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Floer K-theory for knots

Overview in one slide

Today we consider Seiberg—Witten Floer K-theory (which is only
existing Floer K-theory in low-dimensional topology for now)

through double
branched cover

Floer K-theory for 3-mfds with involution ~~~~ Floer K-theory for knots

4-dimensional cobordism
cobordism between knots

”

10/8-inequality for 4-mfds with d & invol. ~~~ “10/8-inequality for knots
through double

branched cover
m 10/8-inequality: Constraint on smooth spin 4-mfds from SW
K-theory (originally given by Furuta for closed 4-manifolds)
m Our “10/8-inequality for knots” detects difference between
topological & smooth categories in 4D aspects of knot theory.
m Applications: stablizing numbers, relative genus bounds



Floer K-theory for knots

Outlines

Applications: Stabilizing numbers and relative genus bounds

Floer K-theory for involutions, and for knots
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Outcomes of our framework in knot theory

Two applications of our framework to 4D aspects of knot theory:
Topological stabilizing number vs. Smooth stabilizing number
Relative genus bounds



Floer K-theory for knots

LApplications: Stabilizing numbers and relative genus bounds

Toward stabilizing number: H-sliceness

Today we consider only oriented knots in S2.

Definition

A knot K is smoothly H-slice in a closed 4-manifold X if K bounds a
null-homologus smoothly and properly embedded disk in X \ intD*.

D S*

KF ) ) ~K

The topological H-sliceness is also defined by considering locally
flat topological embeddings of disks.

Basic Question
Given a knot K and X4, is K smoothly/topologically H-slice in X?

A quantitative question of this kind ~» stablizing number
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Stablizing number for a knot

VK is C*®-slice in S? x S? (Norman 1969), but not H-slice in general.
- But VK is H-slice in #5S? x S2 for N > 0, if Arf(K) = 0.
(Cochran—Orr—Teichner (2003), Schneiderman (2010))

The smooth/topological stabilizing numbers are defined by
sn(K) := min{ N > 0 | K is smoothly H-slice in #yS? x %},
sn'™P(K) := min{ N > 0 | K is topologically H-slice in #xS? x S%}
for a knot K with Arf(K) = 0.
By definition, we have sn™P(K) < sn(K).
Question: Conway—Nagel (2020)
Is there a knot K with Arf(K) = 0 such that
0 < sn™(K) < sn(K) ?

Our result: the affirmative answer to this question, and more:
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Stablizing number: C° vs. C*

Reminder: Question by Conway—Nagel (2020)
Is there a knot K with Arf(K) = 0 such that
0 < sn™P(K) < sn(K) ?
Our result: the affirmative answer to this question, and more:
Theorem (K.—Miyazawa—Taniguchi (2021))

There exists a knot K with Arf(K) = 0 such that
m We have 0 < sn™P(K) < sn(K),
m sn'™P(#,K) > 0 for all n > 0, and

(sn(#,K) — sn™P(#,K)) = .

lim
n—oo

Concretely, K = T(3,11) (and some other torus knots) satisfies
the above properties.
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4-manifold genus of a knot

m The 4-genus or slice genus of a knot K is defined as the
minimal genus of surfaces bounded by K in D*. This is a
classical invariant of knots (1962, Fox).

m A natural generalization of 4-genus is defined by replacing D*
with a given 4-manifold:

Definition: 4-manifold genus of a knot

K : knot, X : closed 4-mfd, @ € Ha(X;Z) = Ho(X \ intD*, S3; Z)
9x.«(K) : min of genus of an (oriented, cpt, properly and) smoothly
emb. surface S in X \ intD* with 9S = K, [S,4S] = «

g;‘fg(K) « defined by locally flat topologically embedded surfaces
53

?C % | =«
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Big difference between topological and smooth 4-genera

Reminder: Definition of 4-manifold genus of a knot

K : knot in S3, X : closed 4-manifold, a € Hp(X; Z)
9x.o(K) : min of genus of an (oriented, cpt, properly and) smoothly
emb. surface S in X \ intD* with 6S = K, [S,3S] = «
B gs:o(K) =(4-genus of K)
m Study of gx(U) = minimal genus problem for closed surfaces
(a classical problem in 4D topology)

Tt
m Many known results on bounds on gx., and g, "

Remark: Big difference between topological and smooth 4-genera

. T
lim (9540(Kn) = ggin(Kn)) = 0o for Kp=T(3,12n~1)

(Follows from the solution to the Milnor conjecture by
Kronheimer—Mrowka (1993), and upper bounds on g™ by
Baader—Banfield—Lewark (2020))
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Big difference between 4-manifold genera

Remark: Big difference between topological and smooth 4-genera

lim (gs#0(Kn) = gge(Kn)) = o0 for Ky =T(3,12n—1)

n—oo
Instead of (S*, 0), the same claim holds for a negative-definite X
and every a € Ho(X;Z) (using the 7-invariant by Ozvath—Szabd)

Our result: Find a big difference also for indefinite X

Theorem (K.—Miyazawa—Taniguchi (2021))

There exists a knot K’ with the following property:

VX : oriented closed smooth 4-manifold with Hy(X;Z) = 0,
Ya € Hy(X;Z) with 2| and @/2 = PD(wz(X)) mod 2,

VK : knot,

lim (gxa(K#(#0K) = G0 (K##(#0K))) = o0

e.g. K’ = T(3,11) (and some other torus knots) is the case.
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Summary of applications to knots

Two applications of our framework to 4D aspects of knot theory:

Topological stabilizing number vs. Smooth stabilizing number
- we proved these two notions are essentially different.

