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Introduction

Kashaev constructed the Kashaev invariant and observed that
a certain limit of the invariant for some hyperbolic knots is
equal to the hyperbolic volume of their complements.

Murakami-Murakami proved that the Kashaev invariant
coincides with the colored Jones polynomial evaluated at the
root of unity, and generalized the conjecture (= the volume
conjecture).

Yokota considered a “potential function” of the Kashaev
invariant, and established the relationship between a saddle
point equation and triangulation of a hyperbolic knot
complement.

Cho-Murakami considered a potential function of the colored

Jones polynomial JN (L; q = e
2π

√
−1

N ) for a hyperbolic link L.
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Introduction

Upshot of Yokota and Cho-Murakami’s theory

The saddle point equation of the potential function coincides with
the “gluing equation” of the triangulation.

In this talk, we will consider the potential function of

Ji(L; q = e
2π

√
−1

N ).

The potential function has parameters derived from colors.

This talk is based on

Pacific Journal of Mathematics 322-1 (2023), 171-194. DOI
10.2140/pjm.2023.322.171 (arXiv:2207.00992)

arXiv:2212.09294
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The Colored Jones Polynomial

The colored Jones polynomial is defined either
skein-theoretically (Figure 1) or as an operator invariant.

. 
. 
.

n strings

the Jones-Wenzl
idempotent

. . .

. . .

Figure 1: The skein-theoretical definition of the colored Jones
polynomial.

In this talk, we use the definition as an operator invariant.
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The Operator Invariant

R

R

R−1

R−1

V ⊗ V ′ ⊗ V ′′

Figure 2: R-matrices and
crossings.

An R-matrix R is the operator that
satisfies

R12R23R12 = R23R12R23,

where

R12 = R⊗ id,

R23 = id⊗R.

We assign R-matrices to crossings
as shown in Figure 2

We can construct R-matrices from
representaions of quantum groups.
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The R-matrix for the Colored Jones Polynomial

Let r > 1 be an integer, and let s = e
π
√
−1
r .

Let Ar be the algebra generated by X, Y, K, K with the
following relations:

K = K−1, KX = sXK, KY = s−1Y K,

XY − Y X =
K2 −K

2

s− s−1
,

Xr = Y r = 0, K4r = 1.

For an integer k, we put

{k}s = sk − s−k, {k}s! = {k}s · · · {1}s, {0}s! = 1,

[k]s =
{k}s
{1}s

, [k]s! = [k]s · · · [1]s, [0]s! = 1.
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The R-matrix for the Colored Jones Polynomial

Let N be a positive integer and m be the half-integer
satisfying N = 2m+ 1.

Let V be an N -dimensional vector space with a basis
{e−m, e−m+1, . . . , em}.
We can define an N -dimensional irreducible representaion of
Ar by

Xei = [m− i+1]sei−1, Y ei = [m+ i+1]sei+1, Kei = s−iei.
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The R-matrix for the Colored Jones Polynomial

Let N ′ be a positive integer and m′ be the half-integer
satisfying N ′ = 2m′ + 1.

Let V ′ be an N ′-dimensional vector space with a basis
{e′−m′ , e′−m′+1, . . . , e

′
m′}.

The R-matrix obtained from the irreducible representation is

RV V ′(ei ⊗ e′j) =

min{m+i, m′−j}∑
k=0

{m− i+ k}s!{m′ + j + k}s!
{k}s!{m− i}s!{m′ + j}s!

× s2ij+k(i−j)− k(k+1)
2 e′j+k ⊗ ei−k.
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The R-matrix for the Colored Jones Polynomial

The operator invariant obtained from the above 2-dimensional
representation coincides with the Jones polynomial under
substitution s = −q−

1
2 .

