Intelligence of Low-dimensional Topology at RIMS Kyoto University

Smooth homotopy 4-sphere

Akio KAWAUCHI Osaka City University Advanced ematical Institute

May 19, 2021

This talk is an explanation of the following:

Theorem A.

Every smooth homotopy 4-sphere is diffeomorphic to the 4-sphere.

in the paper:

A. Kawauchi, Smooth homotopy 4-sphere. arxiv:1911.11904v4

A <u>homotopy 4-sphere</u> is a smooth 4-manifold M which is homotopy equivalent to the 4-sphere S⁴.

A <u>homotopy 4-ball</u> is a 1-punctured manifold M⁽⁰⁾ of a homotopy 4-sphere M.

The stable 4-sphere of genus n is:

 $\Sigma = \Sigma (n) = S^4 \# n(S^2 \times S^2) = S^4 \#_{i=1}^n S^2 \times S^2_i$.

<u>Fact</u>: The stable 4-sphere Σ of genus n is the double branched covering space S⁴(F)₂ of S⁴ branched along a trivial surface F of genus n.

An <u>orthogonal 2-sphere pair</u> or simply <u>anO2-sphere pair</u> of Σ is a pair (S,S') of 2-spheres S and S' embedded in Σ meeting transversely at a point with the intersection numbers Int(S,S)=Int(S',S')=0 and Int(S,S')=+1. A <u>pseudo-O2-sphere basis</u> of Σ of genus n is the system (S_{*},S'_{*}) of n mutually disjoint O2-sphere pairs (S_i,S'_i) (i=1,2,…, n) in Σ . Let $N(S_i,S'_i)$ be a regular neighborhood of the union $S_i \cup S'_i$ of the O2-sphere pair (S_i,S'_i) in Σ such that $N(S_i,S'_i)$ $(i=1,2,\cdots,n)$ are mutually disjoint.

The <u>region</u> of a pseudo-O2-sphere basis (S_*,S'_*) in Σ of genus n is a smooth 4-manifold $\Omega(S_*,S'_*)$ in Σ obtained from the 4-manifolds $N(S_i,S'_i)$ (i=1,2,..., n) by connecting them by mutually disjoint 1-handles h_i^1 (j=1,2,..., n-1) in Σ .

Since Σ is a simply connected 4-manifold, the region $\Omega(S_*,S'_*)$ in Σ does not depend on any choices of h_j^1 (j=1,2, …, n-1) and is uniquely determined by the pseudo-O2-sphere basis (S_{*},S'_{*}) up to isotopies of Σ .

The <u>residual region</u> $\Omega^{c}(S_{*},S'_{*}) = cl(\Sigma - \Omega(S_{*},S'_{*}))$ of the region $\Omega(S_{*},S'_{*})$ in Σ is always a homotopy 4-ball.

An <u>O2-sphere basis</u> of Σ is a pseudo-O2-sphere basis (S_{*},S'_{*}) of Σ such that the residual region $\Omega^{c}(S_{*},S'_{*})$ is diffeomorphic to the 4-ball. The following result is a main result.

<u>Theorem B</u>. For any two pseudo-O2-sphere bases (R_{*},R'_{*}) and (S_{*},S'_{*}) of Σ , there is an orientation-preserving diffeomorphism h: $\Sigma \rightarrow \Sigma$ sending (R_i,R'_i) to (S_i,S'_i) for all i (i=1,2,...,n).

The stable 4-sphere Σ admits an O2-sphere basis. If (R_*,R'_*) is an O2-sphere basis of Σ and (S_*,S'_*) is the image of (R_*,R'_*) by an orientation-preserving diffeomorphism f: $\Sigma \rightarrow \Sigma$, then (S_*,S'_*) is also an O2-sphere basis. Thus, the following corollary is directly obtained from Theorem B.

<u>Corollary C</u>. Every pseudo-O2-sphere basis of Σ is an O2-sphere basis of Σ .

<u>Theorem A</u>. Every smooth homotopy 4-sphere is diffeomorphic to the 4-sphere.

