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Floer K-theory for knots

Overview in one slide
Today we consider Seiberg–Witten Floer K-theory (which is only
existing Floer K-theory in low-dimensional topology for now)

Floer K-theory for 3-mfds with involution

through double
branched cover

//

4-dimensional
cobordism

��

Floer K-theory for knots

cobordism
between knots
��

10/8-inequality for 4-mfds with ∂ & invol.
through double
branched cover

// “10/8-inequality for knots”

10/8-inequality: Constraint on smooth spin 4-mfds from SW
K-theory (originally given by Furuta for closed 4-manifolds)
Our “10/8-inequality for knots” detects difference between
topological & smooth categories in 4D aspects of knot theory.
Applications: stablizing numbers, relative genus bounds
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Applications: Stabilizing numbers and relative genus bounds

Outcomes of our framework in knot theory

Two applications of our framework to 4D aspects of knot theory:

1 Topological stabilizing number vs. Smooth stabilizing number

2 Relative genus bounds
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Applications: Stabilizing numbers and relative genus bounds

Toward stabilizing number: H-sliceness
Today we consider only oriented knots in S3.

Definition

A knot K is smoothly H-slice in a closed 4-manifold X if K bounds a
null-homologus smoothly and properly embedded disk in X \ intD4.

焱邐
が パ[樋<

The topological H-sliceness is also defined by considering locally
flat topological embeddings of disks.

Basic Question

Given a knot K and X4, is K smoothly/topologically H-slice in X?

A quantitative question of this kind⇝ stablizing number
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Applications: Stabilizing numbers and relative genus bounds

Stablizing number for a knot
・∀K is C∞-slice in S2 ×S2 (Norman 1969), but not H-slice in general.
・But ∀K is H-slice in #NS2 × S2 for N ≫ 0, if Arf(K) = 0.

(Cochran–Orr–Teichner (2003), Schneiderman (2010))

The smooth/topological stabilizing numbers are defined by

sn(K) := min
{

N ≥ 0
∣∣∣ K is smoothly H-slice in #NS2 × S2

}
,

snTop(K) := min
{

N ≥ 0
∣∣∣ K is topologically H-slice in #NS2 × S2

}
for a knot K with Arf(K) = 0.

By definition, we have snTop(K) ≤ sn(K).

Question: Conway–Nagel (2020)

Is there a knot K with Arf(K) = 0 such that

0 < snTop(K) < sn(K) ?

Our result: the affirmative answer to this question, and more:
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Stablizing number: C0 vs. C∞

Reminder: Question by Conway–Nagel (2020)

Is there a knot K with Arf(K) = 0 such that
0 < snTop(K) < sn(K) ?

Our result: the affirmative answer to this question, and more:

Theorem (K.–Miyazawa–Taniguchi (2021))

There exists a knot K with Arf(K) = 0 such that

We have 0 < snTop(K) < sn(K),

snTop(#nK) > 0 for all n > 0, and

lim
n→∞

(sn(#nK) − snTop(#nK)) = ∞.

Concretely, K = T(3, 11) (and some other torus knots) satisfies
the above properties.
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4-manifold genus of a knot
The 4-genus or slice genus of a knot K is defined as the
minimal genus of surfaces bounded by K in D4. This is a
classical invariant of knots (1962, Fox).
A natural generalization of 4-genus is defined by replacing D4

with a given 4-manifold:

Definition: 4-manifold genus of a knot

K : knot, X : closed 4-mfd, α ∈ H2(X ;Z) � H2(X \ intD4,S3;Z)
gX ,α(K) : min of genus of an (oriented, cpt, properly and) smoothly

emb. surface S in X \ intD4 with ∂S = K , [S, ∂S] = α

gTop
X ,α(K)f defined by locally flat topologically embedded surfaces焱邐

が パ[樋<
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Applications: Stabilizing numbers and relative genus bounds

Big difference between topological and smooth 4-genera
Reminder: Definition of 4-manifold genus of a knot

