Hidden symmetries of hyperbolic links

Han Yoshida

National Institute of Technology, Nara College

2019/5/23

- 1. Introduction
- 2. Definitions
- 3. Proof of Main Theorem
- 4. SnapPy and hidden symmetry

1. Introduction

Definition

A hyp. mfd. M admits a hidden symmetry $\Leftrightarrow \exists$ an isometry between finite sheeted covers of M which is not a lift of an isometry of M.

We will define hidden symmetry by using "commensurator" and "normalizer" later.

Conjecture 1 (Neumann-Reid)

The figure-eight knot and the two dodecahedral knots are the only hyperbolic knots in S^3 admitting hidden symmetries.

1. Introduction

Definition

A hyp. mfd. M admits a hidden symmetry $\Leftrightarrow \exists$ an isometry between finite sheeted covers of M which is not a lift of an isometry of M.

We will define hidden symmetry by using "commensurator" and "normalizer" later.

Conjecture 1 (Neumann-Reid)

The figure-eight knot and the two dodecahedral knots are the only hyperbolic knots in S^3 admitting hidden symmetries.

1. Introduction

Definition

A hyp. mfd. M admits a hidden symmetry $\Leftrightarrow \exists$ an isometry between finite sheeted covers of M which is not a lift of an isometry of M.

We will define hidden symmetry by using "commensurator" and "normalizer" later.

Conjecture 1 (Neumann-Reid)

The figure-eight knot and the two dodecahedral knots are the only hyperbolic knots in S^3 admitting hidden symmetries.

One cusped-hyp. mfds. s781, v1241, v1859, v2037, v2274, v2573, v2731, v2875 admit hidden symmetries. (Notation as in the SnapPea census.)

Th 1 (A. Reid, G. S. Walsh)

Two bridge knots (\neq figure-eight) do not admit hidden symmetries.

Commensurability classes of 2-bridge knot complements. Algebr. Geom. Topol., 8(2):1031–1057, 2008

Th 2 (M. Macasieb, T. W. Mattman)

(-2,3,n) pretzel knot $(n \in \mathbb{N})$ does not admit hidden symmety.

Commensurability classes of (-2; 3; n) pretzel knot complements. Algebr. Geom. Topol., 8(3):1833–1853, 2008

N. Dunfield checked this conjecture is true for the knots up to 16 crossings.

Th 3 (E. Chesebro, J. DeBlois)

The 2-component links as in figure admit hidden symmetry.

"Hidden symmetries via hidden extensions" https://arxiv.org/pdf/1501.00726.pdf

3-comp. and 4-comp. link and hidden symmetries

O. Goodman, D. Heard and C Hodgson showed the four links as in figure admit hidden symmetries by using computer.

Commensurators of cusped hyperbolic manifolds, Experiment. Math. Volume 17, Issue 3 (2008) 283-306.

Main Theorem

We generalize the result of O. Goodman, D. Heard and C Hodgson.

Main Theorem

n-componet link as in Figure is non-arithmetic and admits a hidden symmetry. (n \geq 4)

We prove this by using a tessellation of \mathbb{H}^3 .

Han Yoshida (National Institute of Technolog Hidden symmetries of hyperbolic links

n-component links and hidden symmetry

Th 4 (J. S. Meyer, C. Millichap, R. Trapp)

n-componet link as in Figure is non-arithmetic and admits hidden symmetry. (n \geq 6)

https://arxiv.org/pdf/1811.00679 They showed this by using totally geodesic surfaces.

$$\begin{split} &\Gamma_1, \ \Gamma_2 < \mathrm{Isom}(\mathbb{H}^3) \ \text{are commensurable} \\ \Leftrightarrow |\Gamma_1 : \Gamma_1 \cap \Gamma_2| < \infty \ \text{and} \ |\Gamma_2 : \Gamma_1 \cap \Gamma_2| < \infty \\ &\Gamma_1 \ \text{and} \ \Gamma_2 \ \text{are commensurable in the wide sense} \\ \Leftrightarrow \ \exists h \in \mathrm{Isom}(\mathbb{H}^3) \ \text{such that} \ \Gamma_1 \ \text{is commensurable with} \ h^{-1}\Gamma_2 h. \\ &M_1 = \mathbb{H}^3/\Gamma_1 \ \text{and} \ M_2 = \mathbb{H}^3/\Gamma_2 \ \text{are commensurable} \\ \Leftrightarrow \ \Gamma_1 \ \text{and} \ \Gamma_2 \ \text{are commensurable in the wide sense.} \\ \Leftrightarrow \ M_1 \ \text{and} \ M_2 \ \text{have a common finite sheeted cover.} \end{split}$$

Rem: Commensurability is an equivalence relation.

