Filtered instanton Floer homology and the homology cobordism group (Joint work with Yuta Nozaki and Kouki Sato)

Masaki Taniguchi

University of Tokyo, Japan

Intelligence of Low-dimensional Topology, 5/22~24, 2019 This slide is available at "https://sites.google.com/view/masaki-taniguchis-homepage". $\begin{array}{c} {\rm Backgrounds}\\ {\rm Invariants}\;\{r_{\rm S}\} \text{ and its applications}\\ {\rm Construction}\; {\rm of \; invariants}\;\{r_{\rm S}\} \end{array}$

Contents

1 Backgrounds

2 Invariants $\{r_s\}$ and its applications

3 Construction of invariants $\{r_s\}$

 $\begin{array}{c} {\rm Backgrounds}\\ {\rm Invariants}\;\{r_{s}\} \text{ and its applications}\\ {\rm Construction \; of \; invariants}\;\{r_{s}\}\end{array}$

The homology cobordism group $\Theta^3_{\mathbb{Z}}$

Let Y_0 and Y_1 be oriented homology spheres.

Definition (The homology cobordism group)

We say Y_0 is homology cobordant to Y_1 ($Y_0 \sim_{\mathbb{Z}H} Y_1$) if there exists a compact oriented 4-manifold W with $\partial W = Y_0 \amalg (-Y_1)$ such that the maps $H_*(Y_i, \mathbb{Z}) \to H_*(W, \mathbb{Z})$ induced by inclusions $Y_i \to W$ are isomorphisms.

 $\Theta^3_{\mathbb{Z}} := \{ \text{ oriented homology 3-spheres } \} / \sim_{\mathbb{Z}H}$

The connected sum induces an abelian group structure on $\Theta^3_{\mathbb{Z}}$. The unit element is $[S^3]$.

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\rm S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\rm S}\} \end{array}$

The knot concordance group \mathcal{C}

Let K_0 and K_1 be oriented knots in S^3 .

Definition (The knot concordance group C)

We say K_0 is *concordant* to K_1 ($K_0 \sim_c K_1$) if there exists an embedding $J: S^1 \times [0,1] \to S^3 \times [0,1]$ such that $J|_{S^1 \times \{i\}} = K_i \times \{i\}$ for i = 0 and 1.

 $\mathcal{C} := \{ \text{ all oriented knots } \} / \sim_c$

The connected sum induces an abelian group structure on $\mathcal{C}.$ The unit element is the unknot.

 $\begin{array}{c} \textbf{Backgrounds}\\ \textbf{Invariants} \; \{r_{\scriptscriptstyle S}\} \text{ and its applications}\\ \textbf{Construction of invariants} \; \{r_{\scriptscriptstyle S}\} \end{array}$

Known results related to $\Theta^3_{\mathbb{Z}}$ and \mathcal{C}

- The n-dimensional homology cobordism group Θⁿ_Z (resp. Cⁿ) is completely determined for n ≠ 3(resp. n ≠ 1).[Kervaire, Levine]
- Any topological manifold M with $\dim \geq 5$ admits a triangulation $\iff 0 = \exists \delta(\Delta(M)) \in H^5(M, \text{Ker } \mu)$, where $\mu : \Theta^3_{\mathbb{Z}} \to \mathbb{Z}_2$ is the Roklin homomorphism. [Galewski–Stern, Matumoto]
- The group $\Theta^3_{\mathbb{Q}}$ is defined by replacing \mathbb{Z} with \mathbb{Q} in the definition of $\Theta^3_{\mathbb{Z}}$. The double branched cover gives a homomorphism

$$\Sigma: \mathcal{C} \to \Theta^3_{\mathbb{Q}}.$$

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\scriptscriptstyle S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\scriptscriptstyle S}\} \end{array}$

History of $\Theta^3_{\mathbb{Z}}$ related to our work

• 1982 Donaldson, Theorem A implies that $\Sigma(2,3,5)$ is not a torsion in $\Theta^3_{\mathbb{Z}}$.

■ 1985 Fintushel–Stern, $\Sigma(p,q,pqn-1)$ is not a torsion in $\Theta^3_{\mathbb{Z}}$.

