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The homology cobordism group Θ3
Z

Let Y0 and Y1 be oriented homology spheres.

Definition (The homology cobordism group)

We say Y0 is homology cobordant to Y1 (Y0 ∼ZH Y1) if there exists a compact
oriented 4-manifold W with ∂W = Y0 ⨿ (−Y1) such that the maps
H∗(Yi,Z) → H∗(W,Z) induced by inclusions Yi → W are isomorphisms.

Θ3
Z := { oriented homology 3-spheres }/ ∼ZH

The connected sum induces an abelian group structure on Θ3
Z. The unit

element is [S3].
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The knot concordance group C

Let K0 and K1 be oriented knots in S3.

Definition (The knot concordance group C)

We say K0 is concordant to K1 (K0 ∼c K1) if there exists an embedding
J : S1 × [0, 1] → S3 × [0, 1] such that J |S1×{i} = Ki × {i} for i = 0 and 1.

C := { all oriented knots }/ ∼c

The connected sum induces an abelian group structure on C. The unit element
is the unknot.
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Known results related to Θ3
Z and C

The n-dimensional homology cobordism group Θn
Z (resp. Cn) is

completely determined for n ̸= 3(resp. n ̸= 1).[Kervaire, Levine]

Any topological manifold M with dim ≥ 5 admits a triangulation ⇐⇒
0 = ∃δ(∆(M)) ∈ H5(M,Ker µ), where µ : Θ3

Z → Z2 is the Roklin
homomorphism. [Galewski–Stern, Matumoto]

The group Θ3
Q is defined by replacing Z with Q in the definition of Θ3

Z.
The double branched cover gives a homomorphism

Σ : C → Θ3
Q.
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History of Θ3
Z related to our work

1982 Donaldson, Theorem A implies that Σ(2, 3, 5) is not a torsion in Θ3
Z.

1985 Fintushel–Stern, Σ(p, q, pqn− 1) is not a torsion in Θ3
Z.

1990 Fintushel–Stern, Furuta, {Σ(p, q, pqn− 1)}∞k=1 are linearly
independent in Θ3

Z.
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Open questions of Θ3
Z and C

Let Tp,q be the (p, q)-torus knot. It is known that
S1/n(Tp,q) = Σ(p, q, pqn− 1). (n > 0)

Open question of Θ3
Z

Is there a nice sufficient condition of K such that {S1/n(K)} are linearly
independent in Θ3

Z?

Open question of Θ3
Z

Is Θ3
Z generated by all Seifert homology spheres?

The Whitehead double1 determines a map D : C → C.

Hedden–Kirk’s conjecture

The map D preserves linear independence.

1The satelite knot with respect to the above knot in S1 × D2.
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Main result

Theorem (2019, Nozaki–Sato–T)

For s ∈ R≤0 ⨿ {−∞} and an oriented homology sphere Y , we define
rs(Y ) ∈ R>0 ⨿ {∞} satisfying the following conditions:

1 If s ≤ s′, then rs′(Y ) ≤ rs(Y ).
2 The values of rs(Y ) are contained in the set of critical values of the

Chern–Simons functional of Y .
3 Let Y0 and Y1 be ZHS3’s and W a negative definite cobordism with

∂W = Y0 ⨿−Y1. Then rs(Y1) ≤ rs(Y0) holds for any s. If π1(W ) = 1
and rs(Y0) < ∞, then rs(Y1) < rs(Y0) holds.

4 The invariant r0 satisfies

r0(Y1#Y2) ≥ min{r0(Y1), r0(Y2)}.

5 The condition r−∞(Y ) < ∞ ⇐⇒ h(Y ) < 0 holds, where h : Θ3
Z → Z is

the Frøyshov homomorphism.
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Remarks for main theorem

Recently, Daemi(2018) introduced a family of invariants of Y
parametrized by Z:

· · · ≤ ΓY (−1) ≤ ΓY (0) ≤ ΓY (1) ≤ . . .

using instanton Floer theory. Note that ΓY (k) also satisfies the conditions
2, 3 and 5 for a positive k. We showed

r0(Y ) ≤ · · · ≤ rs(Y ) ≤ · · · ≤ r−∞(Y ) = ΓY (1).

∃ an example of Y such that rs(Y ) is not constant w.r.t. s.