For an n-component link L ⊂ S3, the colored Jones
polynomial Ji(L; q) with a multi-integer i = (i1, . . . , in) is
determined by the quantum R-matrix R : V ⊗ V ′ → V ′ ⊗ V

RV V ′(ei ⊗ e′j)

=

min{m+i, m′−j}∑
k=0

(−1)k+k(m+m′)+2ijq−ij− k(i−j)
2

+
k(k+1)

4

× {m− i+ k}!{m′ + j + k}!
{k}!{m− i}!{m′ + j}!

e′j+k ⊗ ei−k,

where

{k} = q
k
2 − q−

k
2 , {k}! = {k}{k − 1} · · · {1}, {0}! = 1.
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The Colored Jones Polynomial

We put

RV V ′(ei ⊗ e′j) =
∑
k,l

(R+)klije
′
k ⊗ el,

R−1
V V ′(e

′
i ⊗ ej) =

∑
k,l

(R−)klijek ⊗ e′l.

We assign (R±)klij to each crossing of the diagram:

(R+)klij :

i j

k l

i j

k l

(R−)klij :

We assign (−1)N−1q±i to each maximum point of the
diagram:

i i(−1)N−1qi : (−1)N−1q−i :
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The Colored Jones Polynomial

In this talk, we change the indices i, j, k, l to the ones
labeled to each regions around the crossing:

i

kl | kr : i = kl − kr

We obtain the R-matrix R±(m,m′, kj1 , kj2 , kj3 , kj4), where
kj1 , kj2 , kj3 , kj4 are indeces as shown in Figure 3.

kj1

kj4

kj3
kj2

kj1

kj4

kj3
kj2

Figure 3: Indices around a crossing.
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The Colored Jones Polynomial

i, j, k and kj1 , . . . , kj4 satisfy

i =kj2 − kj1 ,

j =kj3 − kj2 ,

k = kj2+kj4 − kj1 − kj3 .

The colored Jones polynomial Ji(L; q) is the multiplication of
all these factors with modification for the Reidemeister move I.

We normalize the colored Jones polynomial so that

Ji(©· · ·©; q) = 1,

where ©· · ·© is a trivial link.
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The Volume Conjecture

For an integer N , we put ξN = e
2π

√
−1

N .

Conjecture 1 (the Volume Conjecture)

For any knot K,

2π lim
N→∞

log |JN (K; q = ξN )|
N

= v3||K||,

where v3 is the volume of the ideal regular tetrahedron in the
three-dimensional hyperbolic space and || · || is the simplicial
volume for the complement of K.

Remark 1

If K is hyperbolic, v3||K|| is equal to the hyperbolic volume of K.
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The Volume Conjecture

Let u be a primitive r-th root of unity.

Conjecture 2 (the Chen-Yang Conjecture)

For any 3-manifold M with a complete hyperbolic structure of the
finite volume,

2π lim
r→∞

log TVr(M,u = ξr)

r
= Vol(M),

where r runs over all odd integers, TV (M) is a Turaev-Viro
invariant of M and Vol(M) is a hyperbolic volume of M .

Remark 2 (Detcherry-Kalfragianni-Yang ’18)

For an odd integer r ≥ 3, TVr(S
3 \ L, u) can be written as a sum

of |Ji(L;u2)|2 w.r.t i.
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Definition of the potential function

Definition 3 (the potential function)

Suppose that a certain quantity QN can be written as

QN ∼
N→∞

∫
· · ·
∫
Ω
PNe

N
2π

√
−1

Φ(z1,...,zν)dz1 · · · dzν ,

where PN grows at most polynomially and Ω is a region in Cν . We
call this function Φ(z1, . . . , zν) a potential function of QN .

The saddle point of the potential function contributes to the
limit of such integral (=the saddle point method).

In the case of the colored Jones polynomial for a hyperbolic
link, the saddle point equation relates to the geometry of the
link complement.
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The potential function of Ji(L; ξ
p
N)

We fix a diagram D of the n-component hyperbolic link L.

For each crossing c of D, we can obtain the local potential
function Φ±

c,p(a, b, wj1 , wj2 , wj3 , wj4), where p = 1 or 2 and

wji = ξ
kji
N , by approximating the R-matrix with q = ξpN by

continuous functions:

quantum factorial {k}!⇝ Li2(z)

Here, Li2(z) is the dilogarithm function

Li2(z) = −
∫ z

0

log(1− x)

x
dx.

