On quantum representation of knots via braided Hopf algebra

Jun Murakami (joint with Roland van der Veen) May 15, 2020

Waseda University

- 1. Wirtinger presentation for closed braid
- 2. SL(2) representation space
- 3. Braided Hopf algebra
- 4. Representation space from a braided Hopf algebra
- 5. Braided SL(2)

Problems

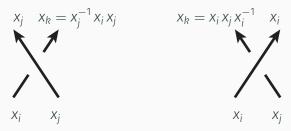
1. Wirtinger presentation for closed braid

Wirtinger presentation

Let *K* be a knot in S^3 and *D* be its diagram. Then the fundamental group $\pi_1(S^3 \setminus K)$ of the complement of *K* has the following presentation.

$$\pi_1(S^3 \setminus K) = \langle x_1, x_2, \cdots, x_n \mid |r_1, r_2, \cdots, r_n \rangle$$

where *n* is the number of crossings of *D*, the generators x_1, \dots, x_n corresponds to the overpasses of *D* and r_i is the relation coming from the *i*-th crossing as follows.



Every knot can be expressed as a closed braid. For a knot K, let $b \in B_n$ be a braid whose closure is isotopic to K. Let y_1, y_2, \dots, y_n be elements of $\pi_1(S^3 \setminus K)$ corresponding to the overpasses at the bottom (and the top) of b. By applying the relations of the Wirtinger presentation at every crossings from bottom to top, we get $\Phi_1(y_1, \dots, y_n), \dots, \Phi_n(y_1, \dots, y_n)$ at the top of b, and the Wirtinger presentation is equivalent to

$$\pi_1(S^3 \setminus K) = \langle y_1, \cdots, y_n \mid y_1 = \Phi_1(y_1, \cdots, y_n), \cdots, y_n = \Phi_n(y_1, \cdots, y_n) \rangle.$$

2. SL(2) representation space

SL(2) representation of $\pi_1(S^3 \setminus K)$

An SL(2) representation ρ of $\pi_1(S^3 \setminus K)$ is determined by $\rho(y_1)$, ..., $\rho(y_n) \in SL(2)$ satisfying

> $\Phi_1(\rho(y_1), \cdots, \rho(y_n)) = \rho(y_1),$ $\cdots,$ $\Phi_n(\rho(y_1), \cdots, \rho(y_n)) = \rho(y_n).$

Let I_b be the ideal in the tensor $\mathbb{C}[SL(2)]^{\otimes n}$ of the coordinate space of SL(2) generated by the above relations.

Theorem

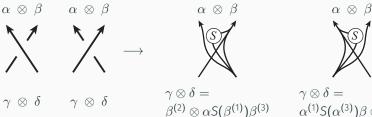
The quotient $\mathbb{C}[SL(2)]^{\otimes n}/I_b$ does not depend on the presentation of $\pi_1(S^3 \setminus K)$ and is called **the** SL(2) **representation space** of $\pi_1(S^3 \setminus K)$.

 $\mathbb{C}[SL(2)]$ is generated by *a*, *b*, *c*, *d* representing $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

 $\mathbb{C}[SL(2)]$ has natural Hopf algebra structure coming from the group structure of SL(2).

 $\Delta : \mathbb{C}[\mathrm{SL}(2)] \to \mathbb{C}[\mathrm{SL}(2)] \otimes \mathbb{C}[\mathrm{SL}(2)]$ with $\Delta(f)(x \otimes y) = f(xy)$, $S : \mathbb{C}[SL(2)] \to \mathbb{C}[SL(2)]$ with $S(f)(x) = f(x^{-1})$, $\varepsilon : \mathbb{C}[\mathrm{SL}(2)] \to \mathbb{C}$ with $\varepsilon(f) = f(1)$.

Let $\Phi^* : \mathbb{C}[SL(2)]^{\otimes n} \to \mathbb{C}[SL(2)]^{\otimes n}$ be the dual map of $\Phi = (\Phi_1, \cdots, \Phi_n)$. At a crossing, Φ^* acts as follows.

