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1 Invariants of high-dimensional long knots from counting
diagrams

(David Leturcq)

Let n be a positive integer. When n ≥ 3 is odd, Bott [1], and then Cattaneo
and Rossi [2] defined an invariant (Zk)k∈N\{0,1} for long knots, which are embeddings
Rn ↪→ Rn+2 with a constrained behaviour outside the unit ball.

Let us briefly explain their original definition: look at connected oriented graphs
Γ =

(
V (Γ), E(Γ)

)
with two kinds of vertices and two kinds of edges, such that any

vertex is as in Figure 1.
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Figure 1: The five possible behaviors near a vertex of a BCR diagram

Filled circles are called internal vertices, white circles are called external vertices,
plain edges are called internal edges, and dashed edges are called external edges. We
denote their respective sets as Vi(Γ), Ve(Γ), Ei(Γ) and Ee(Γ). Such graphs have an
even number of vertices. The degree of Γ is the integer deg(Γ) = 1

2
Card(V (Γ)). Let

us denote n(e) the integer n− 1 if e is an internal edge, and n+1 if e is an external
edge.

Given a diagram Γ and a long embedding ψ, we can set

CΓ(ψ) =
{
c : V (Γ) ↪→ Rn+2

∣∣ c|V (Γ) = ψ ◦ ci for some map ci : Vi(Γ) ↪→ Rn
}
.

Elements of this space are called configurations and are the data of pairwise distinct
points of Rn+2 for any vertex of Γ, such that the points associated to internal vertices
lie in ψ(Rn). On such a space, for any edge e, we define

pe : CΓ(ψ) −→ Sn(e)

c 7−→


c(w)−c(v)

||c(w)−c(v)|| if e is an external edge from v to w,

ci(w)−ci(v)
||ci(w)−ci(v)|| if e is an internal edge from v to w.

The Bott-Cattaneo-Rossi invariant Zk(ψ) is defined as

Zk(ψ) =
∑
Γ∈Gk

1

Card(Aut(Γ))

∫
CΓ(ψ)

∧
e∈E(Γ)

pe
∗(ωn(e)),

where ωn(e) is the SO
(
n(e)+1

)
-invariant form on Sn(e) with total volume one, where

Gk is the set of connected diagrams with degree k such that any trivalent vertex is
adjacent to one univalent vertex, and where Aut(Γ) denotes the automorphism group
of the oriented graph Γ that map an internal/external edge/vertex to an edge/vertex
of same nature.
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The result of Bott, Cattaneo, and Rossi is that such a formula is well-defined (the
integrals are convergent), and that Zk is an isotopy invariant. In [12], Watanabe
proved that these invariants are related to Alexander polynomials for long ribbon
knots, using the finite type theory defined by Habiro, Kanenobu and Shima in
[3]. Because it is obtained from finite type invariant theory methods, this formula
contains some indeterminacies.

In [5, 6], we defined some more flexible generalization of these invariants, and we
use this flexible setting to compute the invariants Zk in terms of linking numbers of
some surface whose boundary is the knot. Furthermore, this extends the definition
to other manifolds, and also to even dimensions and dimension one.

When n ̸≡ 3 mod 4 (and for some class of knots when n ≡ 3 mod 4), this
formula yields

∑
k≥2

Zk(ψ)h
k = (−1)n

n∑
d=1

Ln
(
∆d,ψ(e

h)
)

(1)

for any long knot ψ : Rn ↪→ Rn+2, where ∆d,ψ(t) is the d-th Alexander polynomial
as defined by Levine in [7].

Question 1.1 (D. Leturcq). Does the above formula extend to all long knots ψ : Rn ↪→
Rn+2 when n ≡ 3 mod 4 ?

We can also try to look to more general diagrams than those of Gk. For simplicity,
let us now assume n is odd. For a diagram Γ with its vertices as in Figure 1, a
vertex-orientation is the data of a cyclic order on the three half-edges adjacent to
each trivalent vertex. We represent such an orientation by the counter-clockwise
order in the plane. We define the Q-vector space A spanned by the equivalence
classes of vertex-oriented diagrams without loops with vertices as in Figure 1, up to
the relations of Figure 2, and the relations [Γ′] = (−1)a+b[Γ], where [Γ] only differ
by the vertex-orientation of a vertices, the orientation of b internal edges, and the
orientation of any external edges. The diagrams in Figure 1 are vertex-oriented, and
the orientation of the internal edges common to all diagrams of a given relation are
not depicted.

