Floer K-theory for knots

Hokuto Konno joint work with Jin Miyazawa and Masaki Taniguchi

The University of Tokyo

2022.5.25 Intelligence of Low-dimensional Topology at RIMS & Online

Overview in one slide

Today we consider **Seiberg–Witten** Floer *K*-theory (which is only existing Floer *K*-theory in low-dimensional topology for now)

 through double
branched cover

 Floer K-theory for 3-mfds with involution \longrightarrow Floer K-theory for knots

 4-dimensional
 $\begin{cases} cobordism \\ between knots \end{cases}$

 10/8-inequality for 4-mfds with ∂ & invol. \longrightarrow "10/8-inequality for knots"

 through double

branched cover

- 10/8-inequality: Constraint on smooth spin 4-mfds from SW K-theory (originally given by Furuta for closed 4-manifolds)
- Our "10/8-inequality for knots" detects difference between topological & smooth categories in 4D aspects of knot theory.
- Applications: stablizing numbers, relative genus bounds

2 Floer *K*-theory for involutions, and for knots

1 Applications: Stabilizing numbers and relative genus bounds

2 Floer *K*-theory for involutions, and for knots

Outcomes of our framework in knot theory

Two applications of our framework to 4D aspects of knot theory:

- 1 Topological stabilizing number vs. Smooth stabilizing number
- 2 Relative genus bounds

Toward stabilizing number: H-sliceness

Today we consider only *oriented* knots in S^3 .

Definition

A knot *K* is *smoothly H*-slice in a closed 4-manifold *X* if *K* bounds a null-homologus smoothly and properly embedded disk in $X \setminus intD^4$.

The *topological H-sliceness* is also defined by considering locally flat topological embeddings of disks.

Basic Question

Given a knot K and X^4 , is K smoothly/topologically H-slice in X?

A quantitative question of this kind ~ stablizing number

Stablizing number for a knot

- · $\forall K$ is C^{∞} -slice in $S^2 \times S^2$ (Norman 1969), but not H-slice in general.
- But $\forall K$ is H-slice in $\#_N S^2 \times S^2$ for $N \gg 0$, if Arf(K) = 0. (Cochran–Orr–Teichner (2003), Schneiderman (2010))

The *smooth/topological stabilizing numbers* are defined by

 $\operatorname{sn}(K) := \min \left\{ N \ge 0 \mid K \text{ is smoothly H-slice in } \#_N S^2 \times S^2 \right\},$

 $\operatorname{sn}^{\operatorname{Top}}(K) := \min \left\{ N \ge 0 \mid K \text{ is topologically H-slice in } \#_N S^2 \times S^2 \right\}$ for a knot *K* with $\operatorname{Arf}(K) = 0$.

By definition, we have $\operatorname{sn}^{\operatorname{Top}}(K) \leq \operatorname{sn}(K)$.

Question: Conway-Nagel (2020)

Is there a knot K with Arf(K) = 0 such that

 $0 < \operatorname{sn}^{\operatorname{Top}}(K) < \operatorname{sn}(K) \quad ?$

Our result: the affirmative answer to this question, and more:

Stablizing number: C^0 vs. C^{∞}

Reminder: Question by Conway–Nagel (2020)

Is there a knot K with $\operatorname{Arf}(K) = 0$ such that $0 < \operatorname{sn}^{\operatorname{Top}}(K) < \operatorname{sn}(K)$?

Our result: the affirmative answer to this question, and more:

Theorem (K.–Miyazawa–Taniguchi (2021))

There exists a knot K with Arf(K) = 0 such that

• We have $0 < \operatorname{sn}^{\operatorname{Top}}(K) < \operatorname{sn}(K)$,

•
$$\operatorname{sn}^{\operatorname{Top}}(\#_n K) > 0$$
 for all $n > 0$, and

$$\lim_{n\to\infty}(\operatorname{sn}(\#_n K)-\operatorname{sn}^{\operatorname{Top}}(\#_n K))=\infty.$$

Concretely, K = T(3, 11) (and some other torus knots) satisfies the above properties.