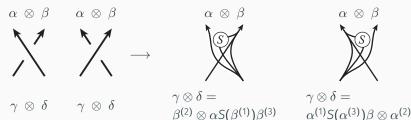


 $\alpha^{(1)}S(\alpha^{(3)})\beta \otimes \alpha^{(2)}$

5

Hopf algebra interpretation 2

Let $\Phi^* : \mathbb{C}[SL(2)]^{\otimes n} \to \mathbb{C}[SL(2)]^{\otimes n}$ be the dual map of $\Phi = (\Phi_1, \cdots, \Phi_n)$. At a crossing, Φ^* acts as follows.



Theorem

Let J_b be the ideal generated by the image of Φ^* – id, then J_b is equal to the previous ideal I_b and $\mathbb{C}[SL(2)]^{\otimes n}/J_b$ is the SL(2) representation space of $\pi_1(S^3 \setminus K)$.

Remark. This construction can be generalized to any commutative Hopf algebra.

3. Braided Hopf algebra

Braided Hopf algebra

Definition

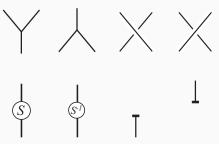
An algebra A is called **a braided Hopf algebra** if it is equipped with following linear maps satisfying the relations given in the next picture.

multiplication

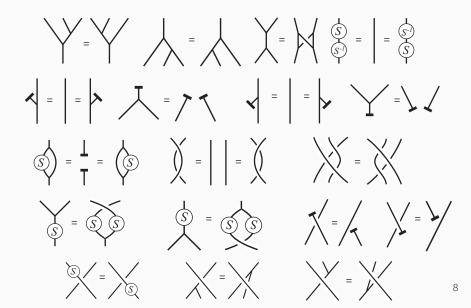
 $\mu: \mathsf{A}\otimes\mathsf{A} o \mathsf{A}$,

comultiplication

 $\Delta : A \to A \otimes A,$ unit 1: $k \to A,$ counit $\varepsilon : A \to k,$ antipode S: $A \to A,$ braiding $\Psi : A \otimes A \to$ $A \otimes A.$



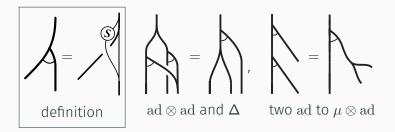
Relations of a braided Hopf algebra



Definition The adjoint coaction $ad : A \to A \otimes A$ is defined by

$$\operatorname{ad}(x) = (id \otimes \mu)(\Psi \otimes id)(S \otimes \Delta)\Delta(x).$$

The adjoint coaction ad satisfies the following.

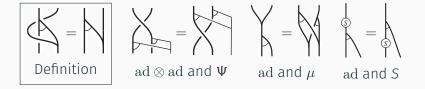


Braided commutativity is a weakened version of the commutativity.

Definition A braided Hopf algebra A is **braided commutative** if it satisfies

 $(id \otimes \mu)(\Psi \otimes id)(id \otimes ad)\Psi = (id \otimes \mu)(ad \otimes id).$

If A is braided commutative, the following relations hold.



4. Representation space from a braided Hopf algebra

Braid group representation through a braided Hopf algebra

Let A be a braided Hopf algebra which may not be braided commutative. Here we construct a representation of the braid group B_n on $A^{\otimes n}$ associated with the Wirtinger presentation. Let R and R^{-1} be elements of $\text{End}(A^{\otimes 2})$ given by the following.

$$R = \bigwedge R^{-1} = \bigwedge^{S^2}$$

For $\sigma_i^{\pm 1} \in B_n$, let $\rho(\sigma_i) = id^{\otimes (i1)} \otimes R \otimes id^{\otimes (n-i-1)}$ and $\rho(\sigma_i^{-1}) = id^{\otimes (i-1)} \otimes R^{-1} \otimes id^{\otimes (n-i-1)}$.

Theorem

The above ρ defined for generators of B_n extends to a representation of B_n in End($A^{\otimes n}$).

S. Woronowicz, Solutions of the braid equation related to a Hopf algebra. Lett. Math. Phys. **23** (1991), 143–145. (for usual Hopf algebra)

From now on, we assume that the braided Hopf algebra A is **braided commutative**. For $b \in B_n$, let $\rho(b) \in \text{End}(A^{\otimes n})$ be the representation of b defined as above. Let I_b be the left ideal of $A^{\otimes n}$ generated by the image of the map $\rho(b) - id^{\otimes n}$.