9 / 34



10/34

Backgrounds
Invariants {rs} and its applications

Construction of invariants {rs}

Rough definition of r0

Roughly speaking, r0(Y ) is given by

inf

{
− 1
8π2

∫

Y ×R
Tr(F (A) ∧ F (A))

∣∣∣ A ∈ Ω1
Y ×R ⊗ su(2) with (∗)

}

= inf

{
cs(b)

∣∣∣ A ∈ Ω1
Y ×R ⊗ su(2) with (∗), b = ∃ lim

t→−∞
A|Y ×{t}

}

The condition (∗) is
0 = ∃ lim

t→∞
A|Y ×{t}.

∃ Riemann metric g on Y such that the ASD-equation
1
2 (1 + ∗g+dt2)F (A) = 0 is satisfied.
The Fredholm index of the operator d+A + d∗A on Y × R is 1.
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Calculations

Example

rs(S
3) = ∞ for any s.

Theorem
rs(−Σ(p, q, pqn− 1)) = 1

4pq(pqk−1) for any s.

In general, ⋃

s

rs(Θ
3
S) ⊂ Q>0 ⨿ {∞},

where Θ3
S is the subgroup of Θ3

Z generated by Seifert homology 3-spheres. We
tried to calculate rs for a hyperbolic manifold obtained by the 1/2-surgery
along the mirror image of 52.
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Calculations

Theorem
By computer, for any s,

rs(S
3
1/2(5

∗
2)) ≈ 0.0017648904 7864885113 0739625897

0947779330 4925308209

whose error is 10−50, where S3
1/2(5

∗
2) is the 1/2 surgery on the mirror image of

52 in Rolfsen’s table.

Our computation is based on Kirk and Klassen’s formula (to be explained later).

Our conjecture

rs(S
3
1/2(5

∗
2)) is irrational.

If the conjecture is true, we can conclude that Θ3
Z/Θ

3
S is non-trivial.
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Computation of rs(S3
1/2(5

∗
2))

Let ρ0, ρ1 be SU (2)-representations of π1 = π1(S
3
−1/2(52)) and

{ρs}s ⊂ Hom(π1,SL(2,C)) a path from ρ0 to ρ1.
Then Kirk and Klassen gave a fomula of the form

cs(ρ1)− cs(ρ0) ≡
∫ 1

0

“ρs(λ) & ρs(µ)”ds mod Z.

The irreducible representations of π1 are described by the Riley polynomial
φ(t, u) = −(t−2 + t2)u+ (t−1 + t)(2 + 3u+ 2u2)− (3 + 6u+ 3u2 + u3).

t u −cs
ρ1 0.716932 + 0.697143i −0.0755806 0.00176489
ρ2 0.309017 + 0.951057i −1.00000 0.166667
ρ3 −0.339570 + 0.940581i −2.41421 0.604167
ρ4 −0.778407 + 0.627759i −1.69110 0.388460
ρ5 −0.809017 + 0.587785i −1.00000 0.166667
ρ6 −0.905371 + 0.424621i −2.16991 0.865934
ρ7 −0.912712 + 0.408603i −3.62043 0.321158
ρ8 −0.988857 + 0.148870i −2.41421 0.604167
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Useful lemmas

Lemma (I)

Let {Yn}∞n=1 be a sequence of oriented homology 3-spheres satisfying the
following two conditions:

r0(Y1) > r0(Y2) > . . . and
r0(−Yn) = ∞ for any n.

Then the sequence {[Yn]} are linearly independent in both of Θ3
Z and Θ3

Q.

Lemma (II)

Let Y0 and Y1 be ZHS3’s and W a negative definite cobordism with
∂W = Y0 ⨿−Y1. If π1(W ) = 1 and r0(Y0) < ∞, then r0(Y1) < r0(Y0) holds.

Lemma (III)

If Y bounds a negative definite 4-manifold, then r0(Y ) = ∞ holds.
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Three applications of {rs}

Theorem (I)

∃ infinitely many homology spheres {Yk} such that Yk does not admit any
definite bounding.

Set Yk := 2Σ(2, 3, 5)#(−Σ(2, 3, 6k + 5)). (k ≥ 1) Then using connected sum
formula, we have r0(Yk) = 1

24(6k+5) < ∞. Moreover, the calculation
h(−Yk) = −1 implies that r0(−Yk) < ∞.

