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Introduction



Main Idea

Algebra of free ribbons on a punctured disk Fk
↓

Action of bottom tangle Tb − id to Fk
↓

Ideal Ib generated by Im(Tb − id)
↓

Space of reprelsentations Ab = Fk/Ib
↓

Insert skein relation Sk = F/ ∼
↓

Ãb,0 acts on Ãb,1
↓

Investigate the structure of Ãb,1 as an Ãb,0-module
↓

Elementary ideals of the relation matrix→ det(Tb − id)
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1. Algebra of free ribbons



1.1 Free ribbon in a thickened punctured disk

K : C(t)

Dk : a closed disk

q1, · · · , qk : punctures inside Dk
p1 : a puncture on the boundary of Dk

p0 ( 6= p1) : a point of ∂Dk (base point).

A ribbon in the thickened disk with punctures :

1

0

q
1

q
2

p0
D2 × [0, 1]

−→

0 1

diagram on D2

Fk,1 : K-linear combinations of the isotopy classes of
ribbons in Dk.
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1.2 Algebra of free ribbons

Multiplication : stacking two thickened disks with punctures

µ : Fk,n1 ×Fk,n2 → Fk,n1+n2

µ
( q

1
q
2

,

q
1

q
2 )

=

q
1

q
2

↓ ↓ ↓

µ
(

,
)

=

Product : (another mjultiplication) connect two adjacent
end points of two ribbons

m : Fk,1 ×Fk,1 → Fk,1 4



2. Acton of bottom tangles



2.1 Bottom tangle action on Fk,n

Definition
Let Tk,n be the subspace of Fk,n, which consists of non-closed free

arcs γ = (γ1, · · · , γn) such that the heights of their end points
h(γi(0)) and h(γi(1)) satisfy

h(γ1(1)) < h(γ1(0)) < h(γ2(1)) < · · · < h(γn(1)) < h(γn(0)).

Then an element of Tk,n is called a bottom tangle of type (k,n).

For T ∈ Tk,` and F ∈ F`,n, the composition T ◦ F ∈ Fk,n is defined by
glueing the handles of F to the ribbons of T as follows.

T ∈ T2,2

◦

F ∈ F2,2

=

The composition of a bottom tangle T ∈ Tk,` and an element F ∈ F`,n

of the algebra of free ribbons in the case k = n = ` = 2. 5



2.2 Braided Hopf algebra structure of bottom tangles

A braided Hopf algebra structure is given to bottom tangles as
follows (Habiro).

1
identity for
tensor

id
identity for
composition

µ

multiplication
η

unit
S

antipode

∆

coproduct
ε

counit
Ψ

braiding
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2.3 Multiplication and adjoint

Tensor product ⊗ : Fk1,n1 ⊗Fk2,n2 → Fk1+k2,n1+n2
k1 punctures

. . .

n1 ribbons

⊗

k2 punctures

. . .

n2 ribbons

=

k1 + k2 punctures

. . . . . .

n1 + n2 ribbons

Multiplication µ : Fk,n1 ⊗Fk,n2 → Fk,n1+n2
µ = (µ⊗ · · · ⊗ µ︸ ︷︷ ︸

k

) ◦Ψ2k−2 ◦ (Ψ2k−4 ◦Ψ2k−3)◦

· · · ◦ (Ψ4 ◦Ψ5 ◦ · · · ◦Ψk+1) ◦ (Ψ2 ◦Ψ3 ◦ · · · ◦Ψk)

Adjoint ad : ad = µ2 ◦Ψ1 ◦ (S⊗∆) ◦∆ ∈ T2,1.

ad = =
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2.4 Braided commutativity

Proposition (braided commutativity)
µ2 ◦ (ad⊗id) = µ2 ◦Ψ1 ◦ (id⊗ ad) ◦Ψ ∈ T2,2.

where µ2 = id⊗ µ and Ψ1 = Ψ⊗ id.

Proof.

µ2 ◦ (ad⊗id) = ,

µ2 ◦Ψ1 ◦ (id⊗ ad) ◦Ψ = = .
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2.5 Flat bottom tangle

Definition. T Fk,n := {T | flat bottom tangle}
Flat bottom tangle⇔ ∃projection without crossings.

Proposition. T ∈ T Fk,n commutes with the multiplication
µ : Fn,l1 ⊗Fn,l2 → Fn,l1+l2 .

Proof.

T

◦ µ


F1

⊗

F2

 = ◦

= =
∗

µ

 ⊗



= µ

 ◦

 ⊗

 ◦


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3. Universal representation space



3.1 Action of braids on the algebra of free ribbons

Tσ Tσ−1

Explain the braid action by bottom tangles.

