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1 Cosmetic surgery on knots

(Tetsuya Ito)2

For a knot K in the 3-sphere S3 and a slope r ∈ Q ∪ {∞ = 0
1
}, we denote by

S3
K(r) the r-surgery on K. Two Dehn surgeries S3

K(r) and S3
K(r

′) on the same knot
K are purely cosmetic if r ̸= r′ and S3

K(r)
∼= S3

K(r
′), and chirally cosmetic if r ̸= r′

and S3
K(r)

∼= −S3
K(r

′). Here for an oriented, closed 3-manifolds M and N we denote
by M ∼= N if M and N are orientation-preservingly homeomorphic, and −M means
the 3-manifold M with opposite orientation.

Although it is conjectured that purely cosmetic surgery does not exist unless K
is the unknot (the cosmetic surgery conjecture), there are two families of chirally
cosmetic surgeries on non-trivial knots.

(a) For an amphicheiral knot K, S3
K(r)

∼= −S3
K(−r).

(b) for a (2, n)-torus knot K we have S3
K(

2n2(2m+1)
n(2m+1)+1

) ∼= −S3
K(

2n2(2m+1)
n(2m+1)−1

) for any

m ∈ Z.

Thus it is natural to ask whether there exist other chirally cosmetic surgeries or not.
To study the question, it is useful to separate chirally cosmetic surgeries into the
following three types.

0-type S3
K(r)

∼= −S3
K(−r).

+-type S3
K(r)

∼= −S3
K(r

′) such that rr′ > 0.

−-type S3
K(r)

∼= −S3
K(r

′) such that rr′ < 0 and r + r′ ̸= 0.

Our naive expectation is stated in the following forms.

Conjecture 1.1 (T. Ito). Let K be a non-trivial knot in S3.

(i) K admits a chirally cosmetic surgery of 0-type if and only if K is amphicheiral.

(ii) K admits a chirally cosmetic surgery of +-type if and only if K is a (2, n)-torus
knot.

(iii) K never admits a chirally cosmetic surgery of −-type.

Seemingly manageable problems on chirally cosmetic surgeries

Although at the moment, the conjecture seems to be difficult to solve in general,
we list several related questions which seems to be with in reach, with a possible
strategy and relevant background results/arguments.

Question 1.2 (T. Ito). Does K have no chirally cosmetic surgery of −-type if K is
non-prime ?
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Chirally cosmetic surgeries of +-type are L-space surgeries [44]. Since L-space knots
are prime [29], non-prime knot never admits a chirally cosmetic surgery of +-type.

Certainly the JSJ decomposition structure of S3
K(r) will provide severe restric-

tions for a non-prime knot K to admit chirally cosmetic surgeries. See [48] where the
non-existence of purely cosmetic surgeries for non-prime knot was proven. See also
[24], where the author used the same strategy to study chirally cosmetic surgeries
of cable knots.

Question 1.3 (T. Ito). Is Conjecture 1.1 true for 2-bridge knots, or, alternating
knot of genus two ?

In [21] we confirmed the conjecture for genus one alternating knots. Thanks to
various nice features of 2-bridge knots, using constraints in [22] we can show a large
portion of 2-bridge knots admit no chirally cosmetic surgeries. The question will
be solved if one can specify a class of 2-bridge knots that fails to satisfy known
constraints, and when we check the conjecture for such ‘bad’ classes (optimistically,
if such a bad classes are finite then using the results in [13] one can show they indeed
admit no chirally cosmetic surgeries).

Similarly, alternating knots of genus two is effectively enumerated by using generator-
twisting method [47] and again it is easy to see a large portion of 2-bridge knots
admit no chirally cosmetic surgeries by using results in [22] so a strategy similar to
2-bridge knots will work.

Question 1.4 (T. Ito). Is Conjecture 1.1 true for the L-space knot ?