Corollary

[Yk] does not contain any Seifert homology sphere and homology 3-sphere
obtained by a surgery on a knot in S3.

It is known that all Seifert homology spheres and homology 3-spheres obtained
by surgeries on knots admit a definite bounding.
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Three applications of {rs}

Theorem (II)

For any knot K in S3 with h(S1(K)) < 0, {S3
1/n(K)} are linearly independent

in Θ3
Z.

If we take K = Tp,q, this theorem recover the results of Furuta,
Fintushel–Stern in ’90.

Proposition

All positive k-twisted knots (k ≥ 1) and (2, q)-cable knots (g ≥ 3) satisfy
h(S1(K)) < 0.
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Sketch of proof of II

Set Yn := S1/n(K). The fifth and third property of r0 implies r0(Y1) < ∞ and
r0(−Yn) = ∞. On the other hand, we have a positive definite cobordism Wn

with ∂(Wn) = −Yn ⨿ (Yn+1) described by

.

One can see that Wn is simply connected for each n. Therefore the third
property of r0 implies that

r0(Y1) > r0(Y2) > . . . .
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Three applications of {rs}

Let Tp,q be the (p, q)-torus knot. We denote D(Tp,q) by Dp,q.

Theorem (Hedden–Kirk, 2012)

{D(T2,2n−1)}∞n=2 are lineary independent in C.

Theorem (III)

{D(Tp,np+q)}∞n=1 are lineary independent in C for any relative prime numbers
(p, q).
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Sketch of proof of III

Since
Σ : C → Θ3

Q

is a homomorphism, it is sufficient to prove {Σ(Dp,kp+q)}∞k=1 are linearly
independent in Θ3

Q. Moreover, since Σ(Dp,q) = S3
1/2(Tp,q#Tp,q) is ZHS3, this

is followed by:

Lemma

r0(Σ(Dp,q)) < ∞.
r0(Σ(Dp,q)) > r0(Σ(Dp,p+q)).

To prove the above lemma, we construct
neg. defn. cob. with boundary Σ(p, q, 2pq − 1))⨿ (−Σ(Dp,q))

simp. conn. neg. defn. cob. with boundary Σ(Dp,q)⨿ (−Σ(Dp,p+q))
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Sketch of proof of III

Lemma
If K0 → · · · → K1 by a seq. of pos. crossing changes, then ∃ neg. defn. cob.
with boundary S3

1/n(K1)⨿ (−S3
1/n(K0)) for ∀n.

,

Tp,q#Tp,q
pos. c.c.−→ Tp,q ! r0(Σ(Dp,q)) < ∞

Tp,q+p#Tp,q+p
pos. c.c.−→ Tp,q#Tp,q ! r0(Σ(Dp,q)) > r0(Σ(Dp,p+q))
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History of instanton homology related to our work

Let Y be an oriented homology 3-sphere.
1987, Floer, Instanton homology I∗(Y ) with ∗ ∈ Z/8Z.

1992, Fintushel–Stern, Filtered version of instanton homology I [r,r+1]
∗ (Y )

with ∗ ∈ Z for r ∈ R.
2002, Donaldson, The obstruction class [θY ] ∈ I1(Y ). If Y admits a
negative definite bounding with non-standard intersection form, then
0 ̸= [θY ] ∈ I1(Y ;Q).
2019, NST, Filtered instanton cohomology I∗[s,r] and the filtered version
[θ[s,r]Y ] ∈ I∗[s,r] of the obstruction class.

Definition
rs(Y ) := sup{r ∈ R | 0 = [θ[s,r]Y ] ∈ I∗[s,r]}
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Construction of I∗[s,r] and [θ[s,r]Y ]

Let Y be an oriented homology 3-sphere. Set
BY := Ω1

Y ⊗ su(2)/Map0(Y, SU(2)), where Map0(Y, SU(2)) is the set of
null-homotopic smooth maps and the action is given by
a ∗ g := g−1dg + g−1ag. The (perturbed) Chern–Simons functional

csh : BY → R

is given by

cs([a]) :=
1

8π2

∫

Y

Tr(a ∧ da+
2
3
a ∧ a ∧ a) + h

for some perturbation h : BY → R . The “critical point set” of csh is given by

Rh(Y ) = {[a] ∈ BY | F (a) + ∗grad h = 0}.