Tσ= µ2 ◦Ψ1 ◦ (id⊗ ad),
Tσ−1= µ1 ◦Ψ−1

1 ◦Ψ
−1
2 ◦Ψ

−1
1 ◦ S

−1
2 ◦ (ad⊗id).

Tσ and Tσ−1 are flat bottom tangles, so they commute with µ

and are algebra automorphisms of Fk = ⊕n=0,1,2,···Fk,n.
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3.2 Universal representation space

L : a knot

b : a braid in Bk s.t. b̂ is isotopic to L

Tb : the bottom tangle corresponding to b

Ib : the ideal generated by the image of Tb − id⊗k

Ib = Im
(
µ ◦ (id⊗k ⊗ (Tb − id⊗n))

)
(= Im

(
µ ◦ ((Tb − id⊗n)⊗ id⊗k)

)
)

Ab : = Fk/Ib
Theorem. If the closures of two braids b1 and b2 are isotopic,

then Ab1 and Ab2 are isomorphic as graded rings.

Proof. Use the Morkov move.

MI :
b

b′
←→

b′

b
, MII : b ←→ b ←→ b

bb′ b′ b σn b b σ−1
n b 11



4. Skein algebra of a punctured disk



4.1 Skein algebra Sk

The skein module Sk,n is defined by

Sk,n = Fk,n/∼

where ∼ is generated by the following two relations.

Kauffman bracket skein relation : = t + t−1

Boundary parallel relation : =

The Kauffman bracket skein relation relations implies that

= −(t2 + t−2), = −t3 , = −t−3 .

Let Sk = ⊕n=0,1,···Sk,n.
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4.2 Structure of Sk

• As a K-linear space, Sk,n is spanned by T Fk,n (flat bottom tangles).

• Standard triangular decomposition of Dk.

D1

p1

q
1

p0

D2

p1

q
1 q

2

p0

D3

p1

q
2

q
1

q
3

p0

· · · Dm

p1

. . .
q
1

q
2

q
k

p0

• Flat bottom tangle←→
1:1

numbers of intersection points at edges.

• Sk is a Sk,0-(two-sided) module.

• Sk,0 is a K algebra generated by tj1···jm (j1 < · · · < jm,m ≤ 3).
(classical case by Bullok)

tj1
. . .
. . .

. . .

. . .

j1
tj1 j2

. . .

. . .
. . .
. . .

. . .

. . .
. . .. . .

j1 j2
tj1 j2 j3

. . .

. . .
. . .
. . .

. . .

. . .
. . .
. . .

. . . . . .. . .. . .

j1 j2 j3 13



4.2 Structure of Sk

• As a K-linear space, Sk,n is spanned by T Fk,n (flat bottom tangles).

• Standard triangular decomposition of Dk.

D1

p1

q
1

p0

D2

p1

q
1 q

2

p0

D3

p1

q
2

q
1

q
3

p0

· · · Dm

p1

. . .
q
1

q
2

q
k

p0

• Flat bottom tangle←→
1:1

numbers of intersection points at edges.

• Sk is a Sk,0-(two-sided) module.

• Sk,0 is a K algebra generated by tj1···jm (j1 < · · · < jm,m ≤ 3).
(classical case by Bullok)

• Sk,0 is an integral domain.
(by Diamond lemma or Buchberger algorithm)
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4.3 Structure of Sk (cont.)

• Let S̃k,0 = Sk,0[t−1j1···jm ] and S̃k,n = S̃k,0 ⊗Sk,0 Sk,n.

• S̃k,0 is generated by tj ··· j+m (m = 0, 1, 2).

• Let 1 = η⊗k ◦ ε, αi = η⊗(i−1) ⊗ id⊗ η⊗(n−i). Then S̃k,1 is a S̃k,0
algebra spanned by 1, α1 if k = 1 and 1, α1, α2,
α1 α2 = m(α1 ⊗ α2) if k ≥ 2.

. . .

. . .
. . .
. . .

1 α1

. . .

. . .
. . .
. . .

α2 α1 α2

• µ : S⊗nk,1 → Sk,n is surjective.
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4.4 Action of braids

Let L be a knot, b ∈ Bk is a braid whose closure is isotopic to L,
and Ĩb = S̃k ⊗Sk Ib.

Definition. Let Ĩb = S̃k ⊗Sk (Ib/ ∼), Ĩb,n = S̃k ⊗Sk (Ib ∩ Fk,n/ ∼),
Ãb = S̃k/̃Ib, Ãb,n = S̃k,n/̃Ib,n.