For a Kleinian group $\Gamma,$ the commensurator of Γ is defined by

 $\begin{array}{l} \operatorname{Comm}(\Gamma) = \{ g \in \operatorname{Isom}(\mathbb{H}^3) : \mathrm{g}\Gamma\mathrm{g}^{-1} \text{ and } \Gamma \text{ are commensurable.} \} \\ = \{ g \in \operatorname{Isom}(\mathbb{H}^3) : |\mathrm{g}\Gamma\mathrm{g}^{-1} : \mathrm{g}\Gamma\mathrm{g}^{-1} \cap \Gamma| < \infty, \ |\Gamma : \mathrm{g}\Gamma\mathrm{g}^{-1} \cap \Gamma| < \infty \ \}. \end{array}$

Rem:

- · $\Gamma < \operatorname{Comm}(\Gamma)$
- · Γ_1 and Γ_2 are commensurable. \Rightarrow Comm $(\Gamma_1) =$ Comm (Γ_2) .

Th 5 (Margulis)

 $\operatorname{Comm}(\Gamma)$ is discrete $\Leftrightarrow \Gamma$ is "non-arithmetic".

Rem: For a non-arithmetic group Γ ,

 $\operatorname{Comm}(\Gamma)$ contains every member of the commensurability class "in finite index".

i.e. $\mathbb{H}^3/\mathrm{Comm}(\Gamma)$ is the minimum orbifold(or manifold) in the commensurability class of \mathbb{H}^3/Γ .

A Kleinian group Γ is called arithmetic if it is commensurable with the group norm 1 elements of an order of quaternion algebra A ramified at all real places over a number field k with exactly one complex place.

Ex: The figure-eight knot complement and the Whitehead link complement are arithmetic.

Rem : arithmetic hyp. mfds and non-arithmetic hyp. mfds are incommenurable.

K: knot, $S^3 - K$ is arithmetic $\Rightarrow K$ is figure-eight knot.

For a Kleinian group $\Gamma,$ the commensurator of Γ is defined by

 $\operatorname{Comm}(\Gamma) = \{g \in \operatorname{Isom}(\mathbb{H}^3) : g\Gamma g^{-1} \text{ and } \Gamma \text{ are commensurable.} \}.$

Definition

For a Kleinian group Γ , the normalizer of Γ is defined by

$$N(\Gamma) = \{ g \in \operatorname{Isom}(\mathbb{H}^3) : g\Gamma g^{-1} = \Gamma \}.$$

Note:

 $N(\Gamma) \neq \operatorname{Comm}(\Gamma) \Rightarrow$ We say " Γ admits a hidden symmetry".

Rem:

 Γ is arithmetic. \Rightarrow Comm(Γ) is not discrete. \Rightarrow Γ admits a hidden symmetry.

figure-eight knot complement admits a hidden symmetry.

3. Proof of Main Theorem

Main Theorem

n-component link as in Figure is non-arithmetic and admits hidden symmetry. (n \geq 4)

First, we will show that $S^3 - L_n$ is non-arithmetic.

W. Neumann and A. Reid showed that $S^3 - L$ is non-arithmetic.

W. Thurston showed $S^3 - L$ is obtained by glueing two ideal drums as in Figure.

The colored two punctured disc corresponds to the colored ideal quadrilaterals as in Figure.

 c_1

 Γ (resp. Γ_n) : a Kleinian group such that $S^3 - L = \mathbb{H}^3 / \Gamma$ (resp. $S^3 - L_n = \mathbb{H}^3 / \Gamma_n$).

Lift the ideal polyhedral decompositions of $S^3 - L$ and $S^3 - L_n$. We can get the same ideal polyhedral tessellation of \mathbb{H}^3 .

Denote it by T. The symmetry group of T is discrete. Γ and Γ_n preserve the tessellation T.

Thus Γ and Γ_n are finite index subgroups of the symmetry group of T. As commensurability is an equivalence relation, Γ_n is commensurable with non-arithmetic group Γ .

Hence, Γ_n is non-arithmetic and Comm (Γ) =Comm (Γ_n) .

We will show that $S^3 - L_n$ admits a hidden symmetry.

P: an ideal drum in \mathbb{H}^3 which is a lift of this ideal drum.

The symmetry that rotates the chain L clockwise, taking each link into the next.

This corresponds to $2\pi/(n+1)$ rotation as in Figure

Denote it by γ . $\gamma \in N(\Gamma) < \operatorname{Comm}(\Gamma) = \operatorname{Comm}(\Gamma_n)$. c_1, \cdots, c_{n+1} (resp. c'_1, \cdots, c'_n) : cusps of $S^3 - L$ (resp. $S^3 - L_n$) as in Figure .