Relative genus bounds
- we showed g P and Ox.o have a big difference for all X
with H1(X;Z) = 0 without any restriction on the
intersection form.
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Recall: Overview

Today we consider Seiberg—Witten Floer K-theory (which is only
existing Floer K-theory in low-dimensional topology for now)
through double
branched cover
Floer K-theory for 3-mfds with involution ~~~~ Floer K-theory for knots

cobordism

4-dimensional
cobordism between knots

10/8-inequality for 4-mfds with 9 & invol. ~~~ “10/8-inequality for knots

through double
branched cover

m 10/8-inequality: Constraint on smooth spin 4-mfds from SW
K-theory (originally given by Furuta for closed 4-manifolds)

m Our “10/8-inequality for knots” detects difference between
topological & smooth categories in 4D aspects of knot theory.

m Applications: stablizing numbers, relative genus bounds
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Three Backgrounds

The 10/8-inequality is a constraint on spin smooth 4-manifolds
from Seiberg-Witten K-theory
m The original one is due to Furuta (2001) for closed spin
4-manifolds.
m Manolescu (2014) extended Furuta’s 10/8-inequality to spin
4-manifolds with 9 using Seiberg—Witten Floer K-theory.
m On the other hand, Y. Kato (2022) gave a “with involution”
version of the 10/8-inequality.
Our construction of Floer K-theory for involutions is a hybrid of
Manolescu’ construction and Kato’s.
extend to

Closed 4-manifolds (Furuta) —Wh3_. 4 -manifolds with d (Manolescu)

with involutionﬂ ﬂwith involution

Closed 4-manifolds with invol.(Kato)emo4-manifolds with d and invol. (K—M-T)
with 0
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Furuta’s 10/8-inequality

Theorem (Furuta (2001))

W: oriented closed spin smooth indefinite 4-manifold, then

%a(wn +2 < by(W).

m If o(W) < 0, (above inequality) & —o(W)/8 + 1 < b (W),
(b™ (W) : the max-dim of positive-def. subspaces of Ha(W))
m This is a strong constraint on smooth indefinite 4-manifolds
(complementary to Donaldson’s diagonalization for definite
4-manifolds)
m The proof: Apply K-theory to a finite-dim. approximation of
the SW equations (called the Bauer—Furuta invariant).
m based on the compactness of the moduli space (feature of SW)
m No alternative proof by another gauge theory (e.g. Yang—Mills,
Heegaard Floer) is known.
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Manolescu’s relative 10/8-inequality

Manolescu defined an invariant (Y, t) € %Z of a spin rational
homology 3-sphere (Y, t) with the following property:

Theorem (Manolescu (2014))

Let W be a smooth, compact, oriented spin cobordism from
(Yo, to) to (Y1,t1). Then we have
a(W
—% + (Yo, to) =1 < b+(W) + k(Y1,t1).
k(Y,1) is denied by applying K-theory to Manolescu’s
Seiberg-Witten Floer stable homotopy type
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Manolescu’s SW Floer homotopy type and Floer K-theory

SWF(Y, 1)

) Kpin(2)
IHm \

(Y.1) Hg (SWF(Y, 1)) Kpin(2) (SWF(Y. 1))
I?ll Lidman—Manolescu

HM(Y 1)

(Y, 1) : spin® rational homology 3-sphere
SWF(Y,t) : SWF stable homotopy type (pointed “space”
acted by S', or Pin(2) = S' L jS"(c H) if t is spin)
Hg, (SWF(Y,1)) : (S'-equiv) SW Floer (co)homology
Kpin(2) (SWF(Y., 1)) : (Pin(2)-equiv) SW Floer K-theory
HM(Y,t) : monopole Floer (co)homology

due to Kronheimer—Mrowka
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Kato’s 10/8-inequality for involutions

Theorem (Kato (2021))

W : oriented closed spin smooth 4-manifold
t : W — W : smooth involution that preserves the orientation and
spin structure such that the fixed-point set W* is of codimension-2
Then we have
w

T < bt (w) - (W)
(b (W) : the max-dim of positive-definite subspaces of Ha(W; R)")
Kato defined and used an involutive symmetry on the SW

equations by combing ¢ with the “charge conjugation” (different
from usual equivariant theory, and it is crucial in applications).
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Relative 10/8-inequality for involutions

m (Y,t) : oriented spin rational homology 3-sphere.