Among L-space knots, (2, n) torus knots are special in the sense that there are
the only L-space knots which are alternating. The aforementioned fact that all the
chirally cosmetic surgeries of +-type are L-space surgeries is obtained by just looking
at the rank of the Heegaard Floer homology. Since L-space knots and L-spaces are
the most simplest class in a theory of Knot/Heegaard Floer homology, it is feasible
to use more finer structure of the Heegaard Floer theory (i.e., (absolute) grading,
the d-invariants) to get additional restrictions. For example, Varvarezos [49] showed
that L-space knot admits no chirally cosmetic surgery of −-type by incorporating
the grading informations. Similar techniques and arguments will work, and at least,
will bring more restrictions for chirally cosmetic surgeries of +-types for L-space
knots.

From the LMO invariant to cosmetic surgery and back

One approach to attack purely/chirally cosmetic surgery is to use the LMO in-
variant ZLMO which is obtained by the ‘Aarhus integral’ of the Kontsevich invariant
Z(K) of K (see [23] for details).

It is conjectured that the Kontsevich invariant Z distinguishes all the knots, and
that a knot K is amphicheiral if and only if the odd degree part of Z(K) vanishes.
Although these conjectures are the most important open problems, a partial solution
will bring a progress on cosmetic surgeries.

For example, in the LMO invariant point of view Conjecture 1.1 (i) can be
rephrased as follows.
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Question 1.5 (T. Ito). If ZLMO
(
S3
K(r)

)
= ZLMO

(
− S3

K(−r)
)
, then is the odd

degree part of Z(K) vanish ?

In [23] the author confirmed the conjecture for some small degree parts by direct
computations, producing several useful constraints for chirally cosmetic surgeries.

Conversely, partial results on (purely or chirally) cosmetic surgery bring natural
questions on the LMO invariants. It is known that the LMO invariant fails to
distinguish rational homology spheres (however, we should mention that known
examples are Seifert fibered space), whereas it is conjectured that the LMO invariant
distinguishes integral homology spheres.

Using the Heegaard Floer homology, we have seen that S3
K(1/n) ̸∼= −S3

K(1/m)
for any m,n, unless K is amphicheiral and m = −n [22]. Thus in a light of the
aforementioned conjecture, it is natural to ask

Question 1.6 (T. Ito). Is ZLMO
(
S3
K(1/n)

)
̸= ZLMO

(
− S3

K(1/m)
)
, unless K is

amphicheiral and m = −n ?

As for the purely cosmetic surgery, a situation is more interesting; Hanselmann
showed that unless K has genus two, a pure cosmetic surgery of K must be of
the form S3

K(1/n)
∼= S3

K(−1/n) for some n [18] (indeed he gave more detailed con-
straints). Thus the following special case of the conjecture that the LMO invariant
distinguishes integral homology spheres is of great importance.

Question 1.7 (T. Ito). Is ZLMO
(
S3
K(1/n)

)
̸= ZLMO

(
S3
K(−1/n)

)
, unless K is not

the unknot?

2 Mellin-Barnes integrals and the beta invariant of 3-manifolds

(Andrew Kricker)

These questions arose in joint work with Craig Hodgson and Rafael Siejakowski
[19] studying asymptotic behaviour of the Garoufalidis-Kashaev meromorphic 3D
index [14]. Our asymptotic analysis found connections to many interesting topolog-
ical invariants, many of which are familiar like the volume and twisted Reidemeister
torsion. The discussion here concerns a topological invariant which arose in our
analysis which appears to be new and whose significance is not yet understood.

Let T be an N -tetrahedron ideal triangulation of a connected, oriented three-
manifold M whose ideal boundary is a torus. In Section 9 of [19] we introduce the
Mellin-Barnes integrals associated to T and combine them to define the β invariant.
This invariant appears to capture contributions to the asymptotics arising from a
collection of boundary parabolic PSL(2,R)-representations of M . There are many
interesting open questions related to the nature and topological significance of this
invariant.

The starting point of the construction of β is a combinatorial structure on T
called a Z2-taut angle structure. Let Q(T ) denote the collection of quad types of
T . Recall, for example, that a solution of Thurston’s gluing equations is a function
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z : Q(T ) → C satisfying Thurston’s equations. A Z2-taut angle structure is a func-
tion ω : Q(T ) → {+1,−1} such that the set of assignments within each tetrahedron
is {+1,+1,−1} and such that the product of assignments around any edge of the
triangulation is +1.

