1 TQFT

FA : Cob2 −→ ModR ,

by mapping:

I Objects:
©t · · · t©︸ ︷︷ ︸

r

−→ A⊗ · · · ⊗ A︸ ︷︷ ︸
r

I Morphisms:



Construction of the chain complex

Let D be a link diagram with n crossings. The 2n resolutions of
the crossings yields a commutative cubic diagram in Cob2.

By applying FA we obtain a commutative cubic diagram in ModR .

Then we turn this cube skew commutative by appropriately
adjusting the signs of the edge maps.

Finally we fold the cube and obtain a chain complex CA(D) and its
homology HA(D).



Khovanov homology and its variants

Khovanov’s original theory is given by A = R[X ]/(X 2). Other
variant theories are given by:

I A = R[X ]/(X 2 − 1) → Lee’s theory

I A = R[X ]/(X 2 − hX )→ Bar-Natan’s theory

Khovanov unified these theories in [Kho06] by considering the
following special Frobenius algebra with h, t ∈ R:

Ah,t = R[X ]/(X 2 − hX − t).

Denote the corresponding chain complex by Ch,t(D;R) and its
homology by Hh,t(D;R). The isomorphism class of Hh,t(D;R) is
invariant under Reidemeister moves, thus gives a link invariant.
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Generalizing Lee’s classes (1/2)
In order to generalize Lee’s classes [α], [β] in Hh,t(D;R), we
assume (R, h, t) satisfies the following condition:

Condition

X 2 − hX − t factors into linear polynomials in R[X ].

This is equivalent to:

Condition

There exists c ∈ R such that h2 + 4t = c2 and (h ± c)/2 ∈ R.

With this condition, fix one square root c =
√
h2 + 4t, and let

X 2 − hX − t = (X − u)(X − v) with c = v − u. Define

a = X − u, b = X − v ∈ A.



Generalizing Lee’s classes (2/2)
With a and b, the multiplication and comultiplication on A
diagonalizes as:

m(a⊗ a) = ca, ∆(a) = a⊗ a,

m(a⊗ b) = 0, ∆(b) = b⊗ b

m(b⊗ a) = 0

m(b⊗ b) = −cb

We define the cycles α, β ∈ Ch,t(D;R) by the orientation
preserving resolution of D.

Remark

For a
::
link

:::::::
diagram D with ` components, there are 2` distinct cycles α(D, o)

one for each alternative orientation o of D.



Reduction of parameters

In our setting, we may reduce the parameters (h, t) to a single
parameter c.

Proposition

For another (h′, t ′) such that c =
√
h′2 + 4t ′, the corresponding

groups Hh,t(D;R) and Hh′,t′(D;R) are naturally isomorphic, and
under the isomorphism the Lee classes correspond one-to-one.

Thus we denote the isomorphism class by Hc(D;R) and regard
[α], [β] ∈ Hc(D;R).

The figure depicts the (h, t)-parameter
space, where each point
(h, t) corresponds to Hh,t(D;R) and
the parabola h2 + 4t = c2 corresponds
to the isomorphism class Hc(D;R).



Generalizing Lee’s theorem
The following proposition generalizes Lee’s theorem for Q-Lee
homology (Q-Lee homology corresponds to (R, c) = (Q, 2)).

Proposition

If
:
c
::
is
:::::::::
invertible in R, then {[α], [β]} form a basis of Hc(D;R).

Proof.

A is free over R with basis {1,X}. Now {a,b} also form a basis of
A, since the transformation matrix

(−u −v
1 1

)
has determinant

v − u = c.

By the admissible colorings decomposition of Cc(D;R) (proposed
by Wehrli in [Weh08]), one can show that the subcomplex
generated by α and β becomes Hc(D;R), whereas the remaining
part is acyclic.

Remark

For a
::
link

:::::::
diagram D, the 2` classes {[α(D, o)]}o form a basis of Hc(D;R).



Correspondence under Reidemeister moves (1/2)
Next, the following proposition generalizes the “invariance of [α]
and [β] (up to unit) in Q-Lee theory”.

Proposition

Suppose D,D ′ are two diagrams related by a single Reidemeister
move. Under the corresponding isomorphism:

ρ : Hc(D;R)→ Hc(D ′;R)

there exists some j ∈ {0,±1} and ε, ε′ ∈ {±1} such that the
α, β-classes of D and D ′ are related as:

[α′] = εc j · ρ[α],

[β′] = ε′c j · ρ[β].

(Here c is not necessarily invertible, so when j < 0 the equation
z = c jw is to be understood as c−jz = w .)