Proposition The left ideal I_b is a two-sided ideal.

This proposition comes from the following lemma.

Lemma For $\mathbf{x}, \mathbf{y} \in A$, we have

$$\rho(b)\mu(\mathbf{x}\otimes\mathbf{y})=\mu(\rho(b)\mathbf{x}\otimes\rho(b)\mathbf{y}).$$

This is proved by using the braided commutativity.

Generators of Ib

Lemma For $\mathbf{x}, \mathbf{y} \in A$, we have

$$\rho(b)\mu(\mathbf{x}\otimes\mathbf{y})=\mu(\rho(b)\mathbf{x}\otimes\rho(b)\mathbf{y}).$$

Theorem

Let X be a set of generators of A and $\mathbf{x}_i = 1^{\otimes (i-1)} \otimes x \otimes 1^{\otimes (n-i)}$ for $x \in X$. Then the ideal I_b in $A^{\otimes n}$ is generated by

$$\{\rho(b)\mathbf{x}_i - \mathbf{x}_i \mid \mathbf{x} \in X, i = 1, \cdots, n-1\}.$$

PROOF. Since $d(b) \mu_n(\mathbf{x} \otimes \mathbf{y}) - \mu_n(\mathbf{x} \otimes \mathbf{y})$ $= \mu_n \Big(d(b) \mathbf{x} \otimes (d(b) \mathbf{y} - \mathbf{y}) \Big) + \mu_n \Big((d(b) \mathbf{x} - \mathbf{x}) \otimes \mathbf{y} \Big).$ and $d(b) \mathbf{x} - \mathbf{x}, d(b) \mathbf{y} - \mathbf{y} \in I_b.$ For a *n* braid *b*, let $A_b = A^{\otimes n}/I_b$.

Main Theorem

If the closures of two braids $b_1 \in B_{n_1}$ and $b_2 \in B_{n_2}$ are isotopic, then A_{b_1} and A_{b_2} are isomorphic algebras. Moreover, A_{b_1} and A_{b_2} are isomorphic A-comodules with adjoint coaction. In other words, A_b is an invariant of the knot (or link) \hat{b} , which is the closure of b.

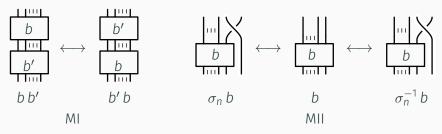
Definition The quotient algebra $A_b = A^{\otimes n}/I_b$ is called **the** A **representation space** of the closure \hat{b} .

Theorem

The closures of two braids $b_1 \in B_{n_1}$ and $b_2 \in B_{n_2}$ are isotopic in S^3 if and only if there is a sequence of the following two types of moves connecting b_1 to b_2 .

Definition

These moves are called **the Markov moves** and such b_1 and b_2 are called **Markov equivalent**.



The main theorem is proved by showing the invariancde under MI and MII.

Equivalent pair

Definition

For $b \in B_n$ we present $I_{\rho(b)}$ by $\rho(b) \sim \rho(1)$. Similarly, for two diagrams d_1, d_2 representing elements of Hom $(A^{otimesm}, A^{\otimes n})$, $d_1 \sim d_2$ present a two-sided ideal I_{d_1,d_2} in $A^{\times n}$ generated by

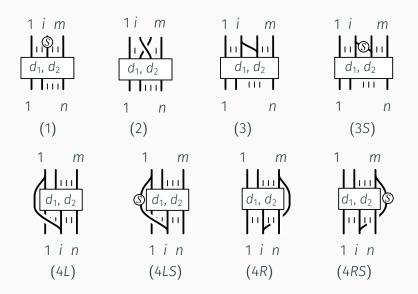
$$d_1(x_1 \otimes \cdots \otimes x_m) - d_2(x_1 \otimes \cdots \otimes x_m)$$

for $x_1, \dots, x_m \in A$. Such d_1 and d_2 are called **the equivalent pair** of diagrams corresponding to the two-sided ideal I_{d_1,d_2} and the quotient algebra $A^{\otimes n}/I_{d_1,d_2}$.