The potential function ΦD,p(a, w1, . . . , wν) is the sum of all
local potential functions, where a = (a1, . . . , an) is an n-tuple

of real numbers aj = limN→∞
ij
N .
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Φ±
c,p

The functions Φ±
c,p are of the form:

wj2

wj3

wj4

wj1

ab

wj2

wj3

wj4

wj1

aa

wj2

wj3

wj4

wj1

ba

wj2

wj3

wj4

wj1

aa

Φ+
c,p = f+(a, b, wj1 , wj2 , wj3 , wj4)

Φ+
c,p = p(π

√
−1a)2 + f+(a, a, wj1 , wj2 , wj3 , wj4)

Φ−
c,p = f−(a, b, wj1 , wj2 , wj3 , wj4)

Φ−
c,p = −p(π

√
−1a)2 + f−(a, a, wj1 , wj2 , wj3 , wj4)

:

:

:

:

p

p

p

p
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f±
p (a, b, wj1, wj2, wj3, wj4)

Let ea = eπ
√
−1a. f±

p (a, b, wj1 , wj2 , wj3 , wj4) are:

f+
p (a, b, wj1 , wj2 , wj3 , wj4) =

1

p

{
π
√
−1p2

a+ b

2
log

wj1wj3

wj2wj4

− p2 log
wj2

wj1

log
wj3

wj2

− Li2

(
epa

wp
j4

wp
j3

)
− Li2

(
epb

wp
j4

wp
j1

)

+ Li2

(
wp

j2
wp

j4

wp
j1
wp

j3

)
+ Li2

(
epa

wp
j1

wp
j2

)
+ Li2

(
epb

wp
j3

wp
j2

)
− π2

6

}
,

f−
p (a, b, wj1 , wj2 , wj3 , wj4) =

1

p

{
−π

√
−1p2

a+ b

2
log

wj1wj3

wj2wj4

+ p2 log
wj3

wj4

log
wj4

wj1

− Li2

(
epa

wp
j1

wp
j4

)
− Li2

(
epb

wp
j3

wp
j4

)

− Li2

(
wp

j2
wp

j4

wp
j1
wp

j3

)
+ Li2

(
epa

wp
j2

wp
j3

)
+ Li2

(
epb

wp
j2

wp
j1

)
+

π2

6

}
.
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D. Thurston’s triangulation

u′′
2

u′
2u2

u5
u4

u3

u1

u′
5

u′
4

u′
3

u′
1

u′′
5

u′′
4

u′′
3

u′′
1

v2

v′2

v′′2

v5
v4

v3

v1

v′5

v′4

v′3

v′1

v′′5v′′4

v′′3

v′′1
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The geometry of the link complement

If all these tetrahedra are glued well, the link complement
admits a hyperbolic structure.

Let M be the hyperbolic link complement. In general, ∂M
has a similarity structure, i.e. a curve γ in ∂M induces the
action of the form

C 3 z 7→ az + b ∈ C, a, b ∈ C.

We call the coefficient a the dilation component of γ and
write δ(γ).

M is complete iff. ∂M admits an Euclidean structure.
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The case where a is fixed

Let L be an n-component hyperbolic link. Since ΦD,p is easily
obtained from ΦD,1, we mainly consider the case where p = 1 and
write ΦD = ΦD,1

When we assume that aj ∈ [1− ε, 1] for all j = 1, . . . , n,
where ε is a sufficiently small positive real number, the system
of equations

∂ΦD

∂wi
= 0, i = 1, . . . , ν

coincides with the “gluing equation”.

z
zz

z
1

2

i
n

edge

z1z2 · · · zn = 1
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The case where a is fixed

wj1

∂Φ+
c

∂wj1

=
π
√
−1

2
(a− b)

+ log u′
1u

′′
3u

′
4 u1 = ea

wj1

wj2

u3 =
wj2wj4

wj1wj3

u4 = e−1
b

wj1

wj4
For a complex number z,

z′ =
1

1− z
, and z′′ = 1− 1

z
.
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The case where a is fixed

Let Gi be a product of moduli of ideal tetrahedra around the
region Ri with wi labeled. Then, we have

wi
∂ΦD

∂wi
=

π
√
−1

2
r(a1, . . . , an) + logGi,

where r(a1, . . . , an) is a linear polynomial w.r.t a1, . . . , an.