<u>Proof:</u> Let M be a smooth homotopy 4-sphere . By Wall, it is known that there is an orientation-preserving diffeomorphism $\kappa: M \# \Sigma \rightarrow \Sigma$

for some n. Let $M\#\Sigma$ be the union $M^{(0)} \cup \Sigma^{(0)}$. Corollary C means that the image $\kappa (\Sigma^{(0)})$ is the region $\Omega(S_*,S'_*)$ of an O2-sphere basis (S_*,S'_*) of Σ . Hence $\Omega^c(S_*,S'_*) = \kappa (M^{(0)})$ is a 4-ball and hence $M^{(0)}$ is the 4-ball D⁴. By $\Gamma_4 = 0$ by Cerf or $\pi_0(Diff^+(S^3)) = 0$ by Hatcher, the diffeomorphism $M^{(0)} \to D^4$ extends to a diffeomorphism $M \to S^4$. //

How to prove Theorem B.

Idea: Use the concept of an O2-handle pair in the paper:

- (1) A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link.
- (2) A. Kawauchi, Supplement to ribbonness of a stable-ribbon surface-link, I: A revised proof of uniqueness of an orthogonal 2-handle pair on a surface-link.

Both (1) and (2) are in arxiv:1804.02654v11

Let F be a surface-knot F in S⁴.

An <u>O2-handle pair</u> ($D \times I$, $D' \times I$) on a surface-knot F in S⁴ is a pair of 2-handles $D \times I$, $D' \times I$ on F embedded in S⁴ such that

(i) $D \times I$ and $D' \times I$ meet F only at the attaching annuli $(\partial D) \times I$ and $(\partial D') \times I$,

(ii) ∂ D and ∂ D' meet transversely at just one point q for a core disk pair (D,D') of (D×I, D'×I),

(iii) $(\partial \mathbf{D}) \times \mathbf{I} \cap (\partial \mathbf{D}') \times \mathbf{I}$ is the square $\mathbf{Q} = \{\mathbf{q}\} \times \mathbf{I} \times \mathbf{I}$.

An <u>O2-handle basis</u> of a surface-knot F of genus n in S⁴ is a system $(D_* \times I, D'_* \times I)$ of n mutually disjoint O2-handle pairs $(D_i \times I, D'_i \times I)$ (i=1,2,..., n) on F in S⁴.

Let $p:S^4(F)_2 \rightarrow S^4$ be the double branched covering projection branched along a surface-knot F in S⁴. Let α be the non-trivial covering involution of the double branched covering space S⁴(F)₂.

The preimage $p^{-1}(F)$ in Σ of F which is the fixed point set of α and diffeomorphic to F is also written by the same notation as F in Σ .

The following result is a standard result.

<u>Lifting Lemma.</u>

For a standard O2-handle basis $(D_* \times I, D'_* \times I)$ of a trivial surface-knot F of genus n in S⁴, there is an orientation-preserving diffeomorphism f: S⁴ (F)₂ $\rightarrow \Sigma$ sending the 2-sphere pair system

 $(S(D_*),S(D'_*)) = \{ (S(D_i),S(D'_i)) | i=1,2, ..., n \}$ to the standard O2-sphere basis $(S^2 \times 1_*,1 \times S^2_*)$ of the stable 4-sphere Σ of genus n. In particular, the 2-sphere pair system $(S(D_*),S(D'_*))$ is an O2-sphere basis of Σ . An <u>n-rooted disk family</u> is the triplet (d, d_*, b_*) where d is a disk, d_* is a system of n mutually disjoint disks $d_i(i=1,2,...,n)$ in the interior of d and b_* is a system of n mutually disjoint bands $b_i(i=1,2,...,n)$ in the n-punctured disk $cl(d-d_*)$ such that b_i spans an arc in the loop ∂d_i and an arc in the loop ∂d . Let b'* denote the centerline system of the band system b*.

Rooted family lemma. Let $(D_* \times I, D'_* \times I)$ be a standard O2-handle basis of a trivial surface-knot F of genus n in S⁴, and (d, d_*, b_*) an n-rooted disk family. Then there is an embedding φ :(d, d_{*}, b_{*})×I → (S⁴, D_{*}×I, D'_{*}×I) called a bump embedding such that (1) $F = \partial V$ for the handlebody $V = \varphi(cI(d-d_*) \times I)$ of genus n, (2) there is an identification $\varphi(\mathsf{d}_* \times \mathsf{I}, \mathsf{d}_*) = (\varphi(\mathsf{d}_*) \times \mathsf{I}, \varphi(\mathsf{d}_*)) = (\mathsf{D}_* \times \mathsf{I}, \mathsf{D}_*)$ as 2-handle systems on F, and (3) there is an identification $\boldsymbol{\phi}(\mathbf{b}_* \times \mathbf{I}, \mathbf{b'}_* \times \mathbf{I}) = (\mathbf{D'}_* \times \mathbf{I}, \mathbf{D'}_*)$ as 2-handle systems on F.