We say that a Z2-taut angle structure ω : Q(T ) → {+1,−1} is obtained from a
real solution of Thurston’s equations z : Q(T ) → R if

ω(q) =
z(q)

|z(q)|
. (1)

Assume that α : Q(T ) → R is a strict angle structure on T with vanishing
boundary angle holonomy. For example, if Thurston’s equations on M have a solu-
tion then the imaginary parts of the shape parameters provide such a structure. (In
general, this assumption can be removed by an analytic continuation argument.)

To build β, we start by introducing the Mellin-Barnes integral IMB(T , ω, α),
which is a function of the triangulation T , a Z2-taut angle structure ω on T , and
a strict angle structure α on T (which is required for the definition but which we
prove it does not depend on). IMB(T , ω, α) is given by a state-integral expression.
A state x : E(T ) → R will be an assignment of a real number x(e) to each edge e
of the triangulation. In the state-integral each edge variable will be integrated over
R except for an arbitrarily chosen edge which will be fixed at zero. The integrand
will be a product of one factor for every ideal tetrahedron ∆ in T . Consider the
following typical ideal tetrahedron where the edges in this picture are labelled with
the symbols ei, and the qi are the quad types. Note that an edge of the triangulation
may be identified with more than one edge in this tetrahedron. The function x(ei)
will indicate the value of the state x on the edge of this tetrahedron labelled ei.
(Here for brevity we will be a bit imprecise with notation.)

If ω(q1) = +1, ω(q2) = +1, and ω(q3) = −1, then the factor of the integrand
associated to this tetrahedron ∆ is

B∆
ω,α = B(A1, A2)

where

• A1 =
α(q1)
π

+ ix(e2) + ix(e5)− ix(e3)− ix(e6)

• A2 =
α(q2)
π

+ ix(e3) + ix(e6)− ix(e1)− ix(e4)
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and where B(z1, z2) = Γ(z1)Γ(z2)
Γ(z1+z2)

is Euler’s beta function, which is based on the

Gamma function Γ(z) of a complex variable z.
Note that the two arguments of the Beta function correspond to the two quad

types labelled +1 by the Z2-taut angle structure ω. Furthermore, note that the
argument corresponding to some quad type is a complex number whose real part
is the angle assigned that quad type by α, and whose imaginary part is exactly
what you obtain for that quad type from the edge labels by doing leading-trailing
deformations.

We define, for some fixed choice of edge e:

IMB(T , ω, α) =
1

(2π)N−1

∫
x:E(T )→R, x(e)=0

∏
∆∈T

B∆
ω,α dx.

These integrals do not necessarily converge. We prove in [19] that when they do
converge they do not depend on the choice of the fixed edge e or the choice of the
strict angle structure α.

To build a topological invariant from these building blocks we just sum up these
Mellin-Barnes integrals over a suitable collection Ωtaut of Z2-taut angle structures.
The resulting function we call the Beta invariant.

β(T ) =
∑

ω ∈Ωtaut

IMB(T , ω). (2)

This is discussed in detail in Section 9 of [19]. This collection Ωtaut is quite natural.
To explain: a Z2-taut angle structure is also an S1-valued angle structure. We
prove in [19] that the manifold of S1-valued angle structures with trivial peripheral
angle holonomy in general may have several components, each of them a torus. The
collection Ωtaut is exactly the set of Z2-taut angle structures appearing on a canonical
component of this manifold. In the important special case the manifold has a strict
angle structure with trivial peripheral angle holonomy (for example if the manifold
has a complete hyperbolic structure) then it is exactly the component that structure
appears on.

The beta invariant is only defined when the improper integrals in the definition
converge. Otherwise we say it is undefined. Our numerical investigations lead us to
believe:

Conjecture 2.1 (C. Hodgson, A. Kricker, R. Siejakowski). For every finite ideal tri-
angulation T of a connected, oriented three-manifold M the Mellin-Barnes integrals
involved in the definition of β(T ) converge and hence β(T ) is defined.

In [19] we prove the following.

Theorem Assume T and T ′ are two ideal triangulations for M that are related by
a Pachner 2-3 move. If β(T ) is defined, then so is β(T ′), and they are equal. Hence
β is a topological invariant of M which we can denote β(M).