We can verify that r(a1, . . . , an) = 0.

A saddle point (σ1(a), . . . , σν(a)) determines a hyperbolic
structure of the link complement, which is not necessarily
complete.

Choose the saddle point such that (σ1(1), . . . , σν(1)) gives a
hyperbolic structure with the volume Vol(M).

Let Ma be a manifold with this hyperbolic structure.
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The dilation components

Let Lj be a component of L with a parameter aj .

the singular set

Figure 4: The developing
image of Ma in H3.

For the meridian mj of the
component Lj ,

δ(mj) = e−2π
√
−1aj .

Figure 4 shows the developing
image of Ma in H3.

Ma is a cone-manifold with
cone-angles 2π(1− aj) around
Lj , j = 1, . . . , n.
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The case where a is variable

When we regard aj (j = 1, . . . , n) as variables, we have

exp

(
1

π
√
−1

∂ΦD

∂aj

)
= δ(l̃j), (1)

where l̃j is the longitude of the component Lj with
lk(l̃j , Lj) = 0.

The saddle point equation w.r.t aj coincides with the
“completeness equation”.

Theorem 4 (S.)

Let D be a diagram of a hyperbolic link with n components, and 1
be (1, . . . , 1) ∈ Zn. The point (1, σ1(1), . . . , σν(1)) is a saddle
point of the function ΦD(a1, . . . , an, w1, . . . , wν) and gives a
complete hyperbolic structure to the link complement.
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Idea of the proof of (1)

1

π
√
−1

∂Φ+
c

∂a
=

1

2
log(u′

2)
−1(u′′

1)
−1u′

1u
′′
2

str
ing

u2 = e−1
a

wj3

wj4

u1 = ea
wj1

wj2
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The Witten-Reshetikhin-Turaev invariant

Let Mf1,...,fn be the hyperbolic manifold obtained by Dehn
surgery on a link L = L1 ∪ · · · ∪ Ln with a framing fj on
Lj (j = 1, . . . , n).

Let αj = eπ
√
−1aj , and Φ(α1, . . . , αn, w1, . . . , wν) be the

potential function of the Witten-Reshetikhin-Turaev invariant
of Mf1,...,fn .

We regard each αj as a complex parameter which is not
necessarily in the unit circle.
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The Witten-Reshetikhin-Turaev invariant

the singular set

longitude

meridian

the inverse of the meridian

Figure 5: The schematic
diagram of the developing
image in the case of fj = 6.

The derivative with respect to αj is

exp

(
αj

∂Φ

∂αj

)
= α

−2fj
j δ(l̃j),

where j = 1, . . . , n.

Recall that δ(mj) = α−2
j .

The saddle point equation implies
that δ(mj)

−fj = δ(l̃j).

Assuming that fj > 0 and
|αj | < 1, the developing image
would be as shown in Figure 5.
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The A-polynomial

Let K be a hyperbolic knot.

A factor of the A-polynomial AK(l,m) is conjectured to be
obtained from the system of equations

exp

(
wi

∂ΦD

∂wi

)
= 1, (i = 1, . . . , ν)

exp

(
α
∂ΦD

∂α

)
= l2

(2)

by eliminating w1, . . . , wν .

The other factor of AK(l,m) is l − 1 that corresponds to
abelian representations.
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Example: figure-eight knot

The colored Jones polynomial of the figure-eight knot is

J(n) = Jn(41; q) =
1

{n}

n−1∑
i=0

{n+ i}!
{n− i− 1}!

.

The potential function Φ(α, x) of Ji(41, ξN ) is

Φ(α, x) = −2 logα log x− Li2(α
2x) + Li2(α

2x−1).

The derivatives of Φ with x and α are

x
∂Φ

∂x
= logα−2(1− α2x)(1− α2x−1),

α
∂Φ

∂α
= 2 log(1− α2x)(x− α2)−1.
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Example: figure-eight knot

From {
α−2(1− α2x)(1− α2x−1) = 1,

(1− α2x)(x− α2)−1 = l,

we obtain

A′
41(l, α) = α4 − l + α2l + 2α4l + α6l − α8l + α4l2

by eliminating x.

