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The mapping class group and the Johnson homomorphism

Σg,1 :=

· : H1(Σg,1,Z)⊗H1(Σg,1;Z) → Z : the intersection form

Aut(H1(Σg,1;Z), ·) ∼= Sp(2g,Z)
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The mapping class group and the Johnson homomorphism

Definition (the mapping class group of Σg,1)

Mg,1 := Diff+(Σg,1, ∂Σg,1)/Diff0(Σg,1, ∂Σg,1)

Definition (Dehn twist)

・Bounding Pair map (BP-map)

BP (γ1, γ2) = Tγ1T
−1
γ2
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The mapping class group and the Johnson homomorphism

H = H1(Σg,1,Z), π = π1(Σg,1)

Definition (the Torelli group)

The action Mg,1 → Aut(H) preserves the intersection form.
ρ : Mg,1 → Aut(H, ·) ∼= Sp(H, ·) ∼= Sp(2g;Z) : the symplectic representation
Ig,1 := Ker(ρ) : the Torelli group

BP-map ∈ Ig,1

Definition (Johnson kernel)

Kg,1 := 〈Dehn twists along separating closed curves〉 : the Johnson kernel

Kg,1 � Ig,1 �Mg,1
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The mapping class group and the Johnson homomorphism

Γ1 = π, Γn = [Γn−1, π] : The lower central series of the fundamental group

Definition (the (first) Johnson homomorphism)

1 → Γ2/Γ3 → π/Γ3 → π/Γ2
∼= H → 1 : a central extension

Γ2/Γ3
∼=

∧2H as Mg,1-modules ([x, y] ↔ x ∧ y)

τg,1(1) : Ig,1 → Hom(H,Γ2/Γ3) ∼= H∗ ⊗
∧2H ∼= H ⊗

∧2H

f 7→ ([γ] 7→ f∗(γ)γ−1)∧3H ∼= {x⊗ (y ∧ z) + y ⊗ (z ∧ x) + z ⊗ (x ∧ y)|x, y, z ∈ H} ⊂ H ⊗
∧2H

Sp(2g;Z)-submodule
τg,1(1) : Ig,1 →

∧3H : the (first) Johnson homomorphism

Kg,1 := 〈DDehn twists along separating closed curves〉

1 → Kg,1 → Ig,1
τg,1(1)−−−−→

∧3H → 0 (Johnson)
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The mapping class group and the Johnson homomorphism

The mapping class group and the Johnson homomorphism for Σg,∗, Σg

Mg,∗ : = Diff+(Σg,∗, {∗})/Diff0(Σg,∗, {∗})

Mg : = Diff+(Σg)/Diff0(Σg)

Ig,∗ and Ig are defined similarly. These act trivially on H.

Mg,1 → Mg,∗ → Mg

Ig,1 → Ig,∗ → Ig
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The mapping class group and the Johnson homomorphism

The (first) Johnson homomorphism τg,∗(1) : Ig,∗ →
∧3H for Σg,∗ is defined similarly.

But, Mg does not act on π1(Σg). It acts as an outer automorphism on π1(Σg).

τg(1) : Ig →
∧3H/H :=

∧3H/τg,∗(1)(Ker(Ig,∗ → Ig))
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The action on vector fields and the Chillingworth subgroup

1 The mapping class group and the Johnson homomorphism

2 The action on vector fields and the Chillingworth subgroup

3 The Casson-Morita homomorphism

4 Main theorem and outline of the proof
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The action on vector fields and the Chillingworth subgroup

Let Ξ(Σg,1) be the set of homotopy classes of nonsingular vector fields on Σg,1. Mg,1 acts on
Ξ(Σg,1).
H1(Σg,1) acts freely and transitively on Ξ(Σg,1).

Definition

X ∈ Ξ(Σg,1). Let γ be an oriented regular closed curve on Σg,1.
The winding number ωX(γ) is defined by the number of times its tangent transversely
intersects with the section of the unit tangent bundle UTΣg,1 → Σg,1 induced by X.
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The action on vector fields and the Chillingworth subgroup

Definition

For X ∈ Ξ(Σg,1),

eX : Mg,1 → H1(Σg,1;Z),

f 7→ ([γ] 7→ ωX(f ◦ γ)− ωX(γ))

is called the Chillingworth homomorphism.