Outcomes of our framework in knot theory

Two applications of our framework to 4D aspects of knot theory:

- 1 Topological stabilizing number vs. Smooth stabilizing number
- 2 Relative genus bounds

4-manifold genus of a knot

- The 4-genus or slice genus of a knot K is defined as the minimal genus of surfaces bounded by K in D⁴. This is a classical invariant of knots (1962, Fox).
- A natural generalization of 4-genus is defined by replacing D⁴ with a given 4-manifold:

Definition: 4-manifold genus of a knot

 $\begin{array}{l} \mathsf{K}: \mathsf{knot}, X: \mathsf{closed} \ 4\text{-mfd}, \ \alpha \in H_2(X; \mathbb{Z}) \cong H_2(X \setminus \mathrm{int} D^4, S^3; \mathbb{Z}) \\ g_{X,\alpha}(\mathsf{K}): \mathrm{min} \ \mathrm{of} \ \mathrm{genus} \ \mathrm{of} \ \mathrm{an} \ (\mathrm{oriented}, \ \mathrm{cpt}, \ \mathrm{properly} \ \mathrm{and}) \ \mathrm{smoothly} \\ \mathrm{emb.} \ \mathrm{surface} \ S \ \mathrm{in} \ X \setminus \mathrm{int} D^4 \ \mathrm{with} \ \partial S = \mathsf{K}, \ [S, \partial S] = \alpha \\ g_{X,\alpha}^{\mathrm{Top}}(\mathsf{K}) \ \mathrm{cm} \ \mathrm{defined} \ \mathrm{by} \ \mathrm{locally} \ \mathrm{flat} \ \mathrm{topologically} \ \mathrm{embedded} \ \mathrm{surfaces} \end{array}$

Big difference between topological and smooth 4-genera

Reminder: Definition of 4-manifold genus of a knot

K : knot in S³, X : closed 4-manifold, $\alpha \in H_2(X; \mathbb{Z})$

 $g_{X,\alpha}(K)$: min of genus of an (oriented, cpt, properly and) smoothly emb. surface *S* in $X \setminus \text{int}D^4$ with $\partial S = K$, $[S, \partial S] = \alpha$

• $g_{S^4,0}(K) = (4$ -genus of K)

- Study of g_{X,α}(U) = minimal genus problem for closed surfaces (a classical problem in 4D topology)
- Many known results on bounds on $g_{X,\alpha}$ and $g_{X,\alpha}^{\text{Top}}$

Remark: Big difference between topological and smooth 4-genera

$$\lim_{n \to \infty} \left(g_{S^4,0}(K_n) - g_{S^4,0}^{\text{Top}}(K_n) \right) = \infty \quad \text{for} \quad K_n = T(3, 12n - 1)$$

(Follows from the solution to the Milnor conjecture by Kronheimer–Mrowka (1993), and upper bounds on g^{Top} by Baader–Banfield–Lewark (2020))

Big difference between 4-manifold genera

Remark: Big difference between topological and smooth 4-genera

$$\lim_{n \to \infty} (g_{S^4,0}(K_n) - g_{S^4,0}^{\text{Top}}(K_n)) = \infty \quad \text{for} \quad K_n = T(3, 12n - 1)$$

Instead of $(S^4, 0)$, the same claim holds for a **negative-definite** X and every $\alpha \in H_2(X; \mathbb{Z})$ (using the τ -invariant by Ozváth–Szabó)

Our result: Find a big difference also for indefinite X

Theorem (K.–Miyazawa–Taniguchi (2021))

There exists a knot K' with the following property:

 $\forall X :$ oriented closed smooth 4-manifold with $H_1(X; \mathbb{Z}) = 0$, $\forall \alpha \in H_2(X; \mathbb{Z})$ with $2|\alpha$ and $\alpha/2 = PD(w_2(X)) \mod 2$, $\forall K :$ knot,

$$\lim_{n\to\infty} \left(g_{X,\alpha}(K\#(\#_nK')) - g_{X,\alpha}^{\operatorname{Top}}(K\#(\#_nK')) \right) = \infty$$

e.g. K' = T(3, 11) (and some other torus knots) is the case.