In fact, the A-polynomial for 41 is

(l − 1)(m4 − l +m2l + 2m4l +m6l −m8l +m4l2) (3)
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The Aq-polynomial

The Aq-polynomial Aq(K) for a knot K is the polynomial
defined as an annihilator of JK(n) = Jn(K; q).

d∑
i=0

ci(q, q
n)JK(n+ i) = 0 →

(
d∑

i=0

ci(q,Q)Ei

)
JK(n) = 0.

Here, (EJK)(n) = JK(n+ 1) and (QJK)(n) = qnJK(n).

IK = {P ∈ A | PJK(n) = 0} is a left ideal in A, where

A =


d∑

i=0

ci(q,Q)Ei

∣∣∣∣∣∣
d ∈ Z≥0

ci(q,Q) ∈ Z[q,Q]
EQ = qQE

 .
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The AJ conjecture

Definition 5 (Garoufalidis ’04)

The Aq-polynomial Aq(K)(E,Q) for a knot K is an generator
with the smallest E-degree and coprime coefficients of the
annihilating ideal IK in a certain localization of A.

Conjecture 3 (the AJ conjecture)

For any knot K, AK(l,m) is equal to εAq(K)(l,m2) up to
multiplication by an element in Q(m), where ε is the evaluation
map at q = 1.
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Creative telescoping

Let F (n, k1, . . . , kν) be a multi-Z-variable discrete function.
We define the operators Q, E, Qi, Ei (i = 1, . . . , ν) by

(QF )(n, k1, . . . , kν) = qnF (n, k1, . . . , kν),

(EF )(n, k1, . . . , kν) = F (n+ 1, k1, . . . , kν),

(QiF )(n, k1, . . . , kν) = qkiF (n, k1, . . . , kν),

(EiF )(n, k1, . . . , kν) = F (n, k1, . . . , ki + 1, . . . , kν).

These operators generate the noncommutative algebra
Q[q,Q,Qk]〈E,Ek〉 with following relations:

QiQj = QjQi, EiEj = EjEi, EiQj = qδijQjEi,

where i, j ∈ {0, . . . , ν} and E0 = E, Q0 = Q.

F : Zν+1 → Q(q) is called q-hypergeometric if
EiF/F ∈ Q(q, qn, qk1 , . . . , qkν ) holds for all i = 0, . . . , ν.
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Creative telescoping

Theorem 6 (Wilf-Zeilberger ’92)

Every “proper” q-hypergeometric function F (n,k) has a k-free
recurrence ∑

(i,j)∈S

σi,j(q
n)F (n+ i,k + j) = 0,

where S is a finite set, and σi,j are Q(q)-coefficient polynomials.

i.e. ∃P (E,Q,E1, . . . , Eν) ∈ Q[q,Q]〈E,Ek〉 s.t. PF = 0.

Expanding P at (E1, . . . , Eν) = 1ν = (1, . . . , 1), we have

P0(E,Q) +

ν∑
i=1

(Ei − 1)Ri(E,Q,E1, . . . , Eν),

where P0(E,Q) = P (E,Q,1ν), and Ri ∈ Q[q,Q]〈E,Ek〉.
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Creative telescoping

Putting Gi = RiF , we have

P0(E,Q)F (n,k)

= −
ν∑

i=1

(Gi(n, k1, . . . , ki + 1, . . . , kν)−Gi(n, k1, . . . , kν)).

Summing up this equality, we verify that P0(E,Q)G(n) is a
sum of multisums of proper q-hypergeometric functions with
one variable less, where G(n) =

∑
k F (n,k).

Repeating this process, we obtain P1(E,Q)P0(E,Q)G(n) = 0
for a polynomial P1(E,Q).
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Creative telescoping

Note that

P (E,Q,E1, . . . , Eν) ∈ Ann(F ) ∩Q[q,Q]〈E,Ek〉,

where Ann(F ) = {P ∈ Q[q,Q,Qk]〈E,Ek〉 | PF = 0} is an
annihilating ideal of F .