■ 1990 Fintushel–Stern, Furuta, $\{\Sigma(p,q,pqn-1)\}_{k=1}^{\infty}$ are linearly independent in $\Theta_{\mathbb{Z}}^3$.

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\rm S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\rm S}\} \end{array}$

Open questions of $\Theta^3_{\mathbb{Z}}$ and \mathcal{C}

Let $T_{p,q}$ be the (p,q)-torus knot. It is known that $S_{1/n}(T_{p,q})=\Sigma(p,q,pqn-1).$ (n>0)

Open question of $\Theta^3_{\mathbb{Z}}$

Is there a nice sufficient condition of K such that $\{S_{1/n}(K)\}$ are linearly independent in $\Theta^3_{\mathbb{Z}}?$

Open question of $\Theta^3_{\mathbb{Z}}$

Is $\Theta^3_{\mathbb{Z}}$ generated by all Seifert homology spheres?

The Whitehead double¹ determines a map $D: \mathcal{C} \to \mathcal{C}$.

Hedden-Kirk's conjecture

The map D preserves linear independence.

¹The satelite knot with respect to the above knot in $S^1 \times D^2$.

Main result

Theorem (2019, Nozaki–Sato–T)

For $s \in \mathbb{R}_{\leq 0} \amalg \{-\infty\}$ and an oriented homology sphere Y, we define $r_s(Y) \in \mathbb{R}_{>0} \amalg \{\infty\}$ satisfying the following conditions:

- 1 If $s \leq s'$, then $r_{s'}(Y) \leq r_s(Y)$.
- **2** The values of $r_s(Y)$ are contained in the set of critical values of the Chern–Simons functional of Y.
- E Let Y_0 and Y_1 be $\mathbb{Z}HS^3$'s and W a negative definite cobordism with $\partial W = Y_0 \amalg -Y_1$. Then $r_s(Y_1) \leq r_s(Y_0)$ holds for any s. If $\pi_1(W) = 1$ and $r_s(Y_0) < \infty$, then $r_s(Y_1) < r_s(Y_0)$ holds.
- **4** The invariant r_0 satisfies

$$r_0(Y_1 \# Y_2) \ge \min\{r_0(Y_1), r_0(Y_2)\}.$$

5 The condition $r_{-\infty}(Y) < \infty \iff h(Y) < 0$ holds, where $h: \Theta^3_{\mathbb{Z}} \to \mathbb{Z}$ is the Frøyshov homomorphism.

Remarks for main theorem

 Recently, Daemi(2018) introduced a family of invariants of Y parametrized by Z:

 $\cdots \leq \Gamma_Y(-1) \leq \Gamma_Y(0) \leq \Gamma_Y(1) \leq \ldots$

using instanton Floer theory. Note that $\Gamma_Y(k)$ also satisfies the conditions 2, 3 and 5 for a positive k. We showed

$$r_0(Y) \leq \cdots \leq r_s(Y) \leq \cdots \leq r_{-\infty}(Y) = \Gamma_Y(1).$$

■ \exists an example of Y such that $r_s(Y)$ is not constant w.r.t. s.

Rough definition of r_0

Roughly speaking, $r_0(Y)$ is given by

$$\begin{split} &\inf\left\{-\frac{1}{8\pi^2}\int_{Y\times\mathbb{R}}\operatorname{Tr}(F(A)\wedge F(A)) \ \Big|\ A\in\Omega^1_{Y\times\mathbb{R}}\otimes\mathfrak{su}(2) \text{ with } (*)\right\}\\ &=\inf\left\{cs(b)\ \Big|\ A\in\Omega^1_{Y\times\mathbb{R}}\otimes\mathfrak{su}(2) \text{ with } (*), b=\exists\lim_{t\to-\infty}A|_{Y\times\{t\}}\right\}\end{split}$$

The condition (*) is

- $\bullet \ 0 = \exists \lim_{t \to \infty} A|_{Y \times \{t\}}.$
- ∃ Riemann metric g on Y such that the ASD-equation $\frac{1}{2}(1 + *_{g+dt^2})F(A) = 0$ is satisfied.
- The Fredholm index of the operator $d_A^+ + d_A^*$ on $Y \times \mathbb{R}$ is 1.