K : knot in S3, X : closed 4-manifold, α ∈ H2(X ;Z)
gX ,α(K) : min of genus of an (oriented, cpt, properly and) smoothly

emb. surface S in X \ intD4 with ∂S = K , [S, ∂S] = α

gS4,0(K) =(4-genus of K)
Study of gX ,α(U) = minimal genus problem for closed surfaces
(a classical problem in 4D topology)
Many known results on bounds on gX ,α and gTop

X ,α

Remark: Big difference between topological and smooth 4-genera

lim
n→∞

(
gS4,0(Kn) − gTop

S4,0
(Kn)
)
= ∞ for Kn = T(3, 12n − 1)

(Follows from the solution to the Milnor conjecture by
Kronheimer–Mrowka (1993), and upper bounds on gTop by
Baader–Banfield–Lewark (2020))
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Applications: Stabilizing numbers and relative genus bounds

Big difference between 4-manifold genera
Remark: Big difference between topological and smooth 4-genera

lim
n→∞

(
gS4,0(Kn) − gTop

S4,0
(Kn)
)
= ∞ for Kn = T(3, 12n − 1)

Instead of (S4, 0), the same claim holds for a negative-definite X
and every α ∈ H2(X ;Z) (using the τ-invariant by Ozváth–Szabó)

Our result: Find a big difference also for indefinite X

Theorem (K.–Miyazawa–Taniguchi (2021))

There exists a knot K ′ with the following property:
∀X : oriented closed smooth 4-manifold with H1(X ;Z) = 0,
∀α ∈ H2(X ;Z) with 2|α and α/2 = PD(w2(X)) mod 2,
∀K : knot,

lim
n→∞

(
gX ,α(K#(#nK ′)) − gTop

X ,α(K#(#nK ′))
)
= ∞

e.g. K ′ = T(3, 11) (and some other torus knots) is the case.
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Applications: Stabilizing numbers and relative genus bounds

Summary of applications to knots

Two applications of our framework to 4D aspects of knot theory:

1 Topological stabilizing number vs. Smooth stabilizing number
· · · we proved these two notions are essentially different.

2 Relative genus bounds
· · · we showed gTop

X ,α and gX ,α have a big difference for all X
with H1(X ;Z) = 0, without any restriction on the
intersection form.
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Outlines

1 Applications: Stabilizing numbers and relative genus bounds

2 Floer K-theory for involutions, and for knots
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Recall: Overview

Today we consider Seiberg–Witten Floer K-theory (which is only
existing Floer K-theory in low-dimensional topology for now)

Floer K-theory for 3-mfds with involution

through double
branched cover

//

4-dimensional
cobordism

��

Floer K-theory for knots

cobordism
between knots
��

10/8-inequality for 4-mfds with ∂ & invol.
through double
branched cover

// “10/8-inequality for knots”

10/8-inequality: Constraint on smooth spin 4-mfds from SW
K-theory (originally given by Furuta for closed 4-manifolds)
Our “10/8-inequality for knots” detects difference between
topological & smooth categories in 4D aspects of knot theory.
Applications: stablizing numbers, relative genus bounds
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Floer K-theory for involutions, and for knots

Three Backgrounds
The 10/8-inequality is a constraint on spin smooth 4-manifolds
from Seiberg–Witten K-theory

The original one is due to Furuta (2001) for closed spin
4-manifolds.
Manolescu (2014) extended Furuta’s 10/8-inequality to spin
4-manifolds with ∂ using Seiberg–Witten Floer K-theory.
On the other hand, Y. Kato (2022) gave a “with involution”
version of the 10/8-inequality.

Our construction of Floer K-theory for involutions is a hybrid of
Manolescu’ construction and Kato’s.

Closed 4-manifolds (Furuta)
extend to

with ∂ +3

with involution
��

4-manifolds with ∂ (Manolescu)

with involution
��

Closed 4-manifolds with invol.(Kato)
extend to

with ∂

+3 4-manifolds with ∂ and invol. (K–M–T)
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Furuta’s 10/8-inequality

Theorem (Furuta (2001))

W: oriented closed spin smooth indefinite 4-manifold, then
5
4
|σ(W)|+ 2 ≤ b2(W).