If we put
EiF

F
=

Ri

Si

∣∣∣∣
Q=qn, Qj=qkj

for Ri, Si ∈ Z[q,Q,Qk], then, Ann(F ) is generated by
{SiEi −Ri | i = 0, . . . , ν} ⊂ Q[q,Q,Qk]〈E,Ek〉.
We would be able to obtain P (E,Q,E1, . . . , eν) from

SiEi −Ri = 0, i = 0, . . . , ν

by eliminating Q1, . . . , Qν .
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Example: figure-eight knot revisited

Put

F (n, i) =
1

{n}
{n+ i}!

{n− i− 1}!
.

Calculating EF/F and E1F/F with Q = qn and Q1 = qi,

(E + qQ)Q1(Q− 1) = (1 +QE)(Q− 1), (4)

q2Q2
1Q+ qQ1(−Q2 +QE1 − 1) +Q = 0. (5)

From (4), we have

(1 +QE)Q−1
1 (Q− 1) = (E + qQ)(Q− 1) (6)
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Example: figure-eight knot revisited

Multiplying (5) by q−1Q−1
1 Q−1(Q− 1) from the left,

{qQ1 +Q−1(−Q2 +QE1 − 1) + q−1Q−1
1 }(Q− 1) = 0. (7)

Multiplying (7) by

X(q, E,Q) =
qQ

1− q3Q2
E2+

(
1

1− q3Q2
+

1

1− qQ2
− 1

)
E+

qQ

1− qQ2

from the left and using (4) and (6), we have

P (E,Q,E1) =

{
qQ

1− q3Q2
E1E

2

+

(
1

1− q3Q2
E1 +

1

1− qQ2
E1 + qQ− E1 −

1

qQ

)
E +

qQ

1− qQ2
E1

}
× (Q− 1).
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Example: figure-eight knot revisited

Remark 7

X(q, E,Q) is factorized in two ways:

X(q, E,Q) =

(
qQ

1− q3Q2
E +

1

1− qQ2

)
(E + qQ)

=

(
1

1− q3Q2
E +

qQ

1− qQ2

)
(1 +QE).

P0(E,Q) = P (E,Q, 1) satisfies

P0(E,Q)J(n) + qn+1 + 1 = 0.

Since qn+1 + 1 is annihilated by P1(E,Q) = (E − 1) · 1
1+qQ ,

we have the third order homogeneous recursion relation

P1(E,Q)P0(E,Q)J(n) = 0.
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Example: figure-eight knot revisited

The annihilating polynomial with q = 1 is

εP1(E,Q)P0(E,Q)

=
(E − 1)(Q2 − E +QE + 2Q2E +Q3E −Q4E +Q2E2)

Q(1−Q2)
.

This is equal to (3)

(l − 1)(m4 − l +m2l + 2m4l +m6l −m8l +m4l2)

in the sense of the statement of the AJ conjecture.
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Comparison with the potential function

We would be able to obtain εP0(E,Q) by eliminating
Q1, . . . , Qν from{

ε(SiEi −Ri) |Ei=1= 0 (i = 1, . . . , ν),

ε(SE −R) = 0,
(8)

where S = S0, R = R0.

In the case of the colored Jones polynomial, the system of
equations (8) is equivalent to the system of the equations (2)

exp

(
wi

∂ΦD

∂wi

)
= 1, (i = 1, . . . , ν)

exp

(
α
∂ΦD

∂α

)
= l2.
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Comparison with the potential function

Proposition 8 (S.)

Following equalities hold:

exp

(
wi

∂Φ

∂wi

)
= ε

EiF

F

∣∣∣∣qkj=wj

qm=α

,

exp

(
α
∂Φ

∂α

)
= ε

EmF

F

∣∣∣∣qki=wi
qm=α

,

where Em is an operator that shifts m to m+ 1.
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Figure-eight knot re-revisited

eliminating x

P1(E, Q)P0(E, Q)

inhomogeneous recursion relation

homogeneous recursion relation

(l − 1) A′
41(l, m)

abelian representations

q = 1

{
S1E1 − R1 = 0,
SE − R = 0.

eliminating Q1

E  = 11

q = 1

E  = 11

{
exp x∂Φ

∂x

)
= 1,

exp α∂Φ
∂α

)
= l2.
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Thank you for your attention.
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