Calculations

Example

$$r_s(S^3) = \infty$$
 for any s .

Theorem

$$r_s(-\Sigma(p,q,pqn-1)) = \frac{1}{4pq(pqk-1)}$$
 for any s .

In general,

$$\bigcup_{s} r_s(\Theta_S^3) \subset \mathbb{Q}_{>0} \amalg \{\infty\},\$$

where Θ_S^3 is the subgroup of $\Theta_{\mathbb{Z}}^3$ generated by Seifert homology 3-spheres. We tried to calculate r_s for a hyperbolic manifold obtained by the 1/2-surgery along the mirror image of 5_2 .

Calculations

Theorem

By computer, for any s,

 $r_s(S^3_{1/2}(5^*_2)) \approx 0.0017648904\ 7864885113\ 0739625897$ 0947779330 4925308209

whose error is $10^{-50},$ where $S^3_{1/2}(5^\ast_2)$ is the 1/2 surgery on the mirror image of 5_2 in Rolfsen's table.

Our computation is based on Kirk and Klassen's formula (to be explained later).

Our conjecture

 $r_s(S^3_{1/2}(5^*_2))$ is irrational.

If the conjecture is true, we can conclude that $\Theta^3_{\mathbb{Z}}/\Theta^3_S$ is non-trivial.

Backgrounds Invariants $\{r_s\}$ and its applications Construction of invariants $\{r_s\}$

Computation of $r_s(S^3_{1/2}(5^*_2))$

Let ρ_0 , ρ_1 be SU(2)-representations of $\pi_1 = \pi_1(S^3_{-1/2}(5_2))$ and $\{\rho_s\}_s \subset \operatorname{Hom}(\pi_1, SL(2, \mathbb{C}))$ a path from ρ_0 to ρ_1 . Then Kirk and Klassen gave a fomula of the form

$$cs(\rho_1) - cs(\rho_0) \equiv \int_0^1 "\rho_s(\lambda) \& \rho_s(\mu)" ds \mod \mathbb{Z}.$$

The irreducible representations of π_1 are described by the Riley polynomial $\phi(t, u) = -(t^{-2} + t^2)u + (t^{-1} + t)(2 + 3u + 2u^2) - (3 + 6u + 3u^2 + u^3).$

	t	u	-cs
ρ_1	0.716932 + 0.697143i	-0.0755806	0.00176489
ρ_2	0.309017 + 0.951057i	-1.00000	0.166667
ρ_3	-0.339570 + 0.940581i	-2.41421	0.604167
ρ_4	-0.778407 + 0.627759i	-1.69110	0.388460
ρ_5	-0.809017 + 0.587785i	-1.00000	0.166667
ρ_6	-0.905371 + 0.424621i	-2.16991	0.865934
ρ_7	-0.912712 + 0.408603i	-3.62043	0.321158
ρ_8	-0.988857 + 0.148870i	-2.41421	0.604167

$$t \in \gamma$$

$$f_{t}^{1} \rho_{t}(\mu) P_{t} = \begin{pmatrix} f_{t}^{T} & 0 \\ 0 & 1/\sqrt{t} \end{pmatrix}$$

$$f_{t}^{1} \rho_{t}(\lambda) P_{t} = \begin{pmatrix} f_{t}^{T} & 0 \\ 0 & 1/\sqrt{t} \end{pmatrix}$$

$$f_{t}^{1} \rho_{t}(\lambda) P_{t} = \begin{pmatrix} f_{t}^{(t)} & 0 \\ 0 & 1/\sqrt{t} \end{pmatrix}$$

$$f_{t}^{(t)} \left(2 \rho_{t}^{(t)} \right) \left($$

Useful lemmas

Lemma (I)

Let $\{Y_n\}_{n=1}^\infty$ be a sequence of oriented homology 3-spheres satisfying the following two conditions:

- $r_0(Y_1) > r_0(Y_2) > \dots$ and
- $r_0(-Y_n) = \infty$ for any n.