Lemma

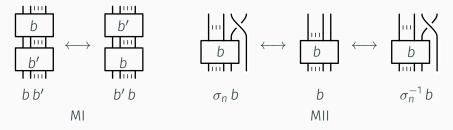
Let $d_1 \sim d_2$ be an equivalent pair and let $d_1 \sim d_2$ be the equivalent pair where d_1 and d_2 are obtained from d_1 and d_2 respectively by one of the following operations (1), (2), (3), (3S), (4L), (4LS), (4R), (4RS) illustrated in the following. Then the corresponding ideals I_{d_1,d_2} and I_{d_1,d_2} are equal.

Operations corresponding to the Tieze transformations



Invariance under Markov moves

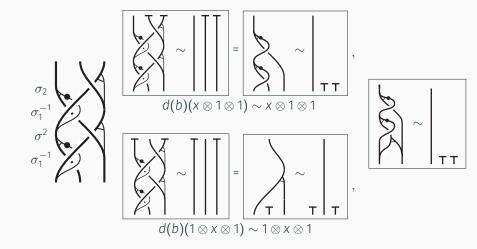
Markov moves



PROOF OF THE MAINTHEOREM

- To prove invariance under MI is rather easy.
- Invariance under MII is proved by using the above lemma.

Example: Figure-eight knot



5. Braided SL(2)

Braided SL(2)

Definition

A braided SL(2) is a one-parameter deformation of $\mathbb{C}[SL(2)]$ defined by the following. It is denoted by BSL(2).

ba = tab, $ca = t^{-1}ac$, da = ad, $db = bd + (1 - t^{-1})ab$, $cd = dc + (1 - t^{-1})ca$, $bc = cb + (1 - t^{-1})a(d - a)$, ad - tcb = 1, $\Delta(a) = a \otimes a + b \otimes c, \quad \Delta(b) = a \otimes b + b \otimes d, \quad \Delta(c) = c \otimes a + d \otimes c,$ $\Delta(d) = c \otimes b + d \otimes d, \quad S(a) = (1 - t)a + td \quad S(b) = -tb, \quad S(c) = -tc,$ S(d) = a, $\varepsilon(a) = 1$, $\varepsilon(b) = 0$, $\varepsilon(c) = 0$, $\varepsilon(d) = 1$, $\Psi(x \otimes 1) = 1 \otimes x, \ \Psi(1 \otimes x) = x \otimes 1, \ \Psi(a \otimes a) = a \otimes a + (1 - t) \ b \otimes c, \ \Psi(a \otimes b) = b \otimes a,$ $\Psi(a \otimes c) = c \otimes a + (1-t)(d-a) \otimes c, \ \Psi(a \otimes d) = d \otimes a + (1-t^{-1})b \otimes c,$ $\Psi(b \otimes a) = a \otimes b + (1 - t) b \otimes (d - a), \ \Psi(b \otimes b) = t b \otimes b, \ \Psi(d \otimes b) = b \otimes d,$ $\Psi(b \otimes c) = t^{-1} c \otimes b + (1+t)(1-t^{-1})^2 b \otimes c - (1-t^{-1})(d-a) \otimes (d-a),$ $\Psi(b \otimes d) = d \otimes b + (1 - t^{-1}) b \otimes (d - a), \ \Psi(c \otimes a) = a \otimes c, \ \Psi(c \otimes b) = t^{-1} b \otimes c,$ $\Psi(c \otimes c) = t c \otimes c, \ \Psi(c \otimes d) = d \otimes c, \ \Psi(d \otimes a) = a \otimes d + (1 - t^{-1}) b \otimes c,$ $\Psi(d \otimes c) = c \otimes d + (1 - t^{-1})(d - a) \otimes c, \ \Psi(d \otimes d) = d \otimes d - t^{-1}(1 - t^{-1}) b \otimes c.$

Theorem

The braided Hopf algebra BSL(2) is braided commutative.

Since BSL(2) is an example of a braided commutative braided Hopf algebra, we have BSL(2) representations of *K*, which is BSL(2)^{$\otimes n$}/ $I_{d(b)}$. We also call it **the space of quantized** SL(2, \mathbb{C}) **representations** of *K*. Since BSL(2) is Noetherian, the ideal $I_{d(b)}$ is finitely generated.

Problems

Construct following three objects and give a natural relation among them.

- 1. Quantum character variety
- 2. Quantum A polynomial
- 3. Quantum volume potential function