Correspondence under Reidemeister moves (2/2)

Proposition (continued)

Moreover the exponent j is given by

j =
∆r −∆w

2

where r denotes the number of Seifert circles, w denotes the
writhe, and the prefixed ∆ is the difference of the corresponding
numbers for D and D ′.

Proof.

The isomorphism ρ is given explicitly, and the proof is done by
checking all possible patterns of [α] and those images under ρ.

Note that [α], [β] are invariant (up to unit) iff
:
c
::
is

:::::::::
invertible.

Remark
Similar statement holds for link diagrams.



Summary

I We defined a family of Khovanov-type link homology theories
{Hc(−;R)}c∈R , where Knovanov’s theory corresponds to
c = 0 and Lee’s theory corresponds to c = 2.

I For each c ∈ R, we generalized Lee’s classes [α], [β] of a knot
diagram D in Hc(D;R).

I [α], [β] form a basis of Hc(D;R) and are invariant (up to
unit) under the Reidemeister moves iff

:
c
::
is

:::::::::
invertible.

Thus the situation is completely analogous to Q-Lee theory when c
is invertible. Our main concern is when

:
c

::
is

::::
not

:::::::::
invertible.
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c-divisibility of the α-class

Let R be an integral domain, and c ∈ R be a non-zero
non-invertible element in R. Denote

Hc(D;R)f = Hc(D;R)/Tor .

By abuse of notation, we denote the images of [α], [β] in
Hc(D;R)f by the same symbols.

Definition

For any knot diagram D, define the c-divisibility of [α] by:

kc(D) := max{k ≥ 0 | [α] ∈ ckHc(D;R)f }.

Note that there is a filtration:

Hc(D;R)f ⊃ cHc(D;R)f ⊃ · · · ⊃ ckHc(D;R)f ⊃ · · ·

so kc(D) is the maximal filtration level that contains [α].



Basic properties of kc(D)

Proposition

0 ≤ kc(D) ≤ n−(D)

.

In particular if D is positive, then kc(D) = 0. We can regard kc as
the measure of the “non-positivity” of the diagram.

Proposition

1. kc(D) = kc(−D).

2. kc(D) + kc(D ′) ≤ kc(D t D ′).

3. kc(D#D ′) ≤ kc(D t D ′) ≤ kc(D#D ′) + 1.



Variance of kc under Reidemeister moves

Proposition

Let D,D ′ be two diagrams of the same knot. Then

∆kc =
∆r −∆w

2
,

where the prefixed ∆ is the difference of the corresponding
numbers for D and D ′.

Theorem (S.)

For any knot K ,

sc(K ) := 2kc(D)− r(D) + w(D) + 1

is an invariant of K .

Remark
sc can also be defined for links.



Basic properties of sc(K )

Proposition

sc(K ) ∈ 2Z.

Proposition

1. sc(L) = sc(−L).

2. sc(L t L′) ≥ sc(L) + sc(L′)− 1.

3. sc(L#L′) = sc(L t L′)± 1.
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Behavior under cobordisms (1/2)

The important properties of s are obtained by inspecting its
behavior under cobordisms between knots. By tracing the
arguments given in [Ras10], we obtain a similar proposition for sc .

Proposition (S.)

If S is an oriented connected cobordism between knots K ,K ′, then

|sc(K ′)− sc(K )| ≤ −χ(S).

Remark
Similar statement holds for links.



Behaviour under cobordisms (2/2)

Proof sketch.

Decompose S into elementary cobordisms such that each factor
corresponds to a Reidemeister move or a Morse move. Inspect the
successive images of the α-class at each level.



Consequences

The previous proposition implies properties of sc that are common
to the s-invariant:

Theorem (S.)

I sc is a knot concordance invariant in S3.

I For any knot K ,
|sc(K )| ≤ 2g∗(K ).

I If K is a positive knot, then

sc(K ) = 2g∗(K ) = 2g(K ).

These properties suffice to reprove the Milnor conjecture.
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The refined canonical generators (1/2)

Now we focus on the case

(R, c) = (Q[h], h), deg h = −2

and prove that sh(−;Q[h]) coincides with s.

Recall that in general [α], [β] do not form a basis of Hc(D;R)f .
However in the above case, we can “normalize” them to obtain a
class [ζ] such that {[ζ],X [ζ]} is a basis of Hc(D;R)f .

Moreover they are invariant under the Reidemeister moves, so it is
reasonable to call them the “canonical generators” of Hc(D;R)f .

Remark

X denotes an action on Hc(D;R) defined by merging a circled labeled X
to a neighborhood of a fixed point of D.