This new topological invariant β(M) is quite mysterious and fascinating. Given
that it is appearing as the leading term in a contribution to an asymptotic expansion
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of a quantum invariant, and comparing this to some familiar stories in quantum
topology, we are naturally led to wonder whether it can be re-expressed in terms of
geometric and topological invariants with a clear interpretation.

Question 2.2 (C. Hodgson, A. Kricker, R. Siejakowski). Can β(M) be expressed
in terms of elementary geometric and topological invariants of M?

We can be more detailed about this. Our numerical investigations lead us to ex-
pect the following. Recall that the β invariant is expressed as a sum over Z2-taut an-
gle structures of the corresponding Mellin-Barnes integrals (see Equation 2). If some
Z2-taut angle structure ω ∈ Ωtaut is obtained from a boundary parabolic PSL(2,R)-
representation (via a real solution of Thurston’s equations, as explained above
in Equation 1) then the corresponding Mellin-Barnes integral IMB(T , ω) should
be some topological invariant of the corresponding boundary parabolic PSL(2,R)-
representation. On the other hand, if there is no such representation yielding ω then
that Mellin-Barnes integral should be zero.

The following is an interesting first step towards building this picture:

Conjecture 2.3 (C. Hodgson, A. Kricker, R. Siejakowski). Let T be an ideal tri-
angulation of M and suppose that ω ∈ Ωtaut is a Z2-taut angle structure for which
IMB(T , ω) ̸= 0. Then there exists a real solution z : Q(T ) → R\{0, 1} of Thurston’s

edge consistency and completeness equations yielding ω via ω(q) = z(q)
|z(q)| .

Luo has introduced an optimization problem which generates solutions to Thurston’s
equations over R [33]. We expect that Luo’s theory will be important ingredient in
understanding these questions.

3 On graded modules of Yn-equivalence filtration on the ho-
mology cylinders

(Yuta Nozaki)

Let Σg,1 be a connected oriented compact surface of genus g with one bound-
ary component and let IC = ICg,1 be the monoid of homology cylinders over Σg,1.
Goussarov [16] and Habiro [17] introduced clasper surgery and the Yn-equivalence
relation on IC for positive integers n. We write YnIC for the submonoid consisting
of M ∈ IC which is Yn-equivalent to the trivial homology cylinder. The quotient set
YnIC/Yn+1 by the Yn+1-equivalence is a finitely generated abelian group, which at-
tracts considerable attention in low-dimensional topology. In particular, this group is
closely related to the nilpotent quotient of the Torelli group, the Goussarov-Habiro
conjecture about finite-type invariants of homology cylinders, and the homology
cobordism group of homology cylinders. We study YnIC/Yn+1 via the surgery map
s : Ac

n → YnIC/Yn+1, where Ac
n denotes the Z-module of connected Jacobi dia-

grams with n trivalent vertices subject to the AS, IHX, and self-loop relations.
Here, each univalent vertex of a Jacobi diagram is colored by an element of the set
{1+, 1−, . . . , g+, g−}. Since s is surjective except n = 1, the group YnIC/Yn+1 is de-
scribed by Ac

n and the kernel Ker s. Moreover, it is known that s is an isomorphism
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over Q, and thus, Ker s is contained in the torsion subgroup torAc
n. The structure

of the group YnIC/Yn+1 is determined for n = 1, 2, 3, 4 in [37, 38, 40, 41], and there
are no torsion elements of order greater than 2 at this stage. Therefore, the following
question naturally arises.

Question 3.1 (Y. Nozaki, M. Sato, M. Suzuki). Are there torsion elements in
YnIC/Yn+1 of order greater than 2?

This is closely related to the following purely combinatorial question.

Question 3.2 (Y. Nozaki, M. Sato, M. Suzuki). Are there torsion elements in Ac
n

of order greater than 2?

For example, if there is an element in YnIC/Yn+1 of order 3, then Ac
n must have

an element of order 3. It is worth mentioning here that similar questions about
another type of Jacobi diagram were posed by Stanford [42, Conjecture 2.2 and
Question 2.4]. Note that there is no obvious relation between these questions and
Question 3.2 since the Poincaré-Birkhoff-Witt isomorphism is defined over not Z
but Q. See also [42, Conjectures 10.8 and 10.15] for related questions in the case
g = 0.