Summary of applications to knots

Two applications of our framework to 4D aspects of knot theory:

- **1** Topological stabilizing number vs. Smooth stabilizing number ... we proved these two notions are essentially different.
- 2 Relative genus bounds
 - ··· we showed $g_{X,\alpha}^{\text{Top}}$ and $g_{X,\alpha}$ have a big difference for all *X* with *H*₁(*X*; ℤ) = 0, without any restriction on the intersection form.

Floer K-theory for knots

Floer K-theory for involutions, and for knots

1 Applications: Stabilizing numbers and relative genus bounds

2 Floer K-theory for involutions, and for knots

Recall: Overview

Today we consider **Seiberg–Witten** Floer *K*-theory (which is only existing Floer *K*-theory in low-dimensional topology for now)

 through double
branched cover

 Floer K-theory for 3-mfds with involution

 4-dimensional
cobordism

 10/8-inequality for 4-mfds with ∂ & invol.

 10/8-inequality for 4-mfds with ∂ & invol.

 *10/8-inequality for knots

branched cover

- 10/8-inequality: Constraint on smooth spin 4-mfds from SW K-theory (originally given by Furuta for closed 4-manifolds)
- Our "10/8-inequality for knots" detects difference between topological & smooth categories in 4D aspects of knot theory.
- Applications: stablizing numbers, relative genus bounds

Three Backgrounds

The 10/8-inequality is a constraint on **spin** smooth 4-manifolds from Seiberg–Witten *K*-theory

- The original one is due to Furuta (2001) for closed spin 4-manifolds.
- Manolescu (2014) extended Furuta's 10/8-inequality to spin 4-manifolds with ∂ using Seiberg–Witten Floer K-theory.
- On the other hand, Y. Kato (2022) gave a "with involution" version of the 10/8-inequality.

Our construction of Floer *K*-theory for involutions is a hybrid of Manolescu' construction and Kato's.

Furuta's 10/8-inequality

Theorem (Furuta (2001))

W: oriented closed spin smooth indefinite 4-manifold, then $\frac{5}{4}|\sigma(W)|+2\leq b_2(W).$

- If σ(W) ≤ 0, (above inequality) ⇔ −σ(W)/8 + 1 ≤ b⁺(W), (b⁺(W) : the max-dim of positive-def. subspaces of H₂(W))
- This is a strong constraint on smooth *indefinite* 4-manifolds (complementary to Donaldson's diagonalization for definite 4-manifolds)
- The proof: Apply K-theory to a finite-dim. approximation of the SW equations (called the Bauer–Furuta invariant).
 - based on the compactness of the moduli space (feature of SW)
 - No alternative proof by another gauge theory (e.g. Yang–Mills, Heegaard Floer) is known.

Manolescu's relative 10/8-inequality

Manolescu defined an invariant $\kappa(Y, t) \in \frac{1}{8}\mathbb{Z}$ of a spin rational homology 3-sphere (Y, t) with the following property:

Theorem (Manolescu (2014))

Let *W* be a smooth, compact, oriented spin cobordism from (Y_0, t_0) to (Y_1, t_1) . Then we have $-\frac{\sigma(W)}{8} + \kappa(Y_0, t_0) - 1 \le b^+(W) + \kappa(Y_1, t_1).$

 $\kappa(Y, t)$ is denied by applying *K*-theory to Manolescu's Seiberg–Witten Floer stable homotopy type

Manolescu's SW Floer homotopy type and Floer K-theory

- (Y,t) : spin^c rational homology 3-sphere
- SWF(Y,t): SWF stable homotopy type (pointed "space" acted by S¹, or Pin(2) = S¹ ⊔ jS¹(⊂ ℍ) if t is spin)
- $H^*_{S^1}(SWF(Y, t))$: (S¹-equiv) SW Floer (co)homology
- K_{Pin(2)}(SWF(Y,t)) : (Pin(2)-equiv) SW Floer K-theory
- HM(Y,t) : monopole Floer (co)homology due to Kronheimer–Mrowka

