On the Potential Function of the Colored Jones Polynomial with Arbitrary Colors

Shun Sawabe
Waseda University

May 26, 2023

Introduction

- Kashaev constructed the Kashaev invariant and observed that a certain limit of the invariant for some hyperbolic knots is equal to the hyperbolic volume of their complements.
- Murakami-Murakami proved that the Kashaev invariant coincides with the colored Jones polynomial evaluated at the root of unity, and generalized the conjecture ($=$ the volume conjecture).
- Yokota considered a "potential function" of the Kashaev invariant, and established the relationship between a saddle point equation and triangulation of a hyperbolic knot complement.
- Cho-Murakami considered a potential function of the colored Jones polynomial $J_{N}\left(L ; q=e^{\frac{2 \pi \sqrt{-1}}{N}}\right)$ for a hyperbolic link L.

Introduction

Upshot of Yokota and Cho-Murakami's theory

The saddle point equation of the potential function coincides with the "gluing equation" of the triangulation.

- In this talk, we will consider the potential function of

$$
J_{i}\left(L ; q=e^{\frac{2 \pi \sqrt{-1}}{N}}\right) .
$$

- The potential function has parameters derived from colors.

This talk is based on

- Pacific Journal of Mathematics 322-1 (2023), 171-194. DOI 10.2140/pjm.2023.322.171 (arXiv:2207.00992)
- arXiv:2212.09294

Contents

(1) The Volume Conjecture
(2) Potential Function
(3) Geometric meanings

4 The AJ conjecture

The Colored Jones Polynomial

- The colored Jones polynomial is defined either skein-theoretically (Figure 1) or as an operator invariant.

Figure 1: The skein-theoretical definition of the colored Jones polynomial.

- In this talk, we use the definition as an operator invariant.

The Operator Invariant

Figure 2: R-matrices and crossings.

- An R-matrix R is the operator that satisfies

$$
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23}
$$

where

$$
\begin{aligned}
& R_{12}=R \otimes \mathrm{id} \\
& R_{23}=\mathrm{id} \otimes R .
\end{aligned}
$$

- We assign R-matrices to crossings as shown in Figure 2
- We can construct R-matrices from representaions of quantum groups.

The R-matrix for the Colored Jones Polynomial

- Let $r>1$ be an integer, and let $s=e^{\frac{\pi \sqrt{-1}}{r}}$.
- Let \mathcal{A}_{r} be the algebra generated by X, Y, K, \bar{K} with the following relations:

$$
\begin{gathered}
\bar{K}=K^{-1}, \quad K X=s X K, \quad K Y=s^{-1} Y K \\
X Y-Y X=\frac{K^{2}-\bar{K}^{2}}{s-s^{-1}} \\
X^{r}=Y^{r}=0, \quad K^{4 r}=1
\end{gathered}
$$

- For an integer k, we put

$$
\begin{aligned}
\{k\}_{s} & =s^{k}-s^{-k}, & \{k\}_{s}!=\{k\}_{s} \cdots\{1\}_{s}, & \{0\}_{s}!=1, \\
{[k]_{s} } & =\frac{\{k\}_{s}}{\{1\}_{s}}, & {[k]_{s}!=[k]_{s} \cdots[1]_{s}, } & {[0]_{s}!=1 . }
\end{aligned}
$$

The R-matrix for the Colored Jones Polynomial

- Let N be a positive integer and m be the half-integer satisfying $N=2 m+1$.
- Let V be an N-dimensional vector space with a basis $\left\{e_{-m}, e_{-m+1}, \ldots, e_{m}\right\}$.
- We can define an N -dimensional irreducible representaion of \mathcal{A}_{r} by

$$
X e_{i}=[m-i+1]_{s} e_{i-1}, Y e_{i}=[m+i+1]_{s} e_{i+1}, K e_{i}=s^{-i} e_{i}
$$

The R-matrix for the Colored Jones Polynomial

- Let N^{\prime} be a positive integer and m^{\prime} be the half-integer satisfying $N^{\prime}=2 m^{\prime}+1$.
- Let V^{\prime} be an N^{\prime}-dimensional vector space with a basis $\left\{e_{-m^{\prime}}^{\prime}, e_{-m^{\prime}+1}^{\prime}, \ldots, e_{m^{\prime}}^{\prime}\right\}$.
- The R-matrix obtained from the irreducible representation is

$$
\begin{aligned}
R_{V V^{\prime}}\left(e_{i} \otimes e_{j}^{\prime}\right)= & \sum_{k=0}^{\min \left\{m+i, m^{\prime}-j\right\}} \frac{\{m-i+k\}_{s}!\left\{m^{\prime}+j+k\right\}_{s}!}{\{k\}_{s}!\{m-i\}_{s}!\left\{m^{\prime}+j\right\}_{s}!} \\
& \times s^{2 i j+k(i-j)-\frac{k(k+1)}{2}} e_{j+k}^{\prime} \otimes e_{i-k}
\end{aligned}
$$