If σ(W) ≤ 0, (above inequality)⇔ −σ(W)/8 + 1 ≤ b+(W),
(b+(W) : the max-dim of positive-def. subspaces of H2(W))

This is a strong constraint on smooth indefinite 4-manifolds
(complementary to Donaldson’s diagonalization for definite
4-manifolds)
The proof: Apply K-theory to a finite-dim. approximation of
the SW equations (called the Bauer–Furuta invariant).

based on the compactness of the moduli space (feature of SW)
No alternative proof by another gauge theory (e.g. Yang–Mills,
Heegaard Floer) is known.
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Manolescu’s relative 10/8-inequality

Manolescu defined an invariant κ(Y , t) ∈ 1
8Z of a spin rational

homology 3-sphere (Y , t) with the following property:

Theorem (Manolescu (2014))

Let W be a smooth, compact, oriented spin cobordism from
(Y0, t0) to (Y1, t1). Then we have

−σ(W)

8
+ κ(Y0, t0) − 1 ≤ b+(W) + κ(Y1, t1).

κ(Y , t) is denied by applying K-theory to Manolescu’s
Seiberg–Witten Floer stable homotopy type



Floer K-theory for knots

Floer K-theory for involutions, and for knots

Manolescu’s SW Floer homotopy type and Floer K-theory

SWF(Y , t)
_

H∗
S1

��

� KPin(2)

))

(Y , t)
0

77

�

''

H∗S1(SWF(Y , t))
OO

� Lidman–Manolescu
��

KPin(2)(SWF(Y , t))

HM(Y , t)
(Y , t) : spinc rational homology 3-sphere
SWF(Y , t) : SWF stable homotopy type (pointed “space”
acted by S1, or Pin(2) = S1 ⊔ jS1(⊂ H) if t is spin)
H∗S1(SWF(Y , t)) : (S1-equiv) SW Floer (co)homology
KPin(2)(SWF(Y , t)) : (Pin(2)-equiv) SW Floer K-theory
HM(Y , t) : monopole Floer (co)homology

due to Kronheimer–Mrowka
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Kato’s 10/8-inequality for involutions

Theorem (Kato (2021))

W : oriented closed spin smooth 4-manifold
ι : W → W : smooth involution that preserves the orientation and
spin structure such that the fixed-point set W ι is of codimension-2
Then we have

−σ(W)

16
≤ b+(W) − b+

ι (W),

(b+
ι (W) : the max-dim of positive-definite subspaces of H2(W ;R)ι)

Kato defined and used an involutive symmetry on the SW
equations by combing ι with the “charge conjugation” (different
from usual equivariant theory, and it is crucial in applications).
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Relative 10/8-inequality for involutions

(Y , t) : oriented spin rational homology 3-sphere.

ι : Y → Y : smooth involution that preserves the orientation
and spin structure such that the fixed-point set Y ι is of
codimension-2

We define an invariant κ(Y , t, ι) ∈ 1
16Z of the triple (Y , t, ι) using

SW Floer K-theory, and derive the following property:

Main Theorem for involutions: K–Miyazawa–Taniguchi (2021)

Let (W , s, ιW ) be a compact oriented smooth spin cobordism with
involution from (Y0, t0, ι0) to (Y1, t1, ι1) with b1(W) = 0. Then:

−σ(W)

16
+ κ(Y0, t0, ι0) ≤ b+(W) − b+

ι (W) + κ(Y1, t1, ι1).
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Comparison of the statements of Manolescu/Kato/KMT
Theorem (Manolescu (2014))

W : (Y0, t0)→ (Y1, t1) : spin cobordism. Then we have

−σ(W)

8
+ κ(Y0, t0) − 1 ≤ b+(W) + κ(Y1, t1).