The Chllingworth homomorphism eX is NOT a homomorphism but a crossed homomorphism.
i.e., eX(fg) = eX(g) + (g−1)∗eX(f)
Ker(eX) := e−1

X (0) is the subgroup whose elements preserve X ∈ Ξ(Σg,1). (the framed
mapping class group)
eX depends on X ∈ Ξ(Σg,1) as a map from Mg,1.
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The action on vector fields and the Chillingworth subgroup

Definition

The restriction of the Chillingworth homomorphism on the Torelli group eX |Ig,1 is no longer
independent of the choice of X ∈ Ξ(Σg,1), and it is a homomorphism. The kernel of this
homomorphism

Chg,1 := Ker(eX |Ig,1)

is called the Chillingworth subgroup.

We have Chg,1 = Ker(Mg,1 ↷ Ξ(Σg,1)).
[eX ] ∈ H1(Mg,1,H

(∗)) ∼= Z is a generator.
k : Mg,1 → H is trivial on the Chillingworth subgroup.
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The action on vector fields and the Chillingworth subgroup

Let tf ∈ H be the Poincaré dual of eX(f) ∈ H1(Σg,1,Z). tf is called the Chillingworth class.

C3 :
∧3H → H is defined by C3(x ∧ y ∧ z) = (x · y)z + (y · z)x+ (z · x)y. C3 is

Sp(2g;Z)-equivariant and called the contraction.
U := Ker(C3)

τg,1(1) = τg,1(1)|Chg,1 : Chg,1 → U ⊂
∧3H
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The action on vector fields and the Chillingworth subgroup

Kg,1 = Ker(τg,1(1)) (Johnson)

Chg,1 �Mg,1

Kg,1 � Chg,1 � Ig,1
Kg,∗ � Chg,∗ � Ig,∗

Kg � Chg
finite
� Ig

・Ig/Chg ∼= (Z/(g − 1)Z)2g -(K.)

・For g = 2, K2,1 = Ch2,1, K2,∗ = Ch2,∗, K2 = Ch2 = I2

・Chg,1 = 〈〈B0 = Tγ′
2
Tγ′

3

−1〉〉Kg,1 - (K.)
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The action on vector fields and the Chillingworth subgroup

Collapsing the boundary of Σg,1 to the based point
0 → Z → Ig,1 → Ig,∗ → 1
0 → Z → Chg,1 → Chg,∗ → 1
0 → Z → Kg,1 → Kg,∗ → 1

Forgetting the based point of Σg,∗
1 → π1(Σg) → Ig,∗ → Ig → 1
1 → [π1(Σg), π1(Σg)] → Chg,∗ → Chg → 1 -(K.)
1 → [π1(Σg), π1(Σg)] → Kg,∗ → Kg → 1
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The Casson-Morita homomorphism

1 The mapping class group and the Johnson homomorphism

2 The action on vector fields and the Chillingworth subgroup

3 The Casson-Morita homomorphism

4 Main theorem and outline of the proof
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The Casson-Morita homomorphism

The Casson-Morita ”map” is defined by a boundary of a certain 2-cocycle of the mapping
class group.
・the Meyer cocycle τ : Mg,1 ×Mg,1 → Z is characterized by the signature of the surface
bundle over a pair of pants with given monodromies.

・the intersection cocycle c : Mg,1 ×Mg,1 → Z is defined by c(φ, ψ) := k(φ) · k(ψ−1) where
[k] ∈ H1(Mg,1,H

(∗)) ∼= Z is a generator.
[c+ 3τ ] = 0 in H2(Mg,1;Z) and H1(Mg,1;Z) ∃! d : Mg,1 → Z s.t. δd = c+ 3τ

d(ϕψ) = d(ϕ) + d(ψ)− k(ϕ) · k(ψ−1)− 3τ(ϕ,ψ)
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The Casson-Morita homomorphism

・d|Chg,1 : Chg,1 → Z is a Mg,1-inavariant homomorphism. i.e., d(f−1hf) = d(h)

・d(Dehn twist along the boundary of a genus h subsurface) = 4h(h− 1)

・d(Chg,1) = d(Kg,1) = 8Z

・Ker(d|Kg,1 : Kg,1 → Z) = 〈Tγ′
1
〉[Kg,1,Mg,1] - (Faes)

・Ker(d : Chg,1 → Z) = 〈〈B0 = Tγ′
2
Tγ′

3

−1〉〉〈Tγ′
1
〉[Kg,1,Mg,1] - (K.)
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Main theorem and outline of the proof
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4 Main theorem and outline of the proof
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Main theorem and outline of the proof

The rational abelianization of the Torelli group is induced by the Johnson homomorphism.