Kato's 10/8-inequality for involutions

Theorem (Kato (2021))

W: oriented closed spin smooth 4-manifold

 $\iota: W \to W$: smooth involution that preserves the orientation and spin structure such that the fixed-point set W^{ι} is of codimension-2 Then we have

$$-\frac{\sigma(W)}{16} \leq b^+(W) - b_\iota^+(W),$$

 $(b_{\iota}^{+}(W))$: the max-dim of positive-definite subspaces of $H_{2}(W; \mathbb{R})^{\iota}$

Kato defined and used an involutive symmetry on the SW equations by combing ι with the "charge conjugation" (different from usual equivariant theory, and it is crucial in applications).

Relative 10/8-inequality for involutions

- (Y, t): oriented spin rational homology 3-sphere.
- $\iota: Y \to Y$: smooth involution that preserves the orientation and spin structure such that the fixed-point set Y^{ι} is of codimension-2

We define an invariant $\kappa(Y, t, \iota) \in \frac{1}{16}\mathbb{Z}$ of the triple (Y, t, ι) using SW Floer *K*-theory, and derive the following property:

Main Theorem for involutions: K–Miyazawa–Taniguchi (2021)

Let $(W, \mathfrak{s}, \iota_W)$ be a compact oriented smooth spin cobordism with involution from $(Y_0, \mathfrak{t}_0, \iota_0)$ to $(Y_1, \mathfrak{t}_1, \iota_1)$ with $b_1(W) = 0$. Then: $-\frac{\sigma(W)}{16} + \kappa(Y_0, \mathfrak{t}_0, \iota_0) \le b^+(W) - b_{\iota}^+(W) + \kappa(Y_1, \mathfrak{t}_1, \iota_1).$

Comparison of the statements of Manolescu/Kato/KMT

Theorem (Manolescu (2014))

$$\begin{split} W:(Y_0,t_0) &\to (Y_1,t_1): \text{spin cobordism. Then we have} \\ &-\frac{\sigma(W)}{8} + \kappa(Y_0,t_0) - 1 \leq b^+(W) + \kappa(Y_1,t_1). \end{split}$$

Theorem (Kato (2021))

 $\iota \curvearrowright W$: spin involution with codim $W^{\iota} = 2$. Then we have $-\frac{\sigma(W)}{16} \le b^{+}(W) - b_{\iota}^{+}(W),$

Main Theorem for involutions (K-Miyazawa-Taniguchi (2021))

 $\begin{aligned} (W,\mathfrak{s},\iota) &: (Y_0,\mathfrak{t}_0,\iota_0) \to (Y_1,\mathfrak{t}_1,\iota_1) : \text{spin cobordism with involution} \\ \text{with codim } W^\iota &= 2. \text{ Then we have} \\ &- \frac{\sigma(W)}{16} + \kappa(Y_0,\mathfrak{t}_0,\iota_0) \leq b^+(W) - b_\iota^+(W) + \kappa(Y_1,\mathfrak{t}_1,\iota_1). \end{aligned}$

Construction of Floer K-theory for involutions

 $Y \rightsquigarrow CSD : C(Y) \rightarrow \mathbb{R}$: functional on a Hilbert space (\leftrightarrow SW eq) $\iota: Y \to Y \&$ "charge conj" \rightsquigarrow invol. $I: C(Y) \to C(Y)$ (3D ver. of Kato's) (Y, ι) : spin rational homology 3-sphere with involution *I*, Pin(2) $\mathbb{C}(CSD : C(Y) \to \mathbb{R})$: functional on a Hilbert space (\leftrightarrow SW eq) I-invariant part (cf. Kato) $\mathbb{Z}_{4}\mathbb{C}(CSD^{I}: C(Y)^{I} \to \mathbb{R})$: *I*-invariant part (\leftrightarrow *I*-invariant part of SW eq) finite dim. approx. (cf. Furuta, Manolescu) $\mathbb{Z}_{4}\mathbb{C}(\mathbb{RC}(\text{finite dim. space}))$: finite dim. dynamical system Conley index (cf. Manolescu) $\mathbb{Z}_4 CSWF(Y, \iota)$: "*I*-invariant" SWF stable homotopy type $K_{\mathbb{Z}/4}$ $K_{\mathbb{Z}/4}(SWF(Y,\iota))$: Floer K-theory for (Y, ι)