Then the sequence $\{[Y_n]\}$ are linearly independent in both of $\Theta^3_{\mathbb{Z}}$ and $\Theta^3_{\mathbb{Q}}$.

Lemma (II)

Let Y_0 and Y_1 be $\mathbb{Z}HS^3$'s and W a negative definite cobordism with $\partial W = Y_0 \amalg -Y_1$. If $\pi_1(W) = 1$ and $r_0(Y_0) < \infty$, then $r_0(Y_1) < r_0(Y_0)$ holds.

Lemma (III)

If Y bounds a negative definite 4-manifold, then $r_0(Y) = \infty$ holds.

Three applications of $\{r_s\}$

Theorem (I)

 \exists infinitely many homology spheres $\{Y_k\}$ such that Y_k does not admit any definite bounding.

Set $Y_k := 2\Sigma(2,3,5) \# (-\Sigma(2,3,6k+5))$. $(k \ge 1)$ Then using connected sum formula, we have $r_0(Y_k) = \frac{1}{24(6k+5)} < \infty$. Moreover, the calculation $h(-Y_k) = -1$ implies that $r_0(-Y_k) < \infty$.

Corollary

 $[Y_k]$ does not contain any Seifert homology sphere and homology 3-sphere obtained by a surgery on a knot in S^3 .

It is known that all Seifert homology spheres and homology 3-spheres obtained by surgeries on knots admit a definite bounding.

Three applications of $\{r_s\}$

Theorem (II)

For any knot K in S^3 with $h(S_1(K))<0,\ \{S^3_{1/n}(K)\}$ are linearly independent in $\Theta^3_{\mathbb{Z}}.$

If we take $K = T_{p,q}$, this theorem recover the results of Furuta, Fintushel–Stern in '90.

Proposition

All positive k-twisted knots ($k \ge 1$) and (2, q)-cable knots ($g \ge 3$) satisfy $h(S_1(K)) < 0$.

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_S\} \; {\rm and} \; {\rm its \; applications} \\ {\rm Construction \; of \; invariants} \; \{r_S\} \end{array}$

Sketch of proof of II

Set $Y_n := S_{1/n}(K)$. The fifth and third property of r_0 implies $r_0(Y_1) < \infty$ and $r_0(-Y_n) = \infty$. On the other hand, we have a positive definite cobordism W_n with $\partial(W_n) = -Y_n \amalg (Y_{n+1})$ described by

One can see that W_n is simply connected for each n. Therefore the third property of r_0 implies that

$$r_0(Y_1) > r_0(Y_2) > \dots$$

17 / 34

Three applications of $\{r_s\}$

Let $T_{p,q}$ be the (p,q)-torus knot. We denote $D(T_{p,q})$ by $D_{p,q}$.

Theorem (Hedden-Kirk, 2012)

 ${D(T_{2,2^n-1})}_{n=2}^{\infty}$ are lineary independent in \mathcal{C} .

Theorem (III)

 $\{D(T_{p,np+q})\}_{n=1}^{\infty}$ are lineary independent in C for any relative prime numbers (p,q).

Sketch of proof of III

Since

$$\Sigma \colon \mathcal{C} \to \Theta^3_{\mathbb{Q}}$$

is a homomorphism, it is sufficient to prove $\{\Sigma(D_{p,kp+q})\}_{k=1}^{\infty}$ are linearly independent in $\Theta_{\mathbb{Q}}^3$. Moreover, since $\Sigma(D_{p,q}) = S_{1/2}^3(T_{p,q} \# T_{p,q})$ is $\mathbb{Z}HS^3$, this is followed by:

Lemma

$$\ \, {} r_0(\Sigma(D_{p,q})) < \infty. \\ \ \, {} r_0(\Sigma(D_{p,q})) > r_0(\Sigma(D_{p,p+q})).$$

To prove the above lemma, we construct

- neg. defn. cob. with boundary $\Sigma(p,q,2pq-1)) \amalg (-\Sigma(D_{p,q}))$
- simp. conn. neg. defn. cob. with boundary $\Sigma(D_{p,q}) \amalg (-\Sigma(D_{p,p+q}))$