For integers (k, b) we let Gk,b be the set of connected diagrams with degree k and
first Betti number b (which is equivalent to Card(E(Γ)) = 2k + b − 1). This set is
non-empty if and only if 0 ≤ b ≤ k.

The spaceA naturally splits inA =
⊕

0≤b≤k
Ak,b, whereAk,b is the subspace spanned

by the diagrams of Gk,b.

Question 1.2 (D. Leturcq). Can we compute the dimension of Ak,b ? At least, can
we determine exactly when this subspace is non zero ?

Let K denote the space of long knots ψ : Rn ↪→ Rn+2. Instead of looking to
CΓ(ψ) for some specific ψ, we can define a fiber space CΓ → K whose fiber above ψ
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Figure 2: Relations on diagrams
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is CΓ(ψ). The maps pe above extends to this infinite-dimensional space, and we set

Ωk,b =
∑

Γ∈G′
k,b

1

Card(Aut(Γ))

∫
CΓ(ψ)

∧
e∈E(Γ)

pe
∗(ωn(e))[Γ] ∈ Ak,b,

where [Γ] denotes the class of Γ in A. This formula still converges, and it defines an
element of Ω(b−1)(n−1)(K;Ak,b).

Note that when b = 0, the space Ak,b is isomorphic to Q, and the cochain Ωk,1

identifies with Zk. The invariance of Zk corresponds to the fact that Ωk,1 is a
cocycle. Following a question of T. Watanabe during our stay in Matsue in 2019,
we conjecture the following.

Conjecture 1.3 (D. Leturcq). When n ≥ 1 is odd, Ωk,b is a cocycle on K.

The proof of this conjecture would rely on usual arguments on annulation of faces of
configuration spaces, and the principal faces are ruled out by the relations definingA.
For lower values of (k, b), all the other faces vanish. However, for bigger diagrams,
we may need to add some relations in the definition of A, or to use appropriate
propagators rather than pull-backs of volume forms on the spheres.

In order to determine when this cocycle is non-trivial, it would be necessary to
know when Ak,b is non zero in general. The space A resembles a lot the space AJ of
“Jacobi diagrams” used for the Kontsevich integral or the perturbative expansion of
Chern-Simons theory. Applying a linear form w to these diagram-valued invariants
yields a numerical invariant and we can recover by this method all the Vassiliev
invariants.

Moreover, one can associate a representation ρ of a semi-simple Lie algebra with
a linear form wρ : A → Q to obtain explicit examples. This recovers already known
invariants, as the Jones polynomial. It is natural to ask if the high-dimensional
analogue Ωk,b satisfies similar properties.

Question 1.4 (D. Leturcq). Do we know what cocycles are obtained after applying
linear forms on A to Ωk,b ?

Is there any natural algebraic structure that can yield some (non-trivial) lin-
ear maps w : A → Q ? If yes, can we identify the obtained cocycle w ◦ Ωk,b ∈
H(b−1)(n−1)(K;Q) ?

Question 1.5 (D. Leturcq). Can we compute the cocycles Ωk,b using appropriate
propagators, in order to get a formula similar to Formula (1) ?

When b = 1, Sakai and Watanabe [10] studied such diagrams in order to define
cocycles on the space of long embeddings Rj ↪→ Rn, when n− j ≥ 2. The relations
between diagrams depend on the parity of the dimensions j and n.

Problem 1.6 (D. Leturcq). Define an analogue of A when n is even, and j ̸= n−2.
Extend Conjecture 1.3, Questions 1.4 and 1.5 to long embeddings Rj ↪→ Rn.
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2 The representations of stated skein algebras on surfaces

(Julien Korinman)2

For amarked surface Σ = (Σ,A) and a complex numberA1/2 ∈ C∗, the (Kauffman-
bracket) stated skein algebra SA(Σ) was introduced by Bonahon-Wong and Lê and is
a generalisation of Przytycki-Turaev’s skein algebra. A reduced version SredA (Σ) was
also introduced by Costantino-Lê. Skein algebras appear in Topological Quantum
Field Theories through their finite dimensional representations. Such a representa-
tion exists if and only if the parameter A is a root of unity. We state here a list of
open questions/problems towards the resolution of the following:

Problem 2.1 (J. Korinman). Classify all finite dimensional weight representations
of stated skein algebras and their reduced versions when A is a root of unity of odd
order.