The R-matrix for the Colored Jones Polynomial

- The operator invariant obtained from the above 2-dimensional representation coincides with the Jones polynomial under substitution $s=-q^{-\frac{1}{2}}$.
- For an n-component link $L \subset S^{3}$, the colored Jones polynomial $J_{i}(L ; q)$ with a multi-integer $\boldsymbol{i}=\left(i_{1}, \ldots, i_{n}\right)$ is determined by the quantum R-matrix $R: V \otimes V^{\prime} \rightarrow V^{\prime} \otimes V$

$$
\begin{aligned}
& R_{V V^{\prime}}\left(e_{i} \otimes e_{j}^{\prime}\right) \\
& =\sum_{k=0}^{\min \left\{m+i, m^{\prime}-j\right\}}(-1)^{k+k\left(m+m^{\prime}\right)+2 i j} q^{-i j-\frac{k(i-j)}{2}+\frac{k(k+1)}{4}} \\
&
\end{aligned}
$$

where

$$
\{k\}=q^{\frac{k}{2}}-q^{-\frac{k}{2}},\{k\}!=\{k\}\{k-1\} \cdots\{1\},\{0\}!=1 .
$$

The Colored Jones Polynomial

- We put

$$
\begin{aligned}
& R_{V V^{\prime}}\left(e_{i} \otimes e_{j}^{\prime}\right)=\sum_{k, l}\left(R^{+}\right)_{i j}^{k l} e_{k}^{\prime} \otimes e_{l}, \\
& R_{V V^{\prime}}^{-1}\left(e_{i}^{\prime} \otimes e_{j}\right)=\sum_{k, l}\left(R^{-}\right)_{i j}^{k l} e_{k} \otimes e_{l}^{\prime}
\end{aligned}
$$

- We assign $\left(R^{ \pm}\right)_{i j}^{k l}$ to each crossing of the diagram:

- We assign $(-1)^{N-1} q^{ \pm i}$ to each maximum point of the diagram:

$$
(-1)^{N-1} q^{i}: \sqrt{i} \quad(-1)^{N-1} q^{-i}:
$$

The Colored Jones Polynomial

- In this talk, we change the indices i, j, k, l to the ones labeled to each regions around the crossing:

- We obtain the R-matrix $R^{ \pm}\left(m, m^{\prime}, k_{j_{1}}, k_{j_{2}}, k_{j_{3}}, k_{j_{4}}\right)$, where $k_{j_{1}}, k_{j_{2}}, k_{j_{3}}, k_{j_{4}}$ are indeces as shown in Figure 3.

Figure 3: Indices around a crossing.

The Colored Jones Polynomial

- i, j, k and $k_{j_{1}}, \ldots, k_{j_{4}}$ satisfy

$$
\begin{gathered}
i=k_{j_{2}}-k_{j_{1}}, \\
j=k_{j_{3}}-k_{j_{2}}, \\
k=k_{j_{2}}+k_{j_{4}}-k_{j_{1}}-k_{j_{3}} .
\end{gathered}
$$

- The colored Jones polynomial $J_{i}(L ; q)$ is the multiplication of all these factors with modification for the Reidemeister move I.
- We normalize the colored Jones polynomial so that

$$
J_{i}(\bigcirc \cdots \bigcirc ; q)=1
$$

where \square .is a trivial link.

The Volume Conjecture

For an integer N, we put $\xi_{N}=e^{\frac{2 \pi \sqrt{-1}}{N}}$.

Conjecture 1 (the Volume Conjecture)

For any knot K,

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}\left(K ; q=\xi_{N}\right)\right|}{N}=v_{3}\|K\|,
$$

where v_{3} is the volume of the ideal regular tetrahedron in the three-dimensional hyperbolic space and $\|\cdot\|$ is the simplicial volume for the complement of K.

Remark 1

If K is hyperbolic, $v_{3}\|K\|$ is equal to the hyperbolic volume of K.

The Volume Conjecture

Let u be a primitive r-th root of unity.

Conjecture 2 (the Chen-Yang Conjecture)

For any 3-manifold M with a complete hyperbolic structure of the finite volume,

$$
2 \pi \lim _{r \rightarrow \infty} \frac{\log T V_{r}\left(M, u=\xi_{r}\right)}{r}=\operatorname{Vol}(M),
$$

where r runs over all odd integers, $T V(M)$ is a Turaev-Viro invariant of M and $\operatorname{Vol}(M)$ is a hyperbolic volume of M.