Remark 3.3. Let Ac
n,l denote the submodule of Ac

n generated by Jacobi diagrams
whose first Betti numbers are l. Then it is known that, for l = 0, 1, the module
torAc

n,l is generated by torsion elements of order 2 arising from line symmetry of
Jacobi diagrams.

Question 3.4 (Y. Nozaki, M. Sato, M. Suzuki). Are torAc
n and Ker sn included

in the submodule generated by symmetric Jacobi diagrams (in the sense of [41, Sec-
tion 3.3])?

Next, we consider the restriction sn,0 of s to the 0-loop part Ac
n,0. In [40], it is

shown that Ker s2n+1,0 ⊂ Im(∆n,0 : Ac
n,0 → Ac

2n+1,0) for n ≥ 1 (see [40, Definition 3.4]
or [5, Definition 40] for the definition of ∆n,0). We can also check that Ker s2n+1,0 =
Im∆n,0 when n = 1, 2.

Question 3.5 (Y. Nozaki, M. Sato, M. Suzuki). Does Ker s2n+1,0 = Im∆n,0 hold
for any n?

This question is interesting in the light of the homology cobordism group ([5]).

4 Rasmussen type invariant from equivariant instanton Floer
homology of knots

(Hayato Imori, Kouki Sato, and Masaki Taniguchi)

In [30], Kronheimer and Mrowka defined a Z-valued knot concordance invariant
s♯(K) which is defined in terms of the framed instanton Floer homology I♯(K) of
knots. The definition of s♯ can be seen as an instanton theoretic analogue of the
Rasmussen invariant [45]. In the upcoming paper [8], the following theorem will be
proven:
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Theorem (Daemi-Imori-Sato-Scaduto-Taniguchi [8]) For any knot K, the limit

s̃(K) := lim
n→∞

1

2n
s♯(#nK) exists and is an integer. Moreover, s̃(K) satisfies the

following properties:

(i) s̃(K#K ′) = s̃(K) + s̃(K ′) for any two knots K and K ′;

(ii) s̃(K) ≤ g4(K) for any knot K, where g4(K) denotes the smooth 4-genus of K;

(iii) s̃(Tp,q) = g4(Tp,q) =
1
2
(p− 1)(q − 1) for any positive torus knot Tp,q;

(iv) |2s̃(K)− s♯(K)| ≤ 1 for any knot K.

Our approach for proving the theorem is to use Daemi–Scaduto’s equivariant singular
instanton Floer homology [9]. Here we note that a real-valued concordance invari-
ant satisfying t he properties (i)–(iii) above is called a slice-torus invariant [32, 31].
There are several slice-torus invariants [43, 45, 31, 2] derived from different theories,
and we expect that comparing s̃ with them improves the understanding of the rela-
tions among these theories. In particular, the difference ε̃(K) := 2s̃(K) − s♯(K) ∈
{−1, 0, 1} can be regarded as an analogous invariant to the epsilon-invariant ε(K)
in Heegaard Floer theory [20]. Indeed, it will be shown in [8] that ε̃ shares the prop-
erties (1), (3) and (6) in [20, Proposition 3.6] with ε. From this point of view, we
conjecture the following relations between knot concordance invariants from equiv-
ariant singular instanton Floer theory and those from Heegaard Floer theory:

Conjecture 4.1 (Daemi-Imori-Sato-Scaduto-Taniguchi). For any knot K, we have:

s̃(K) = τ(K), s♯(K) = ν(K)− ν(K∗),

where K∗ is the mirror image of K, τ is the tau-invariant defined in [43] and ν is
the nu-invariant defined in [44]. In particular, we have ε̃(K) = ε(K).