Ãb : the space of quantum SL(2) representations of L.

Proposition. The ideal Ĩb,1 is generated by Tb(α1)− α1, · · · ,
Tb(αk−1)− αk−1 as a left Sk,0-module.

Remark. By definition, Ĩb,1 is generated by Tb(x)− x for all
x ∈ Fk,1. But x = α1, · · · , αk−1 are good enough.

Remark. αi (i > 2) is explained as a linear combination of
1, α1, α2, α1 α2 with coefficients in S̃k,0.
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5. Quantum character varitety



5.1 Structure of Ãb,0 and Ãb,1

From now on, we consider the case that k = 2 (# of the punctures).

• Tb(αj)−αj induces S̃2,0 algebra endomorphisms on S̃2,0 and S̃2,1.

• Ãb,0 = S̃2,0/̃Ib,1. If L is a one-component knot, t2 = t1 ∈ Ã2,0.

• Ãb,1 = S̃2,n/̃Ib,1 where Ĩb,1 is spanned by the images of
Tb(α1)− α1.

• Mb ∈ M4(Ã2,0) : matrix representing the right action of
Tb(α1)− α1 with respect to the basis 1, α1, α2 and α1α2.

• Mb is the matrix for the relations of Ãb,1 as an Ã2,0 module.

Theorem. The elementary ideals of Mb are invariants of L.

Corollary. detMb (product of the elementary divisors) is an
invariant of L.

By putting A = −1, we can recover the classical case.
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5.2 Quantum character variety

k = 2 (number of the punctures)

Definition. The quantum character variety of L is the algebraic
variety defined by

√
detMb (radical).

Reason. By putting A = −1,
√
detMb coincides (?) with the

classical character variety of L.

Braid action. Tσ(α1) = α2, Tσ−1(α1) = α1 α2 α
−1
1

Tσ(α2) = α−1
2 α1 α2, Tσ−1(α2) = α1

Tσ Tσ−1
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6. Examples



6.1 Action of braids

The matrices N1 and N2 corresponding to the right actions of α1 and
α2 are given as follows.

N1 =


0 1 0 0
−t4 −t2 t1 0 0

−t4 t1 t2 − t6 t12 −t2 t2 −t2 t1 −t4

t2 t2 −t2 t12 1 0

 ,

N2 =


0 0 1 0
0 0 0 1
−t4 0 −t2 t2 0
0 −t4 0 −t2 t12

 ,

To compute Tb(α1), express Tb(α1) as a word of α and α2 and then
compute the matrix corresponding to this word.
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6.2 Trefoil

b = σ31 , Tb(α1) = α−1
1 α−1

2 α−1
1 α2 α1 α2,

X = t1 = t2, Y = t12,

det(N−1
1 N−1

2 N−1
1 N2 N1 N2 − I4) =

1
t12

,
(
A4 Y2 + (t6 + t2)(X2 − 2) Y + X4 − 4 t4 X2 + t8 + 2 t4 + 1

)
(
t4 Y2 + (t6 + t2) Y + t8 − t4 + 1

)2
.

By putting t = −1, we have(
Y + X2 − 2

)2
(Y + 1)4.
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6.3 Figure eight knot

Tb − identity −→ α1 α
−1
2 α−1

1 α2 − α2 α1α
−1
2 α−1

1 α2 α
−1
1 ,

X = t1 = t2, Y = t12,

det(N1 N−1
2 N−1

1 N2 − N2 N1N−1
2 N−1

1 N2 N−1
1 ) =(

t4 Y2 + (t6 + t2) (X2 − 2) Y + X4 − 4 t4 X2 + t8 + 2 t4 + 1
)(

t8 Y4 + (t6 + t10) (X2 + 1) Y3+
(t8 X4 + 2 (t12 + t8 + t4) X2 + t4 − 3 t8 + t12) Y2+

(2 (t6 + t10) X4 + (t2 + t14) X2 + t2 − 2 t6 − 2 t10 + t14) Y+

+(t4 + 2 t8 + t12) X4 − 2 (t4 + t12) X2 + 1− t4 + t8 − t12 + t16
)2

.

By putting t = −1, we have

(Y + X2 − 2)2 (Y2 + (X2 + 1) Y + 2 X2 − 1)4.
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7. Problems



Problems

1. Does the quantum character ring split into abelian and
non-abelian factors?

2. Is the non-abelian part irreducible?
3. How to relate to the Â polynomial?
4. What is the geometry of the quantum character variety?
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