Remark 2 (Detcherry-Kalfragianni-Yang '18)

For an odd integer $r \geq 3, T V_{r}\left(S^{3} \backslash L, u\right)$ can be written as a sum of $\left|J_{i}\left(L ; u^{2}\right)\right|^{2}$ w.r.t \boldsymbol{i}.

Definition of the potential function

Definition 3 (the potential function)

Suppose that a certain quantity Q_{N} can be written as

$$
Q_{N} \underset{N \rightarrow \infty}{\sim} \int \cdots \int_{\Omega} P_{N} e^{\frac{N}{2 \pi \sqrt{-1}} \Phi\left(z_{1}, \ldots, z_{\nu}\right)} d z_{1} \cdots d z_{\nu}
$$

where P_{N} grows at most polynomially and Ω is a region in \mathbb{C}^{ν}. We call this function $\Phi\left(z_{1}, \ldots, z_{\nu}\right)$ a potential function of Q_{N}.

- The saddle point of the potential function contributes to the limit of such integral (=the saddle point method).
- In the case of the colored Jones polynomial for a hyperbolic link, the saddle point equation relates to the geometry of the link complement.

The potential function of $J_{i}\left(L ; \xi_{N}^{p}\right)$

- We fix a diagram D of the n-component hyperbolic link L.
- For each crossing c of D, we can obtain the local potential function $\Phi_{c, p}^{ \pm}\left(a, b, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)$, where $p=1$ or 2 and $w_{j_{i}}=\xi_{N}^{k_{j_{i}}}$, by approximating the R-matrix with $q=\xi_{N}^{p}$ by continuous functions:

$$
\text { quantum factorial }\{k\}!\rightsquigarrow \operatorname{Li}_{2}(z)
$$

Here, $\operatorname{Li}_{2}(z)$ is the dilogarithm function

$$
\operatorname{Li}_{2}(z)=-\int_{0}^{z} \frac{\log (1-x)}{x} d x
$$

- The potential function $\Phi_{D, p}\left(\boldsymbol{a}, w_{1}, \ldots, w_{\nu}\right)$ is the sum of all local potential functions, where $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right)$ is an n-tuple of real numbers $a_{j}=\lim _{N \rightarrow \infty} \frac{i_{j}}{N}$.

The functions $\Phi_{c, p}^{ \pm}$are of the form:

$$
: \quad \Phi_{c, p}^{+}=p(\pi \sqrt{-1} a)^{2}+f_{p}^{+}\left(a, a, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)
$$

$$
: \quad \Phi_{c, p}^{-}=f_{p}^{-}\left(a, b, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)
$$

$$
: \quad \Phi_{c, p}^{-}=-p(\pi \sqrt{-1} a)^{2}+f_{p}^{-}\left(a, a, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)
$$

$f_{p}^{ \pm}\left(a, b, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)$

Let $e_{a}=e^{\pi \sqrt{-1} a} . f_{p}^{ \pm}\left(a, b, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)$ are:

$$
\begin{aligned}
& f_{p}^{+}\left(a, b, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)=\frac{1}{p}\left\{\pi \sqrt{-1} p^{2} \frac{a+b}{2} \log \frac{w_{j_{1}} w_{j_{3}}}{w_{j_{2}} w_{j_{4}}}\right. \\
& \quad-p^{2} \log \frac{w_{j_{2}}}{w_{j_{1}}} \log \frac{w_{j_{3}}}{w_{j_{2}}}-\operatorname{Li}_{2}\left(e_{a}^{p} \frac{w_{j_{4}}^{p}}{w_{j_{3}}^{p}}\right)-\operatorname{Li}_{2}\left(e_{b}^{p} \frac{w_{j_{4}}^{p}}{w_{j_{1}}^{p}}\right) \\
& \left.\quad+\operatorname{Li}_{2}\left(\frac{w_{j_{2}}^{p} w_{j_{4}}^{p}}{w_{j_{1}}^{p} w_{j_{3}}^{p}}\right)+\operatorname{Li}_{2}\left(e_{a}^{p} \frac{w_{j_{1}}^{p}}{w_{j_{2}}^{p}}\right)+\operatorname{Li}_{2}\left(e_{b}^{p} \frac{w_{j_{3}}^{p}}{w_{j_{2}}^{p}}\right)-\frac{\pi^{2}}{6}\right\}, \\
& f_{p}^{-}\left(a, b, w_{j_{1}}, w_{j_{2}}, w_{j_{3}}, w_{j_{4}}\right)=\frac{1}{p}\left\{-\pi \sqrt{-1} p^{2} \frac{a+b}{2} \log \frac{w_{j_{1}} w_{j_{3}}}{w_{j_{2}} w_{j_{4}}}\right. \\
& \quad+p^{2} \log \frac{w_{j_{3}}}{w_{j_{4}}} \log \frac{w_{j_{4}}}{w_{j_{1}}}-\operatorname{Li}_{2}\left(e_{a}^{p} \frac{w_{j_{1}}^{p}}{w_{j_{4}}^{p}}\right)-\operatorname{Li}_{2}\left(e_{b}^{p} \frac{w_{j_{3}}^{p}}{w_{j_{4}}^{p}}\right) \\
& \left.\quad-\operatorname{Li}_{2}\left(\frac{w_{j_{2}}^{p} w_{j_{4}}^{p}}{w_{j_{1}}^{p} w_{j_{3}}^{p}}\right)+\operatorname{Li}_{2}\left(e_{a}^{p} \frac{w_{j_{2}}^{p}}{w_{j_{3}}^{p}}\right)+\operatorname{Li}_{2}\left(e_{b}^{p} \frac{w_{j_{2}}^{p}}{w_{j_{1}}^{p}}\right)+\frac{\pi^{2}}{6}\right\} .
\end{aligned}
$$