Backgrounds Invariants $\{r_s\}$ and its applications Construction of invariants $\{r_s\}$

Sketch of proof of III

Lemma

If $K_0 \to \cdots \to K_1$ by a seq. of pos. crossing changes, then \exists neg. defn. cob. with boundary $S^3_{1/n}(K_1) \amalg (-S^3_{1/n}(K_0))$ for $\forall n$.

$$T_{p,q} \# T_{p,q} \xrightarrow{\text{pos. c.c.}} T_{p,q} \rightsquigarrow r_0(\Sigma(D_{p,q})) < \infty$$

 $\blacksquare \ T_{p,q+p} \# T_{p,q+p} \stackrel{\text{pos. c.c.}}{\longrightarrow} T_{p,q} \# T_{p,q} \rightsquigarrow r_0(\Sigma(D_{p,q})) > r_0(\Sigma(D_{p,p+q}))$

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\rm S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\rm S}\} \end{array}$

History of instanton homology related to our work

Let Y be an oriented homology 3-sphere.

- 1987, Floer, Instanton homology $I_*(Y)$ with $* \in \mathbb{Z}/8\mathbb{Z}$.
- 1992, Fintushel–Stern, Filtered version of instanton homology $I_*^{[r,r+1]}(Y)$ with $* \in \mathbb{Z}$ for $r \in \mathbb{R}$.
- 2002, Donaldson, The obstruction class $[\theta_Y] \in I^1(Y)$. If Y admits a negative definite bounding with non-standard intersection form, then $0 \neq [\theta_Y] \in I^1(Y; \mathbb{Q})$.
- 2019, NST, Filtered instanton cohomology $I^*_{[s,r]}$ and the filtered version $[\theta_Y^{[s,r]}] \in I^*_{[s,r]}$ of the obstruction class.

Definition

 $r_s(Y) := \sup\{r \in \mathbb{R} \mid 0 = [\theta_Y^{[s,r]}] \in I^*_{[s,r]}\}$

 $\begin{array}{c} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\scriptscriptstyle S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\scriptscriptstyle S}\} \end{array}$

Construction of
$$I^*_{[s,r]}$$
 and $[\theta^{[s,r]}_Y]$

Let Y be an oriented homology 3-sphere. Set $\mathcal{B}_Y := \Omega^1_Y \otimes \mathfrak{su}(2)/\mathsf{Map}^0(Y,SU(2)), \text{ where } \mathsf{Map}^0(Y,SU(2)) \text{ is the set of null-homotopic smooth maps and the action is given by} a * g := g^{-1}dg + g^{-1}ag.$ The (perturbed) Chern–Simons functional

$$cs_h : \mathcal{B}_Y \to \mathbb{R}$$

is given by

$$cs([a]) := \frac{1}{8\pi^2} \int_Y \operatorname{Tr}(a \wedge da + \frac{2}{3}a \wedge a \wedge a) + \frac{h}{2}$$

for some perturbation $h: \mathcal{B}_Y \to \mathbb{R}$. The "critical point set" of cs_h is given by

$$R_h(Y) = \{[a] \in \mathcal{B}_Y \mid F(a) + * \mathsf{grad} \ h = 0\}.$$

Floer defined the Floer index

$$\operatorname{ind}_{h} : R_{h}(Y) \to \mathbb{Z}$$

under some good situation.

 $\begin{array}{c} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\scriptscriptstyle S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\scriptscriptstyle S}\} \end{array}$

Gradient flow of cs

Fix a Riemann metric on Y. We equip an $L^2\text{-inner product on }\Omega^1_Y\otimes\mathfrak{su}(2)$ by

$$(a,b):=-\frac{1}{4\pi^2}\int_Y {\rm Tr}(a\wedge *b).$$

Then the formal gradient flow of cs w.r.t. the inner product is given by

grad
$$(cs+h): a \mapsto *_g(F(a))+\text{grad } h.$$

A gradient flow $c:\mathbb{R}\to\Omega^1_Y\otimes\mathfrak{su}(2)$ of grad (cs+h) corresponds to a solution to the ASD-equation

$$\frac{1}{2}(1 + *_{g+dt^2})(F(A) + \pi_h(A)) = 0,$$

where A is a connection on $Y \times \mathbb{R}$ given by $A|_{Y \times t} = c(t)$ such that (dt-component of A) = 0.