Floer defined the Floer index

indh : Rh(Y ) → Z

under some good situation.
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Gradient flow of cs

Fix a Riemann metric on Y . We equip an L2-inner product on Ω1
Y ⊗ su(2) by

(a, b) := − 1
4π2

∫

Y

Tr(a ∧ ∗b).

Then the formal gradient flow of cs w.r.t. the inner product is given by

grad (cs+h) : a 5→ ∗g(F (a))+grad h.

A gradient flow c : R → Ω1
Y ⊗ su(2) of grad (cs+h) corresponds to a solution

to the ASD-equation

1
2
(1 + ∗g+dt2)(F (A)+πh(A)) = 0,

where A is a connection on Y × R given by A|Y ×t = c(t) such that
(dt-component of A) = 0.
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In the case of Y = −Σ(2, 3, 5)

The critical point set is

R(Y ) ∼= {ρi1, ρi2, θi}i∈Z.

The critical values are

cs(ρi1) =
1

120
+ i, cs(ρi2) =

49
120

+ i and cs(θi) = i.

The Floer indicies are given by

ind(ρi1) = 1 + 8i, ind(ρi2) = 5 + 8i and ind(θi) = −3 + 8i.
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Construction of I∗

Suppose that cs+ h is Morse. ( ⇐⇒ Hess (cs+h)a : Kerd∗a → Kerd∗a is
injective for any critical point a.) The instanton Floer chain is given by

CI∗(Y ) := Z{[a] ∈ Rh(Y ) | indh([a]) = ∗}.

The differential is defined by

∂([a]) =
∑

[b]∈R(Y ), ind([a])−ind([b])=1

#(Mh([a], [b])/R),

where the space Mh([a], [b]) is the set of trajectories of cs+h from [a] to [b].
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Construction of I∗

If we give a topology on Mh([a], [b]), we use the identification

Mh([a], [b]) ∼= {A ∈ Ω1(Y × R)⊗ su(2)L2
k,loc

| (∗)}/G,

where the conditions (∗) are given by
A− p∗a ∈ L2

k(Y × (−∞,−1]), A− p∗b ∈ L2
k(Y × [1,∞)) and

(1 + ∗g+dt2)(F (A)+πh(A)) = 0 (ASD equation),
where the map p is the projection Y × R → Y . The gauge group G is

{
g ∈ Map (Y × R, SU(2))L2

k,loc

∣∣∣∣∣
g∗p∗a ∈ L2

k(Y × (−∞,−1]),
g∗p∗b ∈ L2

k(Y × [1,∞))

}
.

(One can check that the group G acts on the space
{A ∈ Ω1(Y × R)⊗ su(2)L2

k,loc
| (∗)}.)
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Construction of I∗

Theorem (Floer)

There exists a nice class of perturbations h : B → R of cs satisfying the
following conditions:

The map ∂ is well-defined, i.e. , Mh([a], [b]) has a structure of a manifold
of dimension ind([a])− ind([b]) such that R action on Mh([a], [b]) is
proper and free if ind([a])− ind([b]) > 0 and Mh([a], [b])/R is compact if
ind([a])− ind([b]) = 1. Moreover, there is a method to give orientations
on Mh([a], [b]).
∂2 = 0 holds.
The chain homotopy type of (CI∗, ∂) does not depend on h.

The instanton (co) homology is given by I∗(Y ) := H∗(CI∗, ∂).

Example

I∗(−Σ(2, 3, 5)) ∼=

{
Z if ∗ = 1, 5 mod 8

0 otherwise
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The obstruction class [θ]

Definition
The homomorphism θ : CI1 → Z is given by [a] 5→ #Mh([a], [θ

0]).

One can see that ∂∗θ = 0. Therefore, the map θ determines a class
[θ] ∈ I1(Y ). Although, the definition of the map θ depends on the choice of h,
the cohomology class does not depend on the choice of h.

Example

If Y=−Σ(2, 3, 5), θ : CI1 → Z satisfies θ(ρ01) = ±1. In this case, [θ] generates
I1(Y ).
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Construction of I∗[s,r]

Set λY := 1
4 min{|a− b| | a, b ∈ cs|R(Y )}.