τg,1(1) : Ig,1 → (
∧3H)⊗Q

(Ig,1)ab
∼=−→ (

∧3H)⊕ (2-torsions)

(τg,1(1), d) : Chg,1 → (U ⊕ Z)⊗Q
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Main theorem and outline of the proof

1 → Kg,1 → Chg,1
τg,1(1)−−−−→ U → 1

・the inflation-restriction exact sequence:

→ H2(Chg,1;Q)
(τg,1(1))∗−−−−−−→

∧2 U ⊗Q → H1(Kg,1;Q)U → H1(Chg,1;Q)
(τg,1(1))∗−−−−−−→ U ⊗Q → 0

By taking the tensor product −⊗Q, we can use representation theory of Sp(2g;Q).
Every finite dimensional polynomial representation of Sp(2g;Q) is parametrized by Young
diagrams, and these representations are naturally isomorphic to their dual representation.
e.g., [1] = HQ ∼= (HQ)

∗ as representations of Sp(2g,Q)
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Main theorem and outline of the proof

Example (irreducible decompositions of Sp(2g;Q))

(
∧3H)Q =

∧3HQ = [13]Sp + [1]Sp (g ≥ 3)
(
∧3H/H)Q =

∧3HQ/HQ = [13]Sp (g ≥ 3)
UQ = [13]Sp (g ≥ 3) (U := Ker(C3 :

∧3H → H))
Especially, UQ →

∧3HQ →
∧3HQ/HQ is an isomorphism as a representation of Sp(2g;Q).

H2(U ;Q) ∼=
∧2 UQ =

∧2[13]Sp =
[0]Sp + [22]Sp + [12]Sp + [2212]Sp + [14]Sp + [16]Sp (g ≥ 6)

[0]Sp + [22]Sp + [12]Sp + [2212]Sp + [14]Sp (g = 5)

[0]Sp + [22]Sp + [12]Sp + [2212]Sp (g = 4)

[0]Sp + [22]Sp (g = 3)

(Hain)

Theorem (Hain)

Ker
(
(τg(1))

∗ : H2(
∧3H/H;Q) → H2(Ig;Q)

)
= [0]Sp + [22]Sp (g ≥ 3)

小菅亮太朗 (東大数理) The rational abelianization of the Chillingworth subgroup of the mapping class group of a surfaceMay 25, 2023 22 / 31



Main theorem and outline of the proof

Example (irreducible decompositions of Sp(2g;Q))

(
∧3H)Q =

∧3HQ = [13]Sp + [1]Sp (g ≥ 3)
(
∧3H/H)Q =

∧3HQ/HQ = [13]Sp (g ≥ 3)
UQ = [13]Sp (g ≥ 3) (U := Ker(C3 :

∧3H → H))
Especially, UQ →

∧3HQ →
∧3HQ/HQ is an isomorphism as a representation of Sp(2g;Q).

H2(U ;Q) ∼=
∧2 UQ =

∧2[13]Sp =
[0]Sp + [22]Sp + [12]Sp + [2212]Sp + [14]Sp + [16]Sp (g ≥ 6)

[0]Sp + [22]Sp + [12]Sp + [2212]Sp + [14]Sp (g = 5)

[0]Sp + [22]Sp + [12]Sp + [2212]Sp (g = 4)

[0]Sp + [22]Sp (g = 3)

(Hain)

Theorem (Hain)

Ker
(
(τg(1))

∗ : H2(
∧3H/H;Q) → H2(Ig;Q)

)
= [0]Sp + [22]Sp (g ≥ 3)

小菅亮太朗 (東大数理) The rational abelianization of the Chillingworth subgroup of the mapping class group of a surfaceMay 25, 2023 22 / 31



Main theorem and outline of the proof

Theorem (K.)