Here a weight representation means a representation which is semi-simple as a mod-
ule over the center of SA(Σ). The two conditions of been “weight” and that the
order of A is odd are taken here for simplicity. For now on, we fix a root of unity
A1/2 such that its square A has odd order N .

Let Z denote the center of SA(Σ) and write X̂ (Σ) := Specm (Z). The Chebyshev-
Frobenius morphism ChA : S+1(Σ) → Z is finite and induces a finite branched

covering π : X̂ (Σ) → Specm(S+1(Σ)) ∼= XSL2(Σ) over the relative SL2 charac-
ter variety. An indecomposable weight representation ρ : SA(Σ) → End(V ) sends

central elements to scalar operators, so induces maximal ideals m̂ρ ∈ X̂ (Σ) and
mρ = π(m̂ρ) ∈ XSL2(Σ). mρ is called the classical shadow of ρ which factorizes
through the finite dimensional algebras:

SA(Σ)mρ := SA(Σ)
/
ChA(mρ)SA(Σ) and SA(Σ)m̂ρ := SA(Σ)

/
m̂ρSA(Σ) .

Drozd classified finite dimensional C algebras into three families: the algebras
with finite, tame and wild representation type. For an algebra A with wild repre-
sentation type, the problem of classifying all indecomposable A-module is undecid-
able (the word problem for finite presentation groups can be embedded into that
problem), so Problem 2.1 might be undecidable as well (it is the case for the bigon)
and we need to be less ambitious: let us try to classify all finite dimensional inde-
composable representation ρ whose classical shadow is such that SA(Σ)mρ has not
wild type representation.

Let D denote the PI-dimension of SA(Σ). The Azumaya locus of SA(Σ) is

AL =
{
x̂ ∈ X̂ (Σ)

∣∣ SA(Σ)x̂ ∼= MatD(C)
}
.

The fully Azumaya locus is the image FAL := π(AL) ⊂ XSL2(Σ). An important
result is the

2Department of Mathematics, Faculty of Science and Engineering, Waseda University,3-4-1 Ohkubo, Shinjuku-
ku, Tokyo, 169-8555, Japan

Email: julien.korinman@gmail.com
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Unicity representation theorem: The Azumaya locus is dense in X̂ (Σ). Therefore
the fully Azumaya locus is dense as well. All the previous discussion extends word-
by-word to reduced stated skein algebras.

Problem 2.2 (J. Korinman). Compute the fully Azumaya loci of SA(Σ) and SredA (Σ).

This problem has been solved by Brown-Goodearl for the bigon and by Ganev-
Jordan-Safranov for the marked surface Σ0

g,0 made of a genus g surface with one
boundary component and exactly one boundary arc. It remains open for other
marked surfaces. When m belongs to the fully Azumaya locus, a theorem of Brown-
Gordon permits to determine SA(Σ)m explicitly, thus the classification of indecom-
posable weight representations over the fully Azumaya locus is easy, once we are
able to compute it. A second powerful tool is Brown-Gordon’s Poisson orders the-
ory: it implies that if m and m′ belong to the same symplectic leaf of XSL2(Σ), then
SA(Σ)m ∼= SA(Σ)m′ . We can do better: the group (C∗)A acts on XSL2(Σ), thus
on the symplectic leaves. Call equivariant symplectic leaves the (C∗)A-orbits of the
symplectic leaves. If m and m′ belong to the same equivariant symplectic leaf, then
SA(Σ)m ∼= SA(Σ)m′ .

Problem 2.3 (J. Korinman).

(1) Classify the equivariant symplectic leaves of XSL2(Σ).

(2) For each leaf F , choose a representative m ∈ F and determine the representa-
tion type of SA(Σ)m. If it is not wild, classify all its finite dimensional inde-
composable representations.