The cusp c_i corresponds to two ideal vertices of P.

By cutting and re-glueing along the colored twice punctured disk, c_2 and c_{n+1} correspond to the cusp c'_2 .

We can see that $\gamma(V_1) \neq V_i$ $(i = 1, \dots, n-1)$ $(V_i = \{x \in \partial \mathbb{H}^3 | x \text{ corresponds to the cusp } c_i \})$ $\gamma \notin N(\Gamma_n)$. We have $N(\Gamma_n) \neq \text{Comm}(\Gamma_n)$. Hence Γ_n admits a hidden symmetry.

Th 6 (J. S. Meyer, C. Millichap, R. Trapp)

n-componet link as in Figure is non-arithmetic and admits hidden symmetry. ($n \ge 6$)

https://arxiv.org/pdf/1811.00679

We can prove this theorem in the same fashion of Main Theorem.

.

$$S^3 - L$$
 is commensurable to $S^3 - L_n$, $\operatorname{Comm}(\Gamma) = \operatorname{Comm}(\Gamma_n)$,
 $\gamma \in \operatorname{Comm}(\Gamma) = \operatorname{Comm}(\Gamma_n)$.
 $\gamma \notin N(\Gamma_n)$

 $M : \text{ a cusped hyp. 3-mfd with cusps } c_1, \dots, c_p$ $\pi : \mathbb{H}^3 \to M \text{ covering map}$ $\mathcal{W} = \{ [w_1, \dots, w_p] \in \mathbb{R}P^{p-1} | w_j > 0 (j = 1, \dots, p) \}.$ c : a small positive number.

For $w = [w_1, \dots, w_p]$, take the *j*-th cusp horoball nbhd. of C_j , so that $vol(C_j) = cw_j$ $(j = 1, \dots, p)$. Let $\mathcal{H}(W) = \bigcup_{i=1,\dots,p} (\pi^{-1}(C_j))$. The set of the ideal cell $\Delta \subset \mathbb{H}^3$ whose vertices are the centers of the nearest horoballs to some point $x \in \mathbb{H}^3$ in $\mathcal{H}(W)$ is called *the Epstein-Penner tilling* of *M*. We denote it by $\mathcal{T}(W)$. (Dual of collision locus)

2019/5/23 27 / 33

Example (2-dimensional hyperbolic manifold)

Example (2-dimensional hyperbolic manifold)

Han Yoshida (National Institute of Technolog Hidden symmetries of hyperbolic links

Example (2-dimensional hyperbolic manifold)

Han Yoshida (National Institute of Technolog

Hidden symmetries of hyperbolic links

Example (3-dimensional hyperbolic manifold)

Proposition 1

Let $M = \mathbb{H}^3/\Gamma$ be a cusped hyperbolic manifold.

 $\operatorname{Comm}(\Gamma) > \operatorname{Symm}(\mathcal{T}(W))$

where $\operatorname{Symm}(\mathcal{T}(W)) = \{\gamma \in \operatorname{Isom}(\mathbb{H}^3) | \gamma(\mathcal{T}(W)) = \mathcal{T}(W) \}.$

Proof. The group $\operatorname{Symm}(\mathcal{T}(W))$ is discrete and $\Gamma < \operatorname{Symm}(\mathcal{T}(W))$. Thus $\operatorname{Symm}(\mathcal{T}(W))$ is commensurable with Γ .

As commensurator contains every member of the commensurability class,

 $\operatorname{Comm}(\Gamma) > \operatorname{Symm}(\mathcal{T}(W)).$

Rem:

• For a non-arithmetic cusped hyperbolic manifold M, we can prove $\operatorname{Comm}(\Gamma) = \operatorname{Symm}(\mathcal{T}(W))$ for some $W \in \mathcal{W}$.

• This Proposition is proved by O. Goodman, D. Heard and C Hodgson. Commensurators of cusped hyperbolic manifolds, Experiment. Math. Volume 17, Issue 3 (2008) 283-306.

П

If we find $\gamma \in \text{Symm}(\mathcal{T}(W))$ for some $W \in W$ but $\gamma(V_1) \neq V_i$ $(i = 1, \dots, p), \ \gamma \in \text{Comm}(\Gamma) \text{ and } \gamma \notin N(\Gamma).$ Example)The links of Eric Chesebro, Jason DeBlois

(Perhaps) $\gamma \in \text{Symm}(\mathcal{T}([1, 5])) < \text{Comm}(\Gamma)$. $\gamma(V_1) \neq V_i \ (i = 1, 2)$. Thus $\gamma \notin N(\Gamma)$

2019/5/23 32 / 33

Thank you very much. (ご清聴ありがとうございました.)