The refined canonical generators (2/2)

Proposition

There is a unique class [ζ] ∈ Hh(D;R)f such that

I [ζ],X [ζ] form a basis of Hh(D;R)f , and are invariant under
the Reidemeister moves.

I [α], [β] can be described as

[α] = hk( (h/2)[ζ] + X [ζ])

[β] = (−h)k(−(h/2)[ζ] + X [ζ]),

where k = kh(D).

Remark (1)

Unlike [α] or [β], the definition of [ζ] is non-constructive.

Remark (2)

Currently this result is
::::
only

:::::::
obtained

:::
for

::::::
knots.



The homomorphism property of sh

From the description of [α], [β] by the class [ζ], we can prove:

Proposition

For (R, c) = (Q[h], h),

I kh(D) + kh(D) = r(D)− 1.

I kh(D#D ′) = kh(D) + kh(D ′).

where D denotes the mirror image of D.

And we obtain:

Theorem (S.)

For (R, c) = (Q[h], h), the invariant sh defines a homomorphism

sh : Conc(S3)→ 2Z.



Coincidence with the s-invariant (1/4)

Theorem (S.)

For (R, c) = (Q[h], h), our sh(−;Q[h]) coincides with s:

s(K ) = 2kh(D) + w(D)− r(D) + 1.

Remark (1)

There is a well known lower bound for s [Shu07, Lemma 1.3]

s(K ) ≥ w(D)− r(D) + 1,

so 2kh(D) gives the correction term of the inequality.

Remark (2)

Currently this result is
::::
only

:::::::
obtained

:::
for

::::::
knots.



Coincidence with the s-invariant (2/4)

Proof.

Since both s and sh changes sign by mirroring, it suffices to prove

s(K ) ≥ sh(K ).

Recall that s(K ) is defined by the (filtered) q-degree of H2(D;Q).
On the other hand, q-degree on Hh(D;Q[h]) gives a strict grading.
There is a q-degree non-decreasing map

π : Hh(D;Q[h])→ H2(D;Q)

induced from Q[h]→ Q, h 7→ 2.

Denote by [α2], [αh] the α-classes of D in H2(D;F ), Hh(D;Q[h])
respectively. Then by definition π[αh] = [α2].



Coincidence with the s-invariant (3/4)

Proof continued.

Let [αh] = hk [α′h] with k = kh(D). Then from deg h = −2,

qdegh([α′h]) = qdegh([αh]) + 2k = w(D)− r(D) + 2k,

so we have

s(K ) = qdeg([α2]) + 1

= qdeg(π[αh]) + 1

= qdeg(π[α′h]) + 1

≥ qdegh([α′h]) + 1

= w(D)− r(D) + 2k + 1

= sh(K ;F [h]).



Coincidence with the s-invariant (4/4)

Corollary

s(K ) = qdegh[ζ]− 1.

Remark

Khovanov gave an alternative definition of s in [Kho06] by the
q-degree of the generator of H0,t(D;Q[t]) where deg t = −4. The
equivalence of the two definitions can be proved using the above
result.
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Question (1)

Are all sc equal to s?

Remark (1)

The s-invariant can be defined over any field F of
:::::::::
char F 6= 2. In fact we

can prove that
s(−;F ) = sh(−;F [h]).

It is an open question whether s(−;F ) for char F 6= 2 are all equal or not
[LS14, Question 6.1]. If [Question 1] is solved affirmatively, then it
follows that s(−;F ) are all equal.

Remark (2)

In [LS14], an alternative definition of s over any field F (including
char F = 2) is given. It is defined similarly to the original one, but is
based on the

::::::
filtered

:::::::::
Bar-Natan

:::::::::
homology. However C.Seed showed by

direct computation that K = K14n19265 has s(K ;Q) = 0 but
s(K ;F2) = −2.



Question (2)

Can we construct [ζ] ∈ Hc(D;R) for any (R, c)?

The existence of [ζ] ∈ Hh(D;Q[h]) was the key to prove s = sh.

If such class exists in general, then we can expect that Question
(1) can also be solved. However the current proof for
(R, c) = (Q[h], h) cannot be applied to the general case.

Maybe we can find a more geometric (or combinatorial)
construction.



Question (3)

Does s = sc(−;Q[h]) also hold for links?

The definition of s for links is given by Beliakova and Wehrli in
[BW08]. Our sc can also be defined for links, so the question
makes sense.

Maybe we can construct the canonical generators [ζ1], · · · , [ζ2` ] of
Hh(D;Q[h]) such that the α-classes {[α(D, o)]}o can be described
by them.



Thank you!

https://arxiv.org/abs/1812.10258

https://arxiv.org/abs/1812.10258
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