Theorem (Kato (2021))

ι↷ W : spin involution with codim W ι = 2. Then we have

−σ(W)

16
≤ b+(W) − b+

ι (W),

Main Theorem for involutions (K–Miyazawa–Taniguchi (2021))

(W , s, ι) : (Y0, t0, ι0)→ (Y1, t1, ι1) : spin cobordism with involution
with codim W ι = 2. Then we have

−σ(W)

16
+ κ(Y0, t0, ι0) ≤ b+(W) − b+

ι (W) + κ(Y1, t1, ι1).
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Construction of Floer K-theory for involutions
Y⇝ CSD : C(Y)→ R : functional on a Hilbert space (↔ SW eq)
ι : Y → Y & “charge conj”⇝ invol. I : C(Y)→ C(Y) (3D ver. of Kato’s)

(Y , ι)
_

��

: spin rational homology 3-sphere with involution

I,Pin(2) ⟲ (CSD : C(Y)→ R)
_

I-invariant part (cf. Kato)
��

: functional on a Hilbert space (↔ SW eq)

Z4 ⟲
(
CSD I : C(Y)I → R

)
_

finite dim. approx. (cf. Furuta, Manolescu)
��

: I-invariant part (↔ I-invariant part of SW eq)

Z4 ⟲ (R ⟲ (finite dim. space))
_

Conley index (cf. Manolescu)
��

: finite dim. dynamical system

Z4 ⟲ SWF(Y , ι)
_

KZ/4
��

: “I-invariant” SWF stable homotopy type

KZ/4(SWF(Y , ι)) : Floer K-theory for (Y , ι)
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K-theoretic knot concordance invariant

K : a knot⇝ Σ(K) : the double branched cover of S3 along K
Σ(K) is a Z2-homology 3-sphere with covering involution ιK .

κ(K) := κ(Σ(K), t, ιK ) ∈
1
16
Z,

where t is the unique spin structure.

Basic Properties of κ(K)

κ(K) is a knot concordance invariant.

κ(−K) = κ(K) (−K : orientation reversal)

κ(K) + κ(K ∗) ≥ 0 (K ∗ : mirror)

2κ(K) ≡ −σ(K)
8 in (1

8Z)/2Z � Z/16Z

Via double branched cover, Main Theorem for involutions implies
the following key property of κ(K):
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10/8-inequality for knots
Main Theorem for knots: K–Miyazawa–Taniguchi (2021)

K ,K ′ : knots in S3

W : compact oriented smooth cobordism from S3 to S3 with
H1(W ;Z) = 0
S : an oriented compact smoothly embedded cobordism from
K to K ′ in W, with 2|[S] and [S]/2 = PD(w2(W)) mod 2

Then we have

−σ(W)

8
+

9
32

[S]2 +
9
16
σ(K)+ κ(K) ≤ b+(W)+g(S)+

9
16
σ(K ′)+ κ(K ′).

なてら ぼ

17 かな
+1

紝づ 7 なをたきが

か、た

恵 煎薄
・

焏亹
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Computations of κ(K)

Reminder: Main Theorem for knots: KMT (2021)

なてら ぼ

17 かな
+1

紝づ 7 なをたきが

か、た

恵 煎薄
・

焏亹
−σ(W)

8
+

9
32

[S]2 +
9
16
σ(K)+ κ(K) ≤ b+(W)+g(S)+

9
16
σ(K ′)+ κ(K ′).

κ(K) is computable for 2-bridge knots and many torus knots:

κ(K(p, q)) = −σ(K(p, q))/16 for coprime p, q with p odd.

κ(T(p, q)) = −µ̄(Σ(2, p, q))/2 for coprime odd p, q
Here µ̄ is the Neumann–Siebenmann invariant (combinatorial)

For connected sums and crossing changes,

κ(K#K ′) = κ(K) + κ(K ′) if K ′ is one of above knots.

If K1 is obtained from K2 by positive crossing changes,
κ(K2) − κ(K1) ≤ 9

16(σ(K1) − σ(K2)).
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