For all quasi-positive knots and alternating knots, the first equality s̃(K) = τ(K)
follows from the fact that s̃ and τ are slice-torus invariants [31]. Moreover, Gong
[15] proves the equality s♯(K) = 2g4(K) − 1 for any algebraic knot K, which gives
a partial answer to the second equality s♯(K) = ν(K)− ν(K∗) for algebraic knots.
(This will be extended in [8] to all quasi-positive knots with knot signature negative.)
On the other hand, the following is an open problem, which is the remaining part
of analogues of [20, Proposition 3.6]:

Problem 4.2 (Daemi-Imori-Sato-Scaduto-Taniguchi). Does ε̃ satisfy the following
properties?

(i) If ε̃(K) = 0, then s̃(K) = 0.

(ii) If |s̃(K)| = g4(K), then ε̃(K) = sgn(s̃(K)).

(iii) If K is homologically thin in Heegaard Floer theory, then ε̃(K) = sgn(s̃(K)).
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Here we note that the definition of s♯ is analogous to the Rasmussen invariant rather
than τ , and this causes difficulty proving results of s̃ analogous to τ . Recently,
Baldwin and Sivek [2] defined the instanton tau-invariant τ ♯(K) and the instanton
nu-invariant ν♯(K) in terms of cobordism maps of framed instanton Floer homology
obtained via surgery along knots. In particular, the definitions of τ ♯ and ν♯ are
analogous to τ and ν respectively. Moreover, one can expect to relate τ ♯ and ν♯ to
s♯ in terms of framed instanton Floer homology theory. Based on these observations,
we propose the following conjecture:

Conjecture 4.3 (Daemi-Imori-Sato-Scaduto-Taniguchi). For any knot K, we have:

s̃(K) = τ ♯(K), s♯(K) = ν♯(K)− ν♯(K∗).

5 Nielsen realization and relative genus bounds for 4-manifolds

(Hokuto Konno)

Nielsen realization problem in dimension 4

Given a smooth manifold X and a given (finite) subgroup G of the mapping class
group π0(Diff(X)), the Nielsen realization problem for G asks whether there ex-
ists a (group-theoretic) section s : G → Diff(X) of the natural map Diff(X) →
π0(Diff(X)) over G. If there is a section s : G → Diff(X), we say that G is realizable
in Diff(X).

This problem was originally considered in dimension 2, and Kerckhoff [25] proved
that any finite subgroup of the mapping class group of an oriented closed surface Σg

is realizable. (On the other hand, Morita [39] proved that the whole mapping class
group π0(Diff(Σg)) is not realizable if the genus g is large enough.)

In contrast, Raymond and Scott [46] showed that, in every dimension ≥ 3, there
are nilmanifolds for which the Nielsen realization fails. Focusing on dimension 4 and
simply-connected manifolds, it was recently proved by Baraglia and the author [3]
and Farb and Looijenga [11] that the Nielsen realization fails for K3, and the au-
thor [27] generalized these results to more general spin 4-manifolds with negative
signature. All of these results [46, 3, 11, 27] show that certain order 2 subgroups of
the mapping class group are not realizable.

Question 5.1 (H. Konno). Is there a 4-manifold X that admits a non-realizable
odd order subgroup G of π0(Diff(X))?

In dimension 4, positive results to Nielsen realization, namely results saying that
some class of subgroups of π0(Diff(X)) are realizable, are not many for the moment.
For example, Mostow’s rigidity yields a positive result for hyperbolic manifolds of
dimension ≥ 3, even not only for dimension 4. Farb and Looijenga [11] gave a
criterion in terms of the intersection form to check a given order 2 subgroup G of
π0(Diff(K3)) is realizable. Can one generalize this to more 4-manifolds and more
general subgroups? Namely:
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Question 5.2 (H. Konno). For a given 4-manifold X, is there a criterion in terms
of the intersection form to check a given subgroup G of π0(Diff(X)) is realizable?

Relative genus bounds

LetX be a closed oriented smooth 4-manifold and consider the punctured 4-manifold
X\D4. LetK be a knot in S3 = ∂(X\D4). Fixing a homology class α ∈ H2(X;Z) ∼=
H2(X \D4, S3;Z), one may ask the minimum of the genera g(S) of compact oriented
surfaces S in X that are bounded by K and represent α. This is a relative version of
the classical minimal genus problem for closed surfaces in a closed 4-manifold. Let
us consider this problem mainly in the smooth category, and focus on giving lower
bonds on g(S), which we call relative genus bounds. To get an interesting result as
a relative genus bound, such genus bounds are supposed to be described in terms of
certain knot invariants.

