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UPSILON INVARIANT AND L–SPACE
KNOT



UPSILON INVARIANT

Ozsváth–Stipsicz–Szabó (2017)

For a knot K , a piecewise linear, continuous function
ΥK (t) : [0, 2] → R is assigned.

concordance invariant
Υ′

K (0) = −τ(K )

symmetric along t = 1
additive for connected sum
Υ−K = −ΥK

if K is smoothly slice, then ΥK (t) = 0
a lower bound for genus, 4-genus, concordance genus

Originally, [OSS] used t-modified knot Floer complex. Later,
Livingston gave an interpretation on knot Floer complex CFK∞(K ).
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EXAMPLE: TREFOIL KNOT T (2, 3)

ΥT (2,3)(t) = −t (0 ≤ t ≤ 1)

0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

There is an inductive formula for torus knots.
For any alternating (or, quasi-alternating) knot,
ΥK (t) = (1 − |t − 1|)σ/2.

2 30



EXAMPLE: TREFOIL KNOT T (2, 3)

ΥT (2,3)(t) = −t (0 ≤ t ≤ 1)

0.5 1.0 1.5 2.0

-1.0

-0.8

-0.6

-0.4

-0.2

There is an inductive formula for torus knots.
For any alternating (or, quasi-alternating) knot,
ΥK (t) = (1 − |t − 1|)σ/2.

2 30



L–SPACE KNOT

A knot is called an L–space knot if some positive Dehn surgery
yields an L–space.

OSS
The Upsilon invariant of an L–space knot is determined only by its
Alexander polynomial.

Borodzik–Hedden (2018)

For an L–space knot, the Upsilon invariant is the
Legendre–Fenchel transform of a gap function, which has the
same information as the Alexander polynomial.
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EXAMPLE: T (3, 4)

∆(t) = 1 − t + t3 − t5 + t6 → [1, 2, 2, 1]
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Figure: gap function and Upsilon invariant

0 ≤ t ≤ 2/3 y = t(x + 3) Υ(t) = −3t
2/3 < t < 4/3 y = tx + 2 Υ(t) = −2
4/3 ≤ t ≤ 2 y = t(x − 3) + 6 Υ(t) = 3t − 6

Table: Legendre–Fenchel transformation
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Figure: gap function and Upsilon invariant

L–space knot

The Upsilon invariant is determined only by the convex hull of gap
function.
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PROBLEMS AND RESULTS



RAISING PROBLEMS

If two L–space knots have distinct Alexander polynomials, but
the gap functions share the same convex hull, then their
Upsilon invariants coincide.

▶ No duplication among torus knots.
▶ Find among hyperbolic L–space knots.

Since the gap function is not convex, another
Legendre–Fenchel transformation of the Upsilon invariant
does not return the gap function.
So, we cannot restore the Alexander polynomial, in general.

▶ However, find examples for which the Alexander polynomial
can be restored from the Upsilon invariant.
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RESULT 1

Theorem 1
There exist infinitely many pairs of hyperbolic L–space knots,
which have distinct Alexander polynomials, but share the same
Upsilon invariant.

Concretely, consider the closures of 4-braids (n ≥ 1).

K1 : (σ2σ1σ3σ2)(σ1σ2σ3)
4nσ−1

2 (σ2σ3)
6,

K2 : (σ2σ1σ3σ2)(σ1σ2σ3)
4nσ−1

3 (σ2σ3)
6.
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A PAIR OF HYPERBOLIC L–SPACE KNOTS

Perform (−1/n)–surgery on C1 and (−1/2)–surgery on C2.

(1) (2)

Figure: K1 and K2
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RESULT 2

There exist hyperbolic L–space knots such that their Alexander
polynomials can be restored from Upsilon invariants
(through Legendre–Fenchel transformation).

Theorem 2
Let K be hyperbolic L–space knot t09847 or v2871.
Then the Alexander polynomial is restored from the Upsilon
invariant．
That is, if an L–space knot K ′ satisfies ΥK (t) = ΥK ′(t), then
∆K (t)

.
= ∆K ′(t).

t09847 : (σ2σ1σ3σ2)
3(σ2σ

2
1σ2)σ1,

v2871 : (σ2σ1σ3σ2)
3(σ2σ

2
1σ2)σ

3
1.
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OUTLINE OF RESULT 1



PROPERTIES OF K1 AND K2

Proposition

For n ≥ 1, K1 and K2 satisfy the following:
hyperbolic.
(16n + 21)-surgery on K1, (16n + 20)-surgery on K2 yield
L–spaces. [Montesinos trick]
Alexander polynomials are distinct. [Torres formula]
Upsilon invariants coincide.
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n = 1

K1 = m240, K2 = t10496 in SnapPy’s census
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Figure: Gap functions of K1 and K2

These share the same convex hull =⇒ ΥK1(t) = ΥK2(t)

9 30



n = 1

K1 = m240, K2 = t10496 in SnapPy’s census
26

24

24

22
20

18

18

16

14

14

12

1010

10

8

6

66

4

44

2

222

0

0 5 10 15 20 25

0

5

10

15

20

25

26

24

24

22
20

18

18

16

14

14

12

10

10

8

8

6

66

4

44

2

222

0

0 5 10 15 20 25

0

5

10

15

20

25

Figure: Gap functions of K1 and K2

These share the same convex hull =⇒ ΥK1(t) = ΥK2(t)

9 30



ALEXANDER POLYNOMIAL

∆K1(t) =
n∑

i=0

(t8n+12+4i − t8n+11+4i) + (t8n+9 − t8n+8)

+
n∑

i=0

(t4n+6+4i − t4n+4+4i) + (t4n+3 − t4n+1)

+
n−1∑
i=0

(t4+4i − t1+4i) + 1.