Definition
For s ∈ R≤0 ⨿ {−∞} and r ∈ R≥0 \ cs|R(Y ), we define

CI [s,r]∗ (Y ) := Z
{
[a] ∈ Rh(Y )

∣∣∣∣∣
ind([a]) = ∗,
s− λY < (cs+ h)([a]) < r

}
.

The differential ∂[s,r] is given by the restriction of ∂. The filtered instanton
cohomology is given by

I∗[s,r](Y ) := H∗(Hom (CI [s,r]∗ (Y ),Z), (∂[s,r])∗)).

Theorem (Fintushel–Stern, ’92)

If we take a small perturbation h to define I∗[s,r](Y ), the chain homotopy type
of (Hom (CI [s,r]∗ (Y ),Z), (∂[s,r])∗) does not depend on the choice of h.
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The obstruction class [θ[s,r]]

Definition
For s ∈ R≤0 ⨿ {−∞} and r ∈ R≥0 \ cs|R(Y ), we have the homomorphism
θ[s,r] : CI [s,r]1 → Z given by [a] 5→ #Mh([a], [θ

0]).

One can see that (∂[s,r])∗θ = 0. Therefore, the map θ[s,r] determines a class
[θ[s,r]] ∈ I1[s,r](Y ). Moreover, for a small perturbation h, the class
[θ[s,r]] ∈ I1[s,r](Y ) is well-defined.

Example

Suppose that Y=−Σ(2, 3, 5).

If 0 < r < 1
120 , then the map θ[s,r] : CI [s,r]1 → Z is zero map since

CI [s,r]1 = 0.

If 1
120 < r, then the map θ[s,r] : CI [s,r]1 → Z gives an isomorphism.
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Definition of rs

Definition
For a given homology 3-sphere Y ,

rs(Y ) := sup{r | 0 = [θ[s,r] ⊗ IdQ] ∈ I1[s,r](Y ;Q)}

Example

Suppose that Y = −Σ(2, 3, 5).
If 0 < r < 1

120 , then 0 = [θ[s,r]] ∈ I1[s,r].

If 1
120 < r, then 0 ̸= [θ[s,r]] ∈ I1[s,r].

Therefore, rs(−Σ(2, 3, 5)) = 1
120 .
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Negative definite inequality of {rs}

For a negative definite cobordism W with ∂W = Y0 ⨿ Y1 and H1(W,R) = 0,
s ∈ R≤0 ∪ {−∞} and r ∈ R≥0 \ (cs(R(Y0))⨿ cs(R(Y1))) , we have the
cobordism map

CW : I∗[s,r](Y1;Q) → I∗[s,r](Y0;Q)

with CW (θ[s,r]Y1
) = c(W )θ[s,r]Y0

, where c(W ) is non-zero rational number. This
map is defined by counting the solution to ASD-moduli space for W . This
gives an inequality

rs(Y0) ≤ rs(Y1).

Moreover, If rs(Y1) < ∞ and rs(Y0) = rs(Y1), one can construct an irreducible
SU(2)-representation of π1(W ). Therefore, if π1(W ) = 1 and rs(Y1) < ∞, we
have

rs(Y0) < rs(Y1).
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Cobordism inequality of {rs}

To prove r0(Y0#Y1) ≥ min{r0(Y0), r0(Y1)}, we need to show if [θ[0,r]Yi
] = 0 for

i = 0 and 1 then [θ[0,r]Y0#Y1
] = 0. Let W be a cobordism with

∂W = Y0#Y1 ⨿ (−Y0)⨿ (−Y1) obtained by adding a 3-handle on Y0#Y1.
There are four kinds of maps on the instanton chain complex induced by W ;

p0CW : CI [0,r]∗ (Y0#Y1) → CI [0,r]∗ (Y0)⊗ CI [0,r]∗ (Y1),

p1CW : CI [0,r]∗ (Y0#Y1) → CI [0,r]∗ (Y1),

p2CW : CI [0,r]∗ (Y0#Y1) → CI [0,r]∗ (Y0) and

p3CW : CI [0,r]∗ (Y0#Y1) → Q.

Moreover, these maps satisfy nice equations related to [θ[0,r]Y0
], [θ[0,r]Y1

] and
[θ[0,r]Y0#Y1

]. Using such equations and the assumption [θ[0,r]Yi
] = 0, one can see

[θ[0,r]Y0#Y1
] = 0.
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Thank you!
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