K-theoretic knot concordance invariant

K: a knot $\rightsquigarrow \Sigma(K)$: the double branched cover of S^3 along K $\Sigma(K)$ is a \mathbb{Z}_2 -homology 3-sphere with covering involution ι_K .

$$\kappa(K) := \kappa(\Sigma(K), \mathfrak{t}, \iota_K) \in \frac{1}{16}\mathbb{Z},$$

where t is the unique spin structure.

Basic Properties of $\kappa(K)$

•
$$\kappa(K)$$
 is a knot concordance invariant.

• $\kappa(-K) = \kappa(K)$ (-*K* : orientation reversal)

•
$$\kappa(K) + \kappa(K^*) \ge 0$$
 (K^{*} : mirror)

•
$$2\kappa(K) \equiv -\frac{\sigma(K)}{8}$$
 in $(\frac{1}{8}\mathbb{Z})/2\mathbb{Z} \cong \mathbb{Z}/16\mathbb{Z}$

Via double branched cover, Main Theorem for involutions implies the following key property of $\kappa(K)$:

10/8-inequality for knots

Main Theorem for knots: K-Miyazawa-Taniguchi (2021)

- K, K': knots in S^3
- W: compact oriented smooth cobordism from S^3 to S^3 with $H_1(W; \mathbb{Z}) = 0$
- S : an oriented compact smoothly embedded cobordism from K to K' in W, with 2|[S] and $[S]/2 = PD(w_2(W)) \mod 2$ Then we have

$$-\frac{\sigma(W)}{8}+\frac{9}{32}[S]^2+\frac{9}{16}\sigma(K)+\kappa(K)\leq b^+(W)+g(S)+\frac{9}{16}\sigma(K')+\kappa(K').$$

Computations of $\kappa(K)$

Reminder: Main Theorem for knots: KMT (2021)

$$-\frac{\sigma(W)}{8}+\frac{9}{32}[S]^2+\frac{9}{16}\sigma(K)+\kappa(K)\leq b^+(W)+g(S)+\frac{9}{16}\sigma(K')+\kappa(K').$$

 $\kappa(K)$ is computable for 2-bridge knots and many torus knots:

- $\kappa(K(p,q)) = -\sigma(K(p,q))/16$ for coprime p, q with p odd.
- $\kappa(T(p,q)) = -\overline{\mu}(\Sigma(2,p,q))/2$ for coprime odd p,qHere $\overline{\mu}$ is the Neumann–Siebenmann invariant (combinatorial)

For connected sums and crossing changes,

- $\kappa(K \# K') = \kappa(K) + \kappa(K')$ if K' is one of above knots.
- If K_1 is obtained from K_2 by positive crossing changes, $\kappa(K_2) - \kappa(K_1) \le \frac{9}{16}(\sigma(K_1) - \sigma(K_2)).$

Overview in one slide

Today we consider **Seiberg–Witten** Floer *K*-theory (which is only existing Floer *K*-theory in low-dimensional topology for now)

Floer *K*-theory for 3-mfds with involution \longrightarrow Floer *K*-theory for knots 4-dimensional $\left\{ \begin{array}{c} cobordism \\ between knots \end{array} \right\}$ 10/8-inequality for 4-mfds with ∂ & invol. \longrightarrow "10/8-inequality for knots" through double

branched cover

through double

- 10/8-inequality: Constraint on smooth spin 4-mfds from SW K-theory (Furuta: closed 4-mfds, Manolescu: 4-mfds with ∂)
- Our "10/8-inequality for knots" detects difference between topological & smooth categories in 4D aspects of knot theory.
- Applications: stablizing numbers, relative genus bounds