D. Thurston's triangulation

The geometry of the link complement

- If all these tetrahedra are glued well, the link complement admits a hyperbolic structure.
- Let M be the hyperbolic link complement. In general, $\partial \bar{M}$ has a similarity structure, i.e. a curve γ in $\partial \bar{M}$ induces the action of the form

$$
\mathbb{C} \ni z \mapsto a z+b \in \mathbb{C}, \quad a, b \in \mathbb{C}
$$

We call the coefficient a the dilation component of γ and write $\delta(\gamma)$.

- M is complete iff. $\partial \bar{M}$ admits an Euclidean structure.

The case where a is fixed

Let L be an n-component hyperbolic link. Since $\Phi_{D, p}$ is easily obtained from $\Phi_{D, 1}$, we mainly consider the case where $p=1$ and write $\Phi_{D}=\Phi_{D, 1}$

- When we assume that $a_{j} \in[1-\varepsilon, 1]$ for all $j=1, \ldots, n$, where ε is a sufficiently small positive real number, the system of equations

$$
\frac{\partial \Phi_{D}}{\partial w_{i}}=0, \quad i=1, \ldots, \nu
$$

coincides with the "gluing equation".

The case where a is fixed

$$
\begin{aligned}
w_{j_{1}} \frac{\partial \Phi_{c}^{+}}{\partial w_{j_{1}}} & =\frac{\pi \sqrt{-1}}{2}(a-b) \\
& +\log u_{1}^{\prime} u_{3}^{\prime \prime} u_{4}^{\prime}
\end{aligned}
$$

For a complex number z,

$$
z^{\prime}=\frac{1}{1-z}, \text { and } z^{\prime \prime}=1-\frac{1}{z}
$$

$$
u_{4}=e_{b}^{-1} \frac{w_{j_{1}}}{w_{j_{4}}}
$$

The case where a is fixed

- Let G_{i} be a product of moduli of ideal tetrahedra around the region R_{i} with w_{i} labeled. Then, we have

$$
w_{i} \frac{\partial \Phi_{D}}{\partial w_{i}}=\frac{\pi \sqrt{-1}}{2} r\left(a_{1}, \ldots, a_{n}\right)+\log G_{i}
$$

where $r\left(a_{1}, \ldots, a_{n}\right)$ is a linear polynomial w.r.t a_{1}, \ldots, a_{n}.

- We can verify that $r\left(a_{1}, \ldots, a_{n}\right)=0$.
- A saddle point $\left(\sigma_{1}(\boldsymbol{a}), \ldots, \sigma_{\nu}(\boldsymbol{a})\right)$ determines a hyperbolic structure of the link complement, which is not necessarily complete.
- Choose the saddle point such that $\left(\sigma_{1}(\mathbf{1}), \ldots, \sigma_{\nu}(\mathbf{1})\right)$ gives a hyperbolic structure with the volume $\operatorname{Vol}(M)$.
- Let M_{a} be a manifold with this hyperbolic structure.

The dilation components

Let L_{j} be a component of L with a parameter a_{j}.

- For the meridian m_{j} of the component L_{j},

$$
\delta\left(m_{j}\right)=e^{-2 \pi \sqrt{-1} a_{j}}
$$

Figure 4 shows the developing image of $M_{\boldsymbol{a}}$ in \mathbb{H}^{3}.