This problem was solved for the bigon by Brown-Gordon and for the algebra SredA (D1)
by the author and remains open for every other marked surfaces. The computation of
the symplectic leaves of XSL2(Σ

0
g,0) was done by Ganev-Jordan-Safranov who found

that one leaf is open dense. The computation of the symplectic leaves of XSL2(Σg, ∅)
for a closed genus g ≥ 2 surface is simple: the smooth locus made of the classes
of irreducible representations r : π1(Σg, v) → SL2 is symplectic, the locus made of
the classes of diagonal representations which are not scalars is symplectic and each
singleton {r0}, for r0 : π1(Σg, v) → ±12 scalar, is a symplectic leaf. Note that when
a symplectic leaf is dense, then it is included in the fully Azumaya locus, therefore
(Ganev-Jordan-Safranov) the smooth locus of XSL2(Σg, ∅) and the open dense leaf
of XSL2(Σ

0
g,0) both are included in the fully Azumaya loci (which is equal to the

Azumaya loci in these cases). An important remaining question is the

Question 2.4 (J. Korinman). For a closed genus g ≥ 2 surface, is the locus of
diagonal (non scalar) representations included in the Azumaya locus ?

Note that if the class of one such diagonal representation is in the Azumaya locus,
then all of them are. In addition to these very general theorems, there exist three
concrete families of representations for stated skein algebras which are:

(1) The Witten-Reshetikhin-Turaev representations ρWRT coming from modular
TQFTs at odd roots of unity. They are representations of skein algebras of
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unmarked surfaces and are irreducible. For closed surfaces, they have classical
shadow the class of a central representation and their dimension is strictly
smaller than the PI-dimension N3g−3. We can deduce from their existence that
the scalar representations do not belong to the Azumaya locus of SA(Σg, ∅).

(2) The Blanchet-Costantino-Geer-Patureau-Mirand representations ρBCGP com-
ing from non semi-simple TQFTs at odd roots of unity. They are representa-
tions of skein algebras of unmarked surfaces and have their dimension equal
to the PI-dimension of the skein algebra. For closed surfaces, their classical
shadows are the class of diagonal and scalar representations.

(3) The Bonahon-Wong or quantum Teichmüller representations ρBW defined us-
ing the quantum trace. They are representations of the reduced stated skein
algebras of arbitrary marked surfaces and their dimension coincide with the
PI-dimension of the corresponding reduced stated skein algebra, except maybe
for closed surfaces and for scalar classical shadows in which case it is only
known that their dimension is ≤ N3g−3. For non-closed surfaces, the set of
their classical shadows is dense in XSL2(Σ) and it is equal to XSL2(Σ) for closed
surfaces.

The quantum Teichmüller representations are defined using quantum traces start-
ing from irreducible representations of quantum tori and there might be several such
representations inducing the same character over the center of SA(Σ) without been
isomorphic.

Question 2.5 (J. Korinman).

(1) Are the representations ρBCGP with non scalar classical shadow irreducible ?
Indecomposable ? Projective ?

(2) Are the representation ρBW with non scalar classical shadow irreducible ? In-
decomposable ? Projective ? Are they isomorphic to the representations ρBCGP

which has the same shadow ?

(3) Given ρBW , ρ′BW two quantum Teichmüller representations which induce the
same character over the center of SA(Σ), are they isomorphic ?

(4) For ρWRT , ρBW , ρBCGP representations of the skein algebra of a genus g ≥ 2
closed surface all having the same classical shadow which is a scalar representa-
tion, are these three representations related ? Are ρBW and ρBCGP isomorphic
? Is ρWRT a sub-representation of one of them ? What is the dimension of
ρBW ?

The third item of Question 2.5 was proved to be true when Σ = Dn is a genus 0
surface with n+1 boundary components and two boundary arcs in one component.
The author deduced from this fact families of projective representation of the braid
groups related to the ADO and Kashaev invariants. If, as expected, it is true in
general, then one would obtain families of finite dimensional projective representa-
tions of the mapping class groups and the Torelli groups. Concerning the first and
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second item, note that if one finds a representation ρBW or ρBCGP with diagonal
classical shadow which is irreducible, then we would have proved that all diagonal
representations are in the Azumaya locus (so we would have solved Question 2.4)
and that two representations ρBW and ρBCGP with the same diagonal shadow are
isomorphic.