There are two typical situations where one may have strong relative genus bounds:

1. The first situation is whenX is a definite 4-manifold. In this case, one may have
genus bounds based on diagonalization-type results, such as Ozsváth–Szabó’s
genus bound using their τ -invariant [43]. The Rasmussen invariant s also may
be effective, not only for X = S4 (see [36]).

2. The other is when X has non-trivial gauge-theoretic invariant, such as Seiberg–
Witten or Bauer–Furuta invariants, or relative versions of them. In this case,
one may have the adjunction inequality as a strong genus bound. See [35] for
a summary of this.

The above two situations have been studied extensively, however, only the followings
seem to appear as relative genus bounds that can be applied to a 4-manifold without
any assumptions on the intersection form and on gauge-theoretic invariants:

(i) Genus bound obtained by applying Manolescu’s relative 10/8-inequality [34]
to the double branched covering of X along S. (See, for example, [28, Theo-
rem A.1].) This genus bound is described in terms of Manolescu’s κ-invariant
[34] of the branched covering of S3 along K.

(ii) Genus bound obtained by applying a relative 10/8-type inequality for a 4-
manifold with involution [28, Theorem 1.1] by Miyazawa, Taniguchi, and the
author to the double branched covering ofX along S equipped with the covering
involution. (See [28, Theorem 1.4].) This genus bound is described in terms
of a variant of the κ-invariant, which is defined in [28] and takes the covering
involution of the branched cover into account, of the branched covering of S3

along K.

(iii) Genus bounds obtained from the G-signature theorem and the Levine–Tristram
signature (see [35, Subsections 3.2 and 3.3] for a summary). Note that these
bounds can be applied also to locally flat topological embeddings, and the
smooth structure of X is not reflected.
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Question 5.3 (H. Konno, J. Miyazawa, M. Taniguchi). Is there a relative genus
bound that can be applied to a 4-manifold without any assumptions on the inter-
section form and on gauge-theoretic invariant, other than the bounds (i), (ii), (iii)
listed above?

6 Gromov hyperbolicity for fine curve graphs

(Erika Kuno)3

Let Sg be a closed orientable surface of genus g. In [4], Bowden, Hensel, and
Webb introduced a new curve graph C†(Sg) called the fine curve graph of Sg whose
vertex is a smoothly-embedded essential simple closed curve (we simply call it a
curve), and whose edge is a pair of disjoint curves. They proved that, similar to the
ordinary curve graphs, the graph C†(Sg) is Gromov hyperbolic.

Since the diffeomorphism groups (or the homeomorphism groups) on surfaces act
naturally on fine curve graphs, we can study these groups via fine curve graphs.
For a closed smooth manifold M , let Diff0(M) denote the group of diffeomorphisms
on M which are isotopic to the identity. In [4], they proved that several natural
norms on Diff0(Sg) (such as the commutator length and the fragmentation norm) are
unbounded if g ≥ 1. This contrasts with the case of higher dimensional manifolds.
This result is obtained by constructing a nontrivial quasimorphism on Diff0(Sg).
Here, a function ϕ : G → R on a group G is called a quasimorphism if its defect

D(ϕ) = sup
g,h∈G

∣∣ϕ(gh)− ϕ(g)− ϕ(h)
∣∣

is finite. A quasimorphism ϕ is homogeneous if ϕ(gn) = nϕ(g) for every g ∈ G and
n ∈ Z. Let QH(G) denote the R-vector space of homogeneous quasimorphisms on
G. Naturally, the space H1(G) = H1(G;R) of homomorphisms from G to R is a
linear subspace of QH(G). The quotient space QH(G)/H1(G) is called the space

of nontrivial quasimorphisms and is denoted by Q̃H(G). Bowden, Hensel, and

Webb [4] also proved that the space Q̃H(Diff0(Sg)) of nontrivial quasimophisms on
Diff0(Sg) is infinite dimensional if g ≥ 1.