- M_{a} is a cone-manifold with cone-angles $2 \pi\left(1-a_{j}\right)$ around $L_{j}, \quad j=1, \ldots, n$.
Figure 4: The developing image of M_{a} in \mathbb{H}^{3}.

The case where \boldsymbol{a} is variable

- When we regard $a_{j}(j=1, \ldots, n)$ as variables, we have

$$
\begin{equation*}
\exp \left(\frac{1}{\pi \sqrt{-1}} \frac{\partial \Phi_{D}}{\partial a_{j}}\right)=\delta\left(\tilde{l}_{j}\right) \tag{1}
\end{equation*}
$$

where \tilde{l}_{j} is the longitude of the component L_{j} with $\operatorname{lk}\left(\tilde{l}_{j}, L_{j}\right)=0$.

- The saddle point equation w.r.t a_{j} coincides with the "completeness equation".

Theorem 4 (S.)

Let D be a diagram of a hyperbolic link with n components, and $\mathbf{1}$ be $(1, \ldots, 1) \in \mathbb{Z}^{n}$. The point $\left(\mathbf{1}, \sigma_{1}(\mathbf{1}), \ldots, \sigma_{\nu}(\mathbf{1})\right)$ is a saddle point of the function $\Phi_{D}\left(a_{1}, \ldots, a_{n}, w_{1}, \ldots, w_{\nu}\right)$ and gives a complete hyperbolic structure to the link complement.

Idea of the proof of (1)

The Witten-Reshetikhin-Turaev invariant

- Let $M_{f_{1}, \ldots, f_{n}}$ be the hyperbolic manifold obtained by Dehn surgery on a link $L=L_{1} \cup \cdots \cup L_{n}$ with a framing f_{j} on $L_{j}(j=1, \ldots, n)$.
- Let $\alpha_{j}=e^{\pi \sqrt{-1} a_{j}}$, and $\Phi\left(\alpha_{1}, \ldots, \alpha_{n}, w_{1}, \ldots, w_{\nu}\right)$ be the potential function of the Witten-Reshetikhin-Turaev invariant of $M_{f_{1}, \ldots, f_{n}}$.
- We regard each α_{j} as a complex parameter which is not necessarily in the unit circle.

The Witten-Reshetikhin-Turaev invariant

- The derivative with respect to α_{j} is
the inverse of the meridian

Figure 5: The schematic diagram of the developing image in the case of $f_{j}=6$.

$$
\exp \left(\alpha_{j} \frac{\partial \Phi}{\partial \alpha_{j}}\right)=\alpha_{j}^{-2 f_{j}} \delta\left(\tilde{l}_{j}\right),
$$

where $j=1, \ldots, n$.

- Recall that $\delta\left(m_{j}\right)=\alpha_{j}^{-2}$.
- The saddle point equation implies that $\delta\left(m_{j}\right)^{-f_{j}}=\delta\left(\tilde{l}_{j}\right)$.
- Assuming that $f_{j}>0$ and $\left|\alpha_{j}\right|<1$, the developing image would be as shown in Figure 5.

The A-polynomial

Let K be a hyperbolic knot.

- A factor of the A-polynomial $A_{K}(l, m)$ is conjectured to be obtained from the system of equations

$$
\left\{\begin{array}{l}
\exp \left(w_{i} \frac{\partial \Phi_{D}}{\partial w_{i}}\right)=1, \quad(i=1, \ldots, \nu) \tag{2}\\
\exp \left(\alpha \frac{\partial \Phi_{D}}{\partial \alpha}\right)=l^{2}
\end{array}\right.
$$

by eliminating w_{1}, \ldots, w_{ν}.

- The other factor of $A_{K}(l, m)$ is $l-1$ that corresponds to abelian representations.

Example: figure-eight knot

- The colored Jones polynomial of the figure-eight knot is

$$
J(n)=J_{n}\left(4_{1} ; q\right)=\frac{1}{\{n\}} \sum_{i=0}^{n-1} \frac{\{n+i\}!}{\{n-i-1\}!}
$$

- The potential function $\Phi(\alpha, x)$ of $J_{i}\left(4_{1}, \xi_{N}\right)$ is

$$
\Phi(\alpha, x)=-2 \log \alpha \log x-\operatorname{Li}_{2}\left(\alpha^{2} x\right)+\mathrm{Li}_{2}\left(\alpha^{2} x^{-1}\right) .
$$