For a bump embedding φ :(d, d_{*}, b_{*}) × I → (S⁴, D_{*} × I, D'_{*} × I), there is an embedding $\tilde{\varphi}: d \times I \to S^4(F)_2$ with $p \tilde{\varphi} = \varphi$. The images $\tilde{\varphi}(d_* \times I)$ and $\tilde{\varphi}(b_* \times I)$ are considered as 2-handle systems $\tilde{D}_* \times I$ and $\tilde{D}'_* \times I$ on F in S⁴(F)₂ so that $(\widetilde{D}_* \times I, \widetilde{D}'_* \times I)$ is an O2-handle basis of F in S⁴ (F)₂ with $p(\widetilde{D}_* \times I, \widetilde{D}'_* \times I) = (D_* \times I, D'_* \times I).$ The embedding $\widetilde{\varphi}:(d, d_*, b_*) \times I \rightarrow (S^4(F)_2, \widetilde{D}_* \times I, \widetilde{D}'_* \times I)$ has $p \tilde{\varphi} = \varphi$ and is called a <u>lifting bump embedding</u> of the bump embedding φ . The 3-ball $\tilde{\varphi}(d \times I)$ and the handlebody $\tilde{\varphi}(cI(d-d_*) \times I)$ are

denoted by B and V in $S^4(F)_2$.

The composite embedding

 $\alpha \widetilde{\varphi}: (\mathsf{d}, \mathsf{d}_*, \mathsf{b}_*) \times \mathsf{I} \to (\mathsf{S}^4(\mathsf{F})_2, \alpha \widetilde{\mathsf{D}}_* \times \mathsf{I}, \alpha \widetilde{\mathsf{D}}'_* \times \mathsf{I})$

is another lifting bump embedding of the bump embedding ϕ . Denote

 $\alpha \,\widetilde{\varphi}(d \times I) = \alpha \,(B)$ by \overline{B} and $\alpha \,\widetilde{\varphi}(cI(d-d_*) \times I) = \alpha \,(V)$ by \overline{V} . Then

$$\mathbf{V} \cap \mathbf{V} = \mathbf{B} \cap \mathbf{B} = \mathbf{F} \text{ in } \mathbf{S}^4(\mathbf{F})_2.$$

For an O2-handle basis (D $_* \times I$, D' $_* \times I$) of a trivial surface-knot F in S⁴, denote the lifting O2-handle bases of F in S⁴(F)₂ are denoted as follows:

$$(\widetilde{D}_* \times I, \widetilde{D}'_* \times I)$$
 by $(D_* \times I, D'_* \times I)$, and $(\alpha \widetilde{D}_* \times I, \alpha \widetilde{D}'_* \times I)$ by $(\overline{D}_* \times I, \overline{D}'_* \times I)$.

Note that $S(D_i)=D_i \cup \overline{D}_i$ and $S(D'_i)=D'_i \cup \overline{D}'_i$ are 2-spheres in $S^4(F)_2$ such that $(S(D_i),S(D'_i))$ is an O2-sphere pair in $S^4(F)_2$.

Unique lifting bump embedding lemma. Let $\widetilde{\varphi}$: (d, d_{*}, b_{*}) × I → (Σ , D_{*}×I, D'_{*}×I) be a lifting bump embedding. Let u: $\Sigma^{(0)} \rightarrow \Sigma$ be an embedding. Assume that the image $\widetilde{\varphi}(d \times I)$ is in the interior of $\Sigma^{(0)}$ to define the composite $u \widetilde{\varphi}:(d, d_*, b_*) \times I \rightarrow (\Sigma, uD_* \times I, uD'_* \times I)$. Then there is a diffeomorphism g: $\Sigma \rightarrow \Sigma$ which is isotopic to the identity such that the composite embedding $gu \widetilde{\varphi}: (d, d_*, b_*) \times I \rightarrow (\Sigma, guD_* \times I, guD'_* \times I)$ is identical to the lifting bump embedding $\widetilde{\varphi}$: (d, d_{*}, b_{*}) × I → (Σ . D_{*} × I. D'_{*} × I).