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{s}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{s}\} \end{array}$

In the case of
$$Y = -\Sigma(2,3,5)$$

The critical point set is

$$R(Y) \cong \{\rho_1^i, \rho_2^i, \theta^i\}_{i \in \mathbb{Z}}.$$

The critical values are

$$cs(\rho_1^i) = \frac{1}{120} + i, \ cs(\rho_2^i) = \frac{49}{120} + i \ \text{and} \ cs(\theta^i) = i.$$

The Floer indicies are given by

 $\begin{array}{c} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\scriptscriptstyle S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\scriptscriptstyle S}\} \end{array}$

Construction of I_*

Suppose that cs + h is Morse. (\iff Hess $(cs+h)_a$: Ker $d_a^* \rightarrow$ Ker d_a^* is injective for any critical point a.) The instanton Floer chain is given by

$$CI_*(Y) := \mathbb{Z}\{[a] \in R_h(Y) \mid \mathsf{ind}_h([a]) = *\}.$$

The differential is defined by

$$\partial([a]) = \sum_{[b] \in R(Y), \ \mathrm{ind}([a]) - \mathrm{ind}([b]) = 1} \#(M_{h}([a], [b]) / \mathbb{R}),$$

where the space $M_h([a], [b])$ is the set of trajectories of cs+h from [a] to [b].

Backgrounds Invariants $\{r_s\}$ and its applications Construction of invariants $\{r_s\}$

Construction of I_*

If we give a topology on $M_h([a], [b])$, we use the identification

$$M_{\mathbf{h}}([a],[b]) \cong \{A \in \Omega^1(Y \times \mathbb{R}) \otimes \mathfrak{su}(2)_{L^2_{k,loc}} \mid (*)\}/\mathcal{G}$$

where the conditions (*) are given by

■ $A - p^*a \in L^2_k(Y \times (-\infty, -1]), A - p^*b \in L^2_k(Y \times [1, \infty))$ and ■ $(1 + *_{g+dt^2})(F(A) + \pi_h(A)) = 0$ (ASD equation),

where the map p is the projection $Y \times \mathbb{R} \to Y$. The gauge group \mathcal{G} is

$$\left\{g\in \mathsf{Map}\ (Y\times\mathbb{R},SU(2))_{L^2_{k,\mathsf{loc}}}\; \left|\; \begin{array}{c} g^*p^*a\in L^2_k(Y\times(-\infty,-1]),\\ g^*p^*b\in L^2_k(Y\times[1,\infty)) \end{array}\right\}\right\}$$

(One can check that the group \mathcal{G} acts on the space $\{A \in \Omega^1(Y \times \mathbb{R}) \otimes \mathfrak{su}(2)_{L^2_{k, \mathsf{loc}}} \mid (*)\}.$)

 $\begin{array}{c} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\scriptscriptstyle S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\scriptscriptstyle S}\} \end{array}$

Construction of I_*

Theorem (Floer)

There exists a nice class of perturbations $h : \mathcal{B} \to \mathbb{R}$ of cs satisfying the following conditions:

- The map ∂ is well-defined, i.e. , $M_h([a], [b])$ has a structure of a manifold of dimension $\operatorname{ind}([a]) \operatorname{ind}([b])$ such that \mathbb{R} action on $M_h([a], [b])$ is proper and free if $\operatorname{ind}([a]) \operatorname{ind}([b]) > 0$ and $M_h([a], [b])/\mathbb{R}$ is compact if $\operatorname{ind}([a]) \operatorname{ind}([b]) = 1$. Moreover, there is a method to give orientations on $M_h([a], [b])$.
- $\partial^2 = 0$ holds.
- The chain homotopy type of (CI_*, ∂) does not depend on h.