Let Ng be a closed nonorientable surface of genus g. Kimura and the author
[26] generalized the above results of Bowden, Hensel, and Webb [4] to Ng of genus
g ≥ 3. Namely, the fine curve graph C†(Ng) is Gromov hyperbolic and the space

of nontrivial quasimorphisms Q̃H(Diff0(Ng)) on Diff0(Ng) is infinite dimensional
for g ≥ 3. Moreover, for g = 2 we proved that the fine curve graph C†(N2) is
Gromov hyperbolic. However, as far as the author is aware, for g = 1 there is
no proof whether the fine curve C†(N1) is Gromov hyperbolic, and for g ≤ 2 we
could not construct a nontrivial quasimorphism on Diff0(Ng). We remark that for
nonorientable surfaces Ng of genus g ≤ 2, we modify the definition of the fine curve

3Department of Mathematics, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho Toyonaka,
Osaka 560-0043, Japan

e-kuno@math.sci.osaka-u.ac.jp
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graph C†(Ng) so that two vertices form an edge if the corresponding curves intersect
at most once.

Question 6.1 (E. Kuno). For g = 1, is C†(N1) Gromov hyperbolic? What is the

dimension of the space of nontrivial quasimorphisms Q̃H(Diff0(Ng)) on Diff0(Ng)
for g ≤ 2?

7 “Extended” Ford domains of Kleinian groups

(Hirotaka Akiyoshi)

The Ford domain of a Kleinian group Γ is the common exterior of the isometric

hemispheres, D(Γ) =
∩

γ∈Γ−Γ∞

E(γ) ⊂ H3, where the upper half space model is used

for the hyperbolic space H3, Γ∞ denotes the stabilizer subgroup of Γ with respect
to ∞ ∈ ∂H3, and E(γ) denotes the exterior of the isometric hemisphere of γ. When
H3/Γ is a hyperbolic manifold with a single cusp, D(Γ) is canonically determined
by setting ∞ to be a parabolic fixed point. In this case, by choosing a fundamental
domain S∞ for the action of Γ∞ on H3, D(Γ) ∩ S∞ is a fundamental domain for
the action of Γ on H3. If moreover M is of finite volume, then D(Γ) is geometric
dual to the canonical decomposition, the ideal polyhedral decomposition defined by
Epstein-Penner [10]. Epstein-Penner’s convex hull construction can be applied to a
cusped manifold of infinite volume to define the EPH-decomposition [1].

Let us consider a natural extension of the Ford domain to the outside of H3 as
follows. The hyperbolic space H3 can be regarded as a subspace of the real projective
space RP3 via projective (or Klein) model, where every totally geodesic plane in H3

is the intersection of a projective plane and H3. The extended Ford domain D̂(Γ) is
the region in RP3 bounded by the planes supporting faces of the Ford domain such

that D̂(Γ) ⊃ D(Γ).
Our naive question is the following.

Question 7.1 (H. Akiyoshi). What is the geometric meaning of the extended Ford
domain?

As is mentioned in my talk, the extended Ford domain is closely related to the
EPH-decomposition.

Problem 7.2 (H. Akiyoshi). Describe the relationship between the combinatorial
structures of the extended Ford domain and the EPH-decomposition for a quasifuch-
sian manifold, or for more general cusped hyperbolic manifolds of infinite volume.

A good starting point might be Furokawa’s example of once-punctured Klein
bottle groups [12, Section 6]. He found a continuous path of once-punctured Klein
bottle groups which produces an extra connected component in the intersection of
the Ford domain with ∂H3.

Problem 7.3 (H. Akiyoshi). Study the extended Ford domains for Furokawa’s exam-
ple, and compare the combinatorial structures for groups before and after producing
the extra connected component.
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I also expect that one can employ extended Ford domain to the theory of convex
projective structures on a manifold with cusps, and vice versa. (There is a huge
theory of convex projective structures. See [7] or [6] for example which seems to be
closely related to this topic.)

Question 7.4 (H. Akiyoshi). Is the developed image
∪
γ∈Γ

D̂(Γ) properly convex in

RP3? For such a group Γ, how are the hyperbolic structure of H3/Γ and the convex

projective structure of
( ∪

γ∈Γ

D̂(Γ)
)
/Γ related?
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