- The derivatives of Φ with x and α are

$$
\begin{aligned}
& x \frac{\partial \Phi}{\partial x}=\log \alpha^{-2}\left(1-\alpha^{2} x\right)\left(1-\alpha^{2} x^{-1}\right) \\
& \alpha \frac{\partial \Phi}{\partial \alpha}=2 \log \left(1-\alpha^{2} x\right)\left(x-\alpha^{2}\right)^{-1}
\end{aligned}
$$

Example: figure-eight knot

- From

$$
\left\{\begin{array}{l}
\alpha^{-2}\left(1-\alpha^{2} x\right)\left(1-\alpha^{2} x^{-1}\right)=1 \\
\left(1-\alpha^{2} x\right)\left(x-\alpha^{2}\right)^{-1}=l
\end{array}\right.
$$

we obtain

$$
A_{4_{1}}^{\prime}(l, \alpha)=\alpha^{4}-l+\alpha^{2} l+2 \alpha^{4} l+\alpha^{6} l-\alpha^{8} l+\alpha^{4} l^{2}
$$

by eliminating x.

- In fact, the A-polynomial for 4_{1} is

$$
\begin{equation*}
(l-1)\left(m^{4}-l+m^{2} l+2 m^{4} l+m^{6} l-m^{8} l+m^{4} l^{2}\right) \tag{3}
\end{equation*}
$$

The A_{q}-polynomial

- The A_{q}-polynomial $A_{q}(K)$ for a knot K is the polynomial defined as an annihilator of $J_{K}(n)=J_{n}(K ; q)$.

$$
\sum_{i=0}^{d} c_{i}\left(q, q^{n}\right) J_{K}(n+i)=0 \rightarrow\left(\sum_{i=0}^{d} c_{i}(q, Q) E^{i}\right) J_{K}(n)=0
$$

Here, $\left(E J_{K}\right)(n)=J_{K}(n+1)$ and $\left(Q J_{K}\right)(n)=q^{n} J_{K}(n)$.

- $I_{K}=\left\{P \in \mathcal{A} \mid P J_{K}(n)=0\right\}$ is a left ideal in \mathcal{A}, where

$$
\mathcal{A}=\left\{\begin{array}{l|l}
\sum_{i=0}^{d} c_{i}(q, Q) E^{i} & \begin{array}{l}
d \in \mathbb{Z}_{\geq 0} \\
c_{i}(q, Q) \in \mathbb{Z}[q, Q] \\
E Q=q Q E
\end{array}
\end{array}\right\} .
$$

The AJ conjecture

Definition 5 (Garoufalidis '04)

The A_{q}-polynomial $A_{q}(K)(E, Q)$ for a knot K is an generator with the smallest E-degree and coprime coefficients of the annihilating ideal I_{K} in a certain localization of \mathcal{A}.

Conjecture 3 (the AJ conjecture)

For any knot $K, A_{K}(l, m)$ is equal to $\varepsilon A_{q}(K)\left(l, m^{2}\right)$ up to multiplication by an element in $\mathbb{Q}(m)$, where ε is the evaluation map at $q=1$.

Creative telescoping

- Let $F\left(n, k_{1}, \ldots, k_{\nu}\right)$ be a multi- \mathbb{Z}-variable discrete function. We define the operators $Q, E, Q_{i}, E_{i}(i=1, \ldots, \nu)$ by

$$
\begin{aligned}
(Q F)\left(n, k_{1}, \ldots, k_{\nu}\right) & =q^{n} F\left(n, k_{1}, \ldots, k_{\nu}\right) \\
(E F)\left(n, k_{1}, \ldots, k_{\nu}\right) & =F\left(n+1, k_{1}, \ldots, k_{\nu}\right) \\
\left(Q_{i} F\right)\left(n, k_{1}, \ldots, k_{\nu}\right) & =q^{k_{i}} F\left(n, k_{1}, \ldots, k_{\nu}\right) \\
\left(E_{i} F\right)\left(n, k_{1}, \ldots, k_{\nu}\right) & =F\left(n, k_{1}, \ldots, k_{i}+1, \ldots, k_{\nu}\right) .
\end{aligned}
$$

- These operators generate the noncommutative algebra $\mathbb{Q}\left[q, Q, Q_{\boldsymbol{k}}\right]\left\langle E, E_{\boldsymbol{k}}\right\rangle$ with following relations:

$$
Q_{i} Q_{j}=Q_{j} Q_{i}, E_{i} E_{j}=E_{j} E_{i}, E_{i} Q_{j}=q^{\delta_{i j}} Q_{j} E_{i}
$$

where $i, j \in\{0, \ldots, \nu\}$ and $E_{0}=E, Q_{0}=Q$.