The instanton (co) homology is given by $I_*(Y) := H_*(CI_*, \partial)$.

Example

$$I_*(-\Sigma(2,3,5)) \cong \begin{cases} \mathbb{Z} \text{ if } * = 1,5 \mod 8\\ 0 \text{ otherwise} \end{cases}$$

Backgrounds Invariants $\{r_s\}$ and its applications Construction of invariants $\{r_s\}$

The obstruction class $[\theta]$

Definition

The homomorphism $\theta: CI_1 \to \mathbb{Z}$ is given by $[a] \mapsto \#M_h([a], [\theta^0])$.

One can see that $\partial^* \theta = 0$. Therefore, the map θ determines a class $[\theta] \in I^1(Y)$. Although, the definition of the map θ depends on the choice of h, the cohomology class does not depend on the choice of h.

Example

If Y=- $\Sigma(2,3,5)$, $\theta: CI_1 \to \mathbb{Z}$ satisfies $\theta(\rho_1^0) = \pm 1$. In this case, $[\theta]$ generates $I^1(Y)$.

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\rm S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\rm S}\} \end{array}$

Construction of $I^*_{[s,r]}$

Set
$$\lambda_Y := \frac{1}{4} \min\{|a - b| \mid a, b \in cs|_{R(Y)}\}.$$

Definition

For $s\in\mathbb{R}_{\leq0}\amalg\{-\infty\}$ and $r\in\mathbb{R}_{\geq0}\setminus cs|_{R(Y)},$ we define

$$CI_*^{[s,r]}(Y) := \mathbb{Z}\left\{ [a] \in R_h(Y) \middle| \begin{array}{l} \mathsf{ind}([a]) = *, \\ s - \lambda_Y < (cs+h)([a]) < r \end{array} \right\}$$

The differential $\partial^{[s,r]}$ is given by the restriction of $\partial.$ The filtered instanton cohomology is given by

$$I^*_{[s,r]}(Y) := H_*(\mathsf{Hom}\ (CI^{[s,r]}_*(Y),\mathbb{Z}), (\partial^{[s,r]})^*)).$$

Theorem (Fintushel–Stern, '92)

If we take a small perturbation h to define $I^*_{[s,r]}(Y)$, the chain homotopy type of (Hom $(CI^{[s,r]}_*(Y),\mathbb{Z}), (\partial^{[s,r]})^*$) does not depend on the choice of h.

Backgrounds Invariants $\{r_s\}$ and its applications Construction of invariants $\{r_s\}$

The obstruction class $[\theta^{[s,r]}]$

Definition

For $s \in \mathbb{R}_{\leq 0} \amalg \{-\infty\}$ and $r \in \mathbb{R}_{\geq 0} \setminus cs|_{R(Y)}$, we have the homomorphism $\theta^{[s,r]} : CI_1^{[s,r]} \to \mathbb{Z}$ given by $[a] \mapsto \#M_h([a], [\theta^0])$.

One can see that $(\partial^{[s,r]})^*\theta = 0$. Therefore, the map $\theta^{[s,r]}$ determines a class $[\theta^{[s,r]}] \in I^1_{[s,r]}(Y)$. Moreover, for a small perturbation h, the class $[\theta^{[s,r]}] \in I^1_{[s,r]}(Y)$ is well-defined.

Example

Suppose that $Y = -\Sigma(2, 3, 5)$.

- If $0 < r < \frac{1}{120}$, then the map $\theta^{[s,r]} : CI_1^{[s,r]} \to \mathbb{Z}$ is zero map since $CI_1^{[s,r]} = 0$.
- If $\frac{1}{120} < r$, then the map $\theta^{[s,r]} : CI_1^{[s,r]} \to \mathbb{Z}$ gives an isomorphism.