In this lemma, since gu defines an embedding from $B \cup \overline{B}$ with $B \cap \overline{B} = F$ into Σ and we have gu(B,F)=(B,F), the complement $gu(\overline{B})$ -F does not meet the bump 3-ball B, which means that any disk interior of the disk systems $gu\overline{D}_*$ and $gu\overline{D}'_*$ does not meet the bump 3-ball $B = \widetilde{\phi}(d \times I)$.

Note: Unless $\Sigma^{(0)}$ and Σ have the same genus n, this property cannot be guaranteed.

Homological equivalence lemma.

For any pseudo-O2-sphere bases (R_{*},R'_{*}) and (S_{*},S'_{*}) of Σ of genus n, there is an α -invariant orientation-preserving diffeomorphism $\tilde{f}:\Sigma \to \Sigma$ which induces an isomorphism $\tilde{f}_*:H_2(\Sigma;Z) \to H_2(\Sigma;Z)$ such that

 $[\tilde{f}R_i] = [S_i] \text{ and } [\tilde{f}R_i'] = [S'_i]$

for all i.

<u>Theorem B</u>. For any two pseudo-O2-sphere bases (R_{*},R'_{*}) and (S_{*},S'_{*}) of Σ , there is an orientation-preserving diffeomorphism h: $\Sigma \rightarrow \Sigma$ sending (R_i,R'_i) to (S_i,S'_i) for all i (i=1,2,...,n).

It suffices to show this theorem when (R_*,R'_*) is an O2sphere basis of Σ with $(R_*,R'_*)=(S(D_*),S(D'_*))$ for a standard O2-handle basis $(D_* \times I, D'_* \times I)$ of a trivial surfaceknot F of genus n in S⁴. Let $\Omega(S_*,S'_*)$ be the region of the pseudo-O2-sphere basis (S_*,S'_*) of Σ . The 4-manifold obtained from $\Omega(S_*,S'_*)$ by adding a 4-ball D^4 in place of the residual region $\Omega^c(S_*,S'_*)$ is diffeomorphic to Σ . This means that there is an orientation-preserving embedding u: $\Sigma^{(0)} \rightarrow \Sigma$ such that

 $(uS(D_*),uS(D'_*))=(S_*,S'_*).$

By Homological equivalence lemma, after applying an α -invariant orientation-preserving diffeomorphism $\,\widetilde{f}:\Sigma\to\Sigma\,$, assume that the homology classes

 $[uS(D_i)] = [S_i] \text{ and } [uS(D'_i)] = [S'_i]$

are identical to the homology classes

 $[R_i] = [S(D_i)] \text{ and } [R'_i] = [S(D'_i)]$

for all i, respectively.

Let (B,V) be a bump pair of the O2-handle basis ($D_* \times I$, $D'_* \times I$) of F in S⁴. Recall that the two lifts of (B,V) to Σ under the double branched covering projection p:S⁴ (F)₂ \rightarrow S⁴ are denoted by (B,V) and ($\overline{B},\overline{V}$).

For the proof of Theorem B, we provide with three lemmas.

<u>Lemma 1</u>. There is a diffeomorphism $g: \Sigma \to \Sigma$ which is isotopic to the identity such that the composite embedding $gu: \Sigma^{(0)} \to \Sigma$ preserves the bump pair (B,V) in Σ identically and has the property that every disk interior in the disk systems $gu \overline{D}_*$ and $gu \overline{D}'_*$ meets every disk in the disk systems \overline{D}_* and \overline{D}'_* only with the intersection number 0.

By Lemma 1, we can assume that the orientation-preserving embedding u: $\Sigma^{(0)} \rightarrow \Sigma$ sends the bump pair (B,V) to itself identically and has the property that every disk interior in the disk systems $u\overline{D}_*$ and $u\overline{D}'_*$ meets every disk in the disk systems \overline{D}_* and \overline{D}'_* only with intersection number 0.

<u>Lemma 2.</u> There is a diffeomorphism $g: \Sigma \to \Sigma$ which is isotopic to the identity such that the composite embedding gu: $\Sigma^{(0)} \to \Sigma$ sends the disk systems D_* and D'_* identically and the disk interiors of the disk systems $gu\overline{D}_*$, $gu\overline{D}'_*$ to be disjoint from the disk systems \overline{D}_* and \overline{D}'_* in Σ .