- $F: \mathbb{Z}^{\nu+1} \rightarrow \mathbb{Q}(q)$ is called q-hypergeometric if $E_{i} F / F \in \mathbb{Q}\left(q, q^{n}, q^{k_{1}}, \ldots, q^{k_{\nu}}\right)$ holds for all $i=0, \ldots, \nu$.

Creative telescoping

Theorem 6 (Wilf-Zeilberger '92)

Every "proper" q-hypergeometric function $F(n, \boldsymbol{k})$ has a \boldsymbol{k}-free recurrence

$$
\sum_{(i, \boldsymbol{j}) \in S} \sigma_{i, \boldsymbol{j}}\left(q^{n}\right) F(n+i, \boldsymbol{k}+\boldsymbol{j})=0
$$

where S is a finite set, and $\sigma_{i, j}$ are $\mathbb{Q}(q)$-coefficient polynomials.

- i.e. $\exists P\left(E, Q, E_{1}, \ldots, E_{\nu}\right) \in \mathbb{Q}[q, Q]\left\langle E, E_{\boldsymbol{k}}\right\rangle$ s.t. $P F=0$.
- Expanding P at $\left(E_{1}, \ldots, E_{\nu}\right)=\mathbf{1}^{\nu}=(1, \ldots, 1)$, we have

$$
P_{0}(E, Q)+\sum_{i=1}^{\nu}\left(E_{i}-1\right) R_{i}\left(E, Q, E_{1}, \ldots, E_{\nu}\right)
$$

where $P_{0}(E, Q)=P\left(E, Q, \mathbf{1}^{\nu}\right)$, and $R_{i} \in \mathbb{Q}[q, Q]\left\langle E, E_{\boldsymbol{k}}\right\rangle$.

Creative telescoping

- Putting $G_{i}=R_{i} F$, we have

$$
\begin{aligned}
& P_{0}(E, Q) F(n, \boldsymbol{k}) \\
& =-\sum_{i=1}^{\nu}\left(G_{i}\left(n, k_{1}, \ldots, k_{i}+1, \ldots, k_{\nu}\right)-G_{i}\left(n, k_{1}, \ldots, k_{\nu}\right)\right) .
\end{aligned}
$$

- Summing up this equality, we verify that $P_{0}(E, Q) G(n)$ is a sum of multisums of proper q-hypergeometric functions with one variable less, where $G(n)=\sum_{\boldsymbol{k}} F(n, \boldsymbol{k})$.
- Repeating this process, we obtain $P_{1}(E, Q) P_{0}(E, Q) G(n)=0$ for a polynomial $P_{1}(E, Q)$.

Creative telescoping

- Note that

$$
P\left(E, Q, E_{1}, \ldots, E_{\nu}\right) \in \operatorname{Ann}(F) \cap \mathbb{Q}[q, Q]\left\langle E, E_{\boldsymbol{k}}\right\rangle
$$

where $\operatorname{Ann}(F)=\left\{P \in \mathbb{Q}\left[q, Q, Q_{\boldsymbol{k}}\right]\left\langle E, E_{\boldsymbol{k}}\right\rangle \mid P F=0\right\}$ is an annihilating ideal of F.

- If we put

$$
\frac{E_{i} F}{F}=\left.\frac{R_{i}}{S_{i}}\right|_{Q=q^{n}, Q_{j}=q^{k_{j}}}
$$

for $R_{i}, S_{i} \in \mathbb{Z}\left[q, Q, Q_{\boldsymbol{k}}\right]$, then, $\operatorname{Ann}(F)$ is generated by $\left\{S_{i} E_{i}-R_{i} \mid i=0, \ldots, \nu\right\} \subset \mathbb{Q}\left[q, Q, Q_{\boldsymbol{k}}\right]\left\langle E, E_{\boldsymbol{k}}\right\rangle$.

- We would be able to obtain $P\left(E, Q, E_{1}, \ldots, e_{\nu}\right)$ from

$$
S_{i} E_{i}-R_{i}=0, \quad i=0, \ldots, \nu
$$

by eliminating Q_{1}, \ldots, Q_{ν}.