Ker
(
(τg,1(1))

∗ : H2(U ;Q) → H2(Chg,1;Q)
)
=

{
[0]Sp + [22]Sp + [12]Sp (g ≥ 4)

[0]Sp + [22]Sp (g = 3)

Chg,1 ↪→ Ig,1 → Ig [13] = (
∧3H/H)Q ∼= UQ

[0]Sp + [22]Sp ⊂ Ker((τg,1(1))
∗ : H2(U ;Q) → H2(Chg,1;Q))
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Main theorem and outline of the proof

By taking the dual of [0]Sp + [22]Sp ⊂ Ker((τg,1(1))
∗ : H2(U ;Q) → H2(Chg,1;Q))

Im ((τg,1(1))∗ : H2(Chg,1;Q) → H2(U ;Q)) ⊂


[12]Sp + [2212]Sp + [14]Sp + [16]Sp (g ≥ 6)

[12]Sp + [2212]Sp + [14]Sp (g = 5)

[12]Sp + [2212]Sp (g = 4)

{0} (g = 3)

• [2212]Sp (g ≥ 4)

• [14]Sp (g ≥ 5)

• [16]Sp (g ≥ 6)

are contained in Im. (i)

• [12]Sp (g ≥ 4)

is NOT contained in Im. (ii)
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Main theorem and outline of the proof

(i)
Using abelian cycles
G : a group, A : a free abelian group, T : G→ A : a homomorphism

Im(H2(G;Z)
T∗−→ H2(A;Z))

For an arbitrary homomorphism c : Z2 → G induces a homomorphism

H2(Z2;Z) c∗−→ H2(G;Z)
T∗−→ H2(A;Z)

and the value of a generator of H2(Z2;Z) ∼= Z is T (c(e1)) ∧ T (c(e2)) ∈ H2(A;Z) ∼=
∧2A.
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Main theorem and outline of the proof

e1 7→BP (b4, δ)BP (b4, µ)
−1BP (b4, λ)

−1 = Tb4
−1Tδ

−1TµTλ

e2 7→BP (b4, µ)BP (b4, λ)
−2 = Tb4

−1Tµ
−1Tλ

2

∧2 UQ →
∧2(

∧3HQ)
i2∧3 HQ−−−−→

⊗2(
∧3HQ)

id∧3 HQ
⊗jHQ

−−−−−−−−→ (
∧3HQ)⊗HQ ⊗ (

∧2HQ)
ϕ3,1
HQ

⊗id∧2 HQ−−−−−−−−−→ (
∧4HQ)⊗ (

∧2HQ) ⊃ [2212]Sp
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Main theorem and outline of the proof

e1 7→BP (b3, δ
′)BP (b3, ν

′)
−2

= Tb3
−1Tδ′

−1Tν′
2

e2 7→BP (b5, δ
′′)BP (b5, ν

′′)
−4

= Tb5
−3Tδ′′

−1Tν′′
4

∧2 UQ →
∧2(

∧3HQ)
i2∧3 HQ−−−−→

⊗2(
∧3HQ)

ϕ
H

3,3
Q−−−→

∧6HQ
C6−→

∧4HQ ⊃ [14]Sp∧2 UQ →
∧2(

∧3HQ)
i2∧3 HQ−−−−→

⊗2(
∧3HQ)

ϕ
H

3,3
Q−−−→

∧6HQ ⊃ [16]Sp
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Main theorem and outline of the proof

(ii)

Im(τg,1(2))⊗Q =

{
[0]Sp + [22]Sp + [12]Sp (g ≥ 4)

[0]Sp + [22]Sp (g = 3)

Mg,1[n] = Ker(Mg,1 → Aut(π/Γn+1)) : the Johnson filtration
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Main theorem and outline of the proof

Theorem (Faes-Massuyeau)

For g ≥ 6, H1(Kg,1;Q) ∼= (Kg,1)
ab ⊗Q is given by

(d, rθ2,3) : Kg,1 → Q⊕ (T2(HQ)⊕Ker(Tr3)) as Mg,1-modules.

Lemma (K.)

For g ≥ 6, H1(Kg,1;Q)U ∼= ((Kg,1)
ab ⊗Q)U is isomorphic to

Q⊗ T2(HQ) ∼= [0]Sp + ([0]Sp + [22]Sp + [12]Sp) as Sp(2g;Q)-modules.

Theorem (K.)

For g ≥ 6, the rational abelianization of the Chillingworth subgroup is given by
d⊕ τg,1(1) : Chg,1 → Q⊕ UQ ∼= [0]Sp + [13]Sp as Sp(2g,Q)-modules.
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Main theorem and outline of the proof
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