3 On the additivity of geometric invariants under 1-connected
sum of handlebody-knots

(Tomo Murao)3

A handlebody-knot is a handlebody embedded in the 3-sphere S3. A handlebody-
knot is trivial if its exterior is a handlebody. Let B1 and B2 be 3-balls in S

3 such that
B1 ∪B2 = S3 and B1 ∩B2 = ∂B1 = ∂B2. Let Hi be a genus gi handlebody-knot in
Bi for i = 1, 2. If H1∩H2 is a disk, then H1∪H2 is a genus g1+g2 handlebody-knot
in S3. We call it the 1-connected sum of H1 and H2 and denote it by H1#1H2 (see
Figure 3). The handlebody-knot H1#1H2 depends only on the handlebody-knots
H1 and H2. A diagram of a handlebody-knot is a diagram of a spatial trivalent
graph whose regular neighborhood is the handlebody-knot, where a spatial trivalent
graph is a finite trivalent graph embedded in S3. In this definition, a trivalent graph
may be a circle.

Figure 3: 1-connected sum of handlebody-knots

We introduce some geometric invariants of handlebody-knots. LetH be a handlebody-
knot. The crossing number c(H) of H is the minimal number of crossings in all
diagrams of H. The unknotting number u(H) of H is the minimal number of
crossing changes which convert H into the trivial handlebody-knot [4]. The tun-
nel number t(H) of H is the minimal number of mutually disjoint arcs α1, . . . , αn
properly embedded in E(H) such that E(H ∪ α1 ∪ · · · ∪ αn) is homeomorphic to
a handlebody, where E(·) denotes its exterior. The cutting number cut(H) of H
is the minimal number of mutually disjoint meridian disks ∆1, . . . ,∆n of H such
that E(H −

∪n
i=1N(∆i)) is homeomorphic to a handlebody, where N(·) denotes its

regular neighborhood [8].

Remark. It is known that the additivity of tunnel number under 1-connected sum of

3Waseda University
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handlebody-knots holds. That is, for any handlebody-knots H1 and H2, it follows
t(H1#1H2) = t(H1) + t(H2).

Remark. It is known that the additivity of unknotting number under 1-connected
sum of handlebody-knots does not hold. In particular, for any positive integer n,
there exist handlebody-knots H1 and H2 such that u(H1#1H2) = u(H1)+u(H2)−n.

Question 3.1 (T. Murao). Does the equality c(H1#1H2) = c(H1) + c(H2) hold for
any handlebody-knots H1 and H2?

Question 3.2 (T. Murao). Does the equality cut(H1#1H2) = cut(H1) + cut(H2)
hold for any handlebody-knots H1 and H2?

4 Quantum character variety of knots

(Jun Murakmai)

Question 4.1 (J. Murakmai). Does the quantum character variety always split into
abelian factor(s) and non-abelian factor(s) ?

The quantum character varieties of the trefoil knot, the figure eight knot and White-
head link are all split into two factors. One corresponds to the abelian factor and
another one corresponds to the non-abelian factor of the character variety of the
classical case.

Question 4.2 (J. Murakmai). Is there some knot who has more than two factors
of the quantum character variety?

In classical case, knots with such property are given by Ohtsuki-Riley-Sakuma [9].
In classical case, such example is obtained by finding a epimorphism between 2-
bridge link groups. Here the fundamental group is extended to the bottom tangle
of free arcs, and it is a problem that the epimorphism between link groups can be
extended to this free arcs case, or not.

Question 4.3 (J. Murakmai). Can we construct the quantum A-polynomial of a
knot from the quantum character variety?

Explain the longitude and its parallels in terms of the generators of the skein algebra
of the punctured disk, and eliminate the traces corresponding to the products of
meridians, then we may get the relation between longitude and meridian. After
obtaining such relation, substitute M + M−1 and L + L−1 for the meridian and
longitude, where M and L are the generators of the quantum torus, then it must be
a multiple of quantum A-polynomial and the recurrence polynomial of the colored
Jones polynomial. But the polynomial obtained from the quantum character variety
may has some extra factors.

Question 4.4 (J. Murakmai). What is the geometry of the quantum character va-
riety?
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For some knots, geometric description of the character variety is explained, for
example, in [11]. In the case of the figure eight knot, the character variety is given by
a commutative algebra, but the boundary of the knot complement has a structure
of torus, and this structure is generalized to quantum torus in skein theory. So
the quantum character variety may have some good structure concerning with this
quantum torus.
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