Example: figure-eight knot revisited

- Put

$$
F(n, i)=\frac{1}{\{n\}} \frac{\{n+i\}!}{\{n-i-1\}!}
$$

- Calculating $E F / F$ and $E_{1} F / F$ with $Q=q^{n}$ and $Q_{1}=q^{i}$,

$$
\begin{align*}
& (E+q Q) Q_{1}(Q-1)=(1+Q E)(Q-1) \tag{4}\\
& q^{2} Q_{1}^{2} Q+q Q_{1}\left(-Q^{2}+Q E_{1}-1\right)+Q=0 \tag{5}
\end{align*}
$$

- From (4), we have

$$
\begin{equation*}
(1+Q E) Q_{1}^{-1}(Q-1)=(E+q Q)(Q-1) \tag{6}
\end{equation*}
$$

Example: figure-eight knot revisited

- Multiplying (5) by $q^{-1} Q_{1}^{-1} Q^{-1}(Q-1)$ from the left,

$$
\begin{equation*}
\left\{q Q_{1}+Q^{-1}\left(-Q^{2}+Q E_{1}-1\right)+q^{-1} Q_{1}^{-1}\right\}(Q-1)=0 \tag{7}
\end{equation*}
$$

- Multiplying (7) by

$$
X(q, E, Q)=\frac{q Q}{1-q^{3} Q^{2}} E^{2}+\left(\frac{1}{1-q^{3} Q^{2}}+\frac{1}{1-q Q^{2}}-1\right) E+\frac{q Q}{1-q Q^{2}}
$$

from the left and using (4) and (6), we have

$$
\begin{aligned}
& P\left(E, Q, E_{1}\right)=\left\{\frac{q Q}{1-q^{3} Q^{2}} E_{1} E^{2}\right. \\
& \left.+\left(\frac{1}{1-q^{3} Q^{2}} E_{1}+\frac{1}{1-q Q^{2}} E_{1}+q Q-E_{1}-\frac{1}{q Q}\right) E+\frac{q Q}{1-q Q^{2}} E_{1}\right\} \\
& \times(Q-1) .
\end{aligned}
$$

Example: figure-eight knot revisited

Remark 7

$X(q, E, Q)$ is factorized in two ways:

$$
\begin{aligned}
X(q, E, Q) & =\left(\frac{q Q}{1-q^{3} Q^{2}} E+\frac{1}{1-q Q^{2}}\right)(E+q Q) \\
& =\left(\frac{1}{1-q^{3} Q^{2}} E+\frac{q Q}{1-q Q^{2}}\right)(1+Q E)
\end{aligned}
$$

- $P_{0}(E, Q)=P(E, Q, 1)$ satisfies

$$
P_{0}(E, Q) J(n)+q^{n+1}+1=0
$$

- Since $q^{n+1}+1$ is annihilated by $P_{1}(E, Q)=(E-1) \cdot \frac{1}{1+q Q}$, we have the third order homogeneous recursion relation

$$
P_{1}(E, Q) P_{0}(E, Q) J(n)=0 .
$$

Example: figure-eight knot revisited

- The annihilating polynomial with $q=1$ is

$$
\begin{aligned}
& \varepsilon P_{1}(E, Q) P_{0}(E, Q) \\
& =\frac{(E-1)\left(Q^{2}-E+Q E+2 Q^{2} E+Q^{3} E-Q^{4} E+Q^{2} E^{2}\right)}{Q\left(1-Q^{2}\right)} .
\end{aligned}
$$

- This is equal to (3)

$$
(l-1)\left(m^{4}-l+m^{2} l+2 m^{4} l+m^{6} l-m^{8} l+m^{4} l^{2}\right)
$$

in the sense of the statement of the AJ conjecture.

Comparison with the potential function

- We would be able to obtain $\varepsilon P_{0}(E, Q)$ by eliminating Q_{1}, \ldots, Q_{ν} from

$$
\left\{\begin{array}{l}
\left.\varepsilon\left(S_{i} E_{i}-R_{i}\right)\right|_{E_{i}=1}=0 \quad(i=1, \ldots, \nu), \tag{8}\\
\varepsilon(S E-R)=0
\end{array}\right.
$$

where $S=S_{0}, R=R_{0}$.

- In the case of the colored Jones polynomial, the system of equations (8) is equivalent to the system of the equations (2)

$$
\left\{\begin{array}{l}
\exp \left(w_{i} \frac{\partial \Phi_{D}}{\partial w_{i}}\right)=1, \quad(i=1, \ldots, \nu) \\
\exp \left(\alpha \frac{\partial \Phi_{D}}{\partial \alpha}\right)=l^{2}
\end{array}\right.
$$

Comparison with the potential function

Proposition 8 (S.)

Following equalities hold:

$$
\begin{array}{r}
\exp \left(w_{i} \frac{\partial \Phi}{\partial w_{i}}\right)=\left.\varepsilon \frac{E_{i} F}{F}\right|_{q^{k_{j}=w_{j}}} ^{q^{m}=\alpha}
\end{array},
$$

where E_{m} is an operator that shifts m to $m+1$.

Figure-eight knot re-revisited

abelian representations

inhomogeneous recursion relation
homogeneous recursion relation

Thank you for your attention.