For the O2-sphere basis $(S(D_*),S(D'_*))$ of Σ , let $q_* = \{q_i = S(D_i) \cap S(D'_i) | i = 1,2,...,n\}$ be the transverse intersection point system between $S(D_*)$ and $S(D'_*)$.

The diffeomorphism g of Σ in Lemma 2 is deformed so that the disks guD_i and D_i are separated, and then the disks guD'_i and D'_i are separated while leaving the transverse intersection point q_i. By this deformation, we obtain a pseudo-O2-sphere basis (guS(D_{*}), guS(D'_{*})) of Σ which meets the O2-sphere basis (S(D_{*}),S(D'_{*})) at just the transverse intersection point system q_{*}. Next, the diffeomorphism g of Σ is deformed so that a disk neighborhood system of q_{*} in guS(D_{*}) and a disk neighborhood system of q_* in $S(D_*)$ are matched, and then a disk neighborhood system of q_* in $guS(D'_*)$ and a disk neighborhood system of q_* in $S(D'_*)$ are matched. Thus, there is a diffeomorphism g: $\Sigma \rightarrow \Sigma$ which is isotopic to the identity such that the meeting part of the pseudo-O2sphere basis $(guS(D_*), guS(D'_*))$ and the O2-sphere basis $(S(D_*), S(D'_*))$ is just a disk neighborhood pair system (d_*, d'_*) around the transverse intersection point system q_* .

Now, assume that for an embedding $u: \Sigma^{(0)} \to \Sigma$, the meeting part of the pseudo-O2-sphere basis $(uS(D_*),uS(D'_*))$ and the O2-sphere basis $(S(D_*),S(D'_*))$ is just a disk neighborhood pair system (d_*,d'_*) of q_* .

<u>Lemma 3</u>. There is an orientation-preserving diffeomorphism h: $\Sigma \rightarrow \Sigma$ such that the composite embedding hu: $\Sigma^{(0)} \rightarrow \Sigma$ preserves the O2-sphere basis (S(D_{*}),S(D'_{*})) identically.

Since $(uS(D_*),uS(D'_*))=(S_*,S'_*)$ and $(R_*,R'_*)=(S(D_*),S(D'_*))$, the proof of Theorem B is completed by Lemma 3.//

<u>The proof of Lemma 3</u>.

A <u>4D solid torus</u> is a 4-manifold $Y = S^1 \times D^3$ in S^4 . A <u>fiber circle</u> of ∂Y is a fiber of the S¹-bundle $\partial Y = S^1 \times S^2$.

Let $Y^c = cl(S^4 - Y)$.

Let Y_* be a system of mutually disjoint 4D solid tori Y_i , (i=1,2,…, n) in S⁴, and Y^c_{*} the system of the 4-manifolds Y^c_i (i=1,2,…, n). Let $\cap Y^c_* = \bigcap_{i=1}^n Y^c_i$. The following lemma is used for the proof of Lemma 3.

<u>Framed light-bulb diffeomorphism lemma</u>. Let $D_* \times I$ be a system of mutually disjoint framed disks $D_i \times I$ (i=1,2,..., n) in $\cap Y^c_*$ such that ∂D_i is a fiber circle of ∂Y_i and $(D_* \times I) \cap \partial Y^c_i = (\partial D_i) \times I$

for all i. If $E_* \times I$ is any system of mutually disjoint framed disks $E_i \times I$ (i=1,2,…, n) in $\cap Y^c_*$ such that $(E_* \times I) \cap \partial Y^c_i = (\partial E_i) \times I = (\partial D_i) \times I$

for all i, then there is an orientation-preserving diffeomorphism $h:S^4 \rightarrow S^4$ sending Y_{*} identically such that $h(D_* \times I, D_*) = (E_* \times I, E_*)$.

Final Note:

In the paper:

A. Kawauchi, Smooth homotopy 4-sphere.arxiv:1911.11904v4,

it is also shown by using <u>Framed light-bulb isotopy lemma</u> due to D. Gabai that:

Every orientation-preserving diffeomorphism of the stable 4-sphere Σ of genus n is smoothly concordant (or piecewise-linearly isotopic) to an α -equivariant diffeomorphism of Σ .