m (: Y — Y : smooth involution that preserves the orientation
and spin structure such that the fixed-point set Y* is of
codimension-2

We define an invariant «(Y,,¢) € {5Z of the triple (Y,1,:) using
SW Floer K-theory, and derive the following property:

Main Theorem for involutions: K—Miyazawa—Taniguchi (2021)

Let (W, s, ) be a compact oriented smooth spin cobordism with
involution from (Yo, to, ¢0) to (Y1, t1,¢1) with by (W) = 0. Then:
o(W

_T) + «(Yo, to,t0) < bT(W) - bt+(W) + k(Y1,t1,01).
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Comparison of the statements of Manolescu/Kato/KMT
Theorem (Manolescu (2014))

W : (Yo,t0) — (Yi1,t1) : spin cobordism. Then we have
w
—¥ +K(Yo,to) -1< b+(W) +K(Y1,t1).

Theorem (Kato (2021))

t ~ W : spin involution with codim W* = 2. Then we have
w
T < b (w) - b (),

Main Theorem for involutions (K—Miyazawa—Taniguchi (2021))

(W,s,¢) : (Yo,to,t0) = (Y1,t1,¢1) : spin cobordism with involution
with codim W* = 2. Then we have
a(W)

—T + K(Yo,to,Lo) < b+(W) = bl+(W) + K(Y1,f1,L1).
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Construction of Floer K-theory for involutions

Y~» CSD : C(Y) — R : functional on a Hilbert space (< SW eq)
t: Y > Y & “charge conj’~ invol. [ : C(Y) — C(Y) (3D ver. of Kato’s)

(Y,0) : spin rational homology 3-sphere with involution

I, Pin(2)C (CSD : C(Y) - R) : functional on a Hilbert space (<> SW eq)
“I-invariant part (cf. Kato)

Z4C(CSD’ C(Y) - R) : l-invariant part (< I-invariant part of SW eq)
Tfnite cim. approx. (cf. Furuta, Manolescu)

Z4C (RC(finite dim. space)) : finite dim. dynamical system

"Conley index (cf. Manolescu)

Z4CSWF(Y, 1) : “l-invariant” SWF stable homotopy type

Kz/4

Kz/4(SWF(Y,1)) : Floer K-theory for (Y,¢)
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K-theoretic knot concordance invariant
K : a knot ~» ¥(K) : the double branched cover of S® along K
Y (K) is a Zp-homology 3-sphere with covering involution k.
1
k(K) := k(X(K),t, k) € —=Z,

16
where t is the unique spin structure.

Basic Properties of x(K)

k(K) is a knot concordance invariant.

-K) = «(K) (=K : orientation reversal)
K) +«(K*) >0 (K" : mirror)

2x(K) = -2 in (1z)/2Z = Z/16Z

=
—~~ —~

|
|
m K
|

Via double branched cover, Main Theorem for involutions implies
the following key property of x(K):
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10/8-inequality for knots

Main Theorem for knots: K—Miyazawa—Taniguchi (2021)

m K,K’ : knots in S®
m W : compact oriented smooth cobordism from S2 to S with
H{(W;Z) =0
m S : an oriented compact smoothly embedded cobordism from
K to K" in W, with 2|[S] and [S]/2 = PD(w»(W)) mod 2
Then we have

_¥ + %[8]2 + %U(K) +k(K) < b*(W)+9(S) + %U(K') +K(K').



Floer K-theory for knots

LFloer K-theory for involutions, and for knots

Computations of k(K)

Reminder: Main Theorem for knots: KMT (2021)

'5’ wh

a(W)
8
k(K) is computable for 2-bridge knots and many torus knots:

+ oIS+ 20 (K) +(K) < bY (W) + (8) + oo (K') 4 #(K").

m «(K(p,q)) = —o(K(p,q))/16 for coprime p, g with p odd.

m «(T(p.q)) = -u(X(2,p.q))/2 for coprime odd p,
Here i is the Neumann—Siebenmann invariant (combinatorial)

For connected sums and crossing changes,
B k(K#K") = k(K) + k(K") if K" is one of above knots.
m If K; is obtained from K> by positive crossing changes,
k(K2) — k(K1) < 2(0(Ky) — o(K2)).
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Overview in one slide

Today we consider Seiberg—Witten Floer K-theory (which is only
existing Floer K-theory in low-dimensional topology for now)

through double
branched cover

Floer K-theory for 3-mfds with involution ~~~~ Floer K-theory for knots

4-dimensional cobordism
cobordism between knots

”

10/8-inequality for 4-mfds with d & invol. ~~~ “10/8-inequality for knots
through double

branched cover
m 10/8-inequality: Constraint on smooth spin 4-mfds from SW
K-theory (Furuta: closed 4-mfds, Manolescu: 4-mfds with 9)
m Our “10/8-inequality for knots” detects difference between
topological & smooth categories in 4D aspects of knot theory.
m Applications: stablizing numbers, relative genus bounds
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