Backgrounds Invariants $\{r_{\rm S}\}$ and its applications Construction of invariants $\{r_{\rm S}\}$

Definition of r_s

Definition

For a given homology 3-sphere Y,

$$r_s(Y) := \sup\{r \mid 0 = [\theta^{[s,r]} \otimes \mathsf{Id}_{\mathbb{Q}}] \in I^1_{[s,r]}(Y;\mathbb{Q})\}$$

Example

$$\begin{split} & \text{Suppose that } Y = -\Sigma(2,3,5). \\ & \text{If } 0 < r < \frac{1}{120}, \text{ then } 0 = [\theta^{[s,r]}] \in I^1_{[s,r]}. \\ & \text{If } \frac{1}{120} < r, \text{ then } 0 \neq [\theta^{[s,r]}] \in I^1_{[s,r]}. \\ & \text{Therefore, } r_s(-\Sigma(2,3,5)) = \frac{1}{120}. \end{split}$$

 $\begin{array}{l} {\rm Backgrounds} \\ {\rm Invariants} \; \{r_{\scriptscriptstyle S}\} \; {\rm and} \; {\rm its} \; {\rm applications} \\ {\rm Construction} \; {\rm of} \; {\rm invariants} \; \{r_{\scriptscriptstyle S}\} \end{array}$

Negative definite inequality of $\{r_s\}$

For a negative definite cobordism W with $\partial W = Y_0 \amalg Y_1$ and $H_1(W, \mathbb{R}) = 0$, $s \in \mathbb{R}_{\leq 0} \cup \{-\infty\}$ and $r \in \mathbb{R}_{\geq 0} \setminus (cs(R(Y_0)) \amalg cs(R(Y_1)))$, we have the cobordism map

$$CW: I^*_{[s,r]}(Y_1; \mathbb{Q}) \to I^*_{[s,r]}(Y_0; \mathbb{Q})$$

with $CW(\theta_{Y_1}^{[s,r]}) = c(W)\theta_{Y_0}^{[s,r]}$, where c(W) is non-zero rational number. This map is defined by counting the solution to ASD-moduli space for W. This gives an inequality

$$r_s(Y_0) \le r_s(Y_1).$$

Moreover, If $r_s(Y_1) < \infty$ and $r_s(Y_0) = r_s(Y_1)$, one can construct an irreducible SU(2)-representation of $\pi_1(W)$. Therefore, if $\pi_1(W) = 1$ and $r_s(Y_1) < \infty$, we have

$$r_s(Y_0) < r_s(Y_1).$$

Backgrounds Invariants $\{r_s\}$ and its applications Construction of invariants $\{r_s\}$

Cobordism inequality of $\{r_s\}$

To prove $r_0(Y_0 \# Y_1) \geq \min\{r_0(Y_0), r_0(Y_1)\}$, we need to show if $[\theta_{Y_i}^{[0,r]}] = 0$ for i = 0 and 1 then $[\theta_{Y_0 \# Y_1}^{[0,r]}] = 0$. Let W be a cobordism with $\partial W = Y_0 \# Y_1 \amalg (-Y_0) \amalg (-Y_1)$ obtained by adding a 3-handle on $Y_0 \# Y_1$. There are four kinds of maps on the instanton chain complex induced by W;

■
$$p_0CW: CI^{[0,r]}_*(Y_0 \# Y_1) \to CI^{[0,r]}_*(Y_0) \otimes CI^{[0,r]}_*(Y_1),$$

■
$$p_1CW: CI^{[0,r]}_*(Y_0 \# Y_1) \to CI^{[0,r]}_*(Y_1),$$

•
$$p_2CW: CI^{[0,r]}_*(Y_0 \# Y_1) \to CI^{[0,r]}_*(Y_0)$$
 and

$$p_3CW: CI^{[0,r]}_*(Y_0 \# Y_1) \to \mathbb{Q}$$

Moreover, these maps satisfy nice equations related to $[\theta_{Y_0}^{[0,r]}]$, $[\theta_{Y_1}^{[0,r]}]$ and $[\theta_{Y_0\#Y_1}^{[0,r]}]$. Using such equations and the assumption $[\theta_{Y_i}^{[0,r]}] = 0$, one can see $[\theta_{Y_0\#Y_1}^{[0,r]}] = 0$.

Backgrounds Invariants $\{r_{\rm S}\}$ and its applications Construction of invariants $\{r_{\rm S}\}$

Thank you!