∆K2(t) =
n∑

i=0

(t8n+12+4i − t8n+11+4i) + (t8n+9 − t8n+8)

+
2n−1∑
i=0

(t4n+8+2i − t4n+7+2i) + (t4n+6 − t4n+4)

+ (t4n+3 − t4n+1) +
n−1∑
i=0

(t4+4i − t1+4i) + 1.
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FORMAL SEMIGROUP

For an L–space knot K ,

∆K (t) = 1 − ta1 + ta2 + · · · − tak−1 + tak ,

where 1 = a1 < a2 < · · · < ak = 2g(K ).

Expand ∆K (t)/(1 − t) as a formal power series:

∆K (t)
1 − t

=
∑

s∈SK

ts.

The set SK is a subset of non-negative integers, called the formal
semigroup of K .
For example, for T (p, q),

S = ⟨p, q⟩ = {ap + bq | a, b ≥ 0}

is a semigroup.
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K1 (n = 1)

∆K1(t) = 1 − t + t4 − t5 + t7 − t8 + t10 − t12 + t14 − t16 + t17 − t19 + t20 − t23 + t24

= (1 − t) + t4(1 − t) + t7(1 − t) + t10(1 − t2) + t14(1 − t2) + t17(1 − t2)

+ t20(1 − t3) + t24

∆K1(t)
1 − t

= 1 + t4 + t7 + t10 + t11 + t14 + t15 + t17 + t18 + t20 + t21 + t22 +
t24

1 − t
= 1 + t4 + t7 + t10 + t11 + t14 + t15 + t17 + t18 + t20 + t21 + t22

+ t24(1 + t + t2 + . . . )

S = {0, 4, 7, 10, 11, 14, 15, 17, 18, 20, 21, 22} ∪ {24, 25, 26, . . . }
4 ∈ S, but 8 ̸∈ S =⇒ S is not a semigroup.
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HYPERBOLICITY

For K1 and K2,

The formal semigroup is not a semigroup, so it is not a torus
knot.
Assume that Ki is satellite for a contradiction.
▶ The bridge number is 4, so its companion is 2-bridge and the

pattern knot has wrapping number 2.
▶ We know that the companion and pattern are L–space knots.
▶ In addition, the pattern is braided by Baker–Motegi.
▶ Hence, the companion is a 2-bridge torus knot, and Ki is its

2-cable.
▶ However, the formal semigroup of an iterated torus L–space

knot is a semigroup by Shida Wang.
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MONTESINOS TRICK FOR K1

(16n + 21)-surgery yields a Seifert fibered L–space.
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MONTESINOS TRICK FOR K1
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MONTESINOS TRICK FOR K1

The last is the Montesinos knot M(−3/7,−1/3,−1/n).
By the criterion, its double cover is an L–space.
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MONTESINOS TRICK FOR K2

(16n + 20)-surgery yields an L–space.

Perform two resolutions to obtain ℓ∞ and ℓ0.
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MONTESINOS TRICK FOR K2

For ℓ∞,

The last is the (−3, 3, n − 1)–pretzel knot, whose double cover is
an L–space.
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MONTESINOS TRICK FOR K2

For ℓ0,

Perform two further resolutions to obtain ℓ0∞ (= ℓ∞) and ℓ00.
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MONTESINOS TRICK FOR K2

ℓ00 is the connected sum of the Hopf link and the Montesinos knot
M(1/2,−1/3, n/(2n + 1)).
Then its double cover is an L–space.
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OUTLINE OF RESULT 2



RESULT 2

Theorem 2
Let K be hyperbolic L–space knot t09847 or v2871.
Then the Alexander polynomial is restored from the Upsilon
invariant．
That is, if an L–space knot K ′ satisfies ΥK (t) = ΥK ′(t), then
∆K (t)

.
= ∆K ′(t).

t09847 : (σ2σ1σ3σ2)
3(σ2σ

2
1σ2)σ1,

v2871 : (σ2σ1σ3σ2)
3(σ2σ

2
1σ2)σ

3
1.

Are there infinitely many such hyperbolic L–space knots?
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EASY EXAMPLES (TORUS KNOTS)

T (3, 4) ∆(t) = 1 − t + t3 − t5 + t6

T (3, 5) ∆(t) = 1 − t + t3 − t4 + t5 − t7 + t8
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Figure: Gap functions of T (3, 4) and T (3, 5)

Each segment of the graph has slope 0 or 2.
These ∆(t) are restorable from Υ(t).
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BAD EXAMPLE

K : (−2, 3, 7)-pretzel knot

∆K (t) = 1 − t + t3 − t4 + t5 − t6 + t7 − t9 + t10

-4 -2 0 2 4 60
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6

10

12

14

∆(t) = 1 − t + t3 − t5 + t7 − t9 + t10 shares the same convex hull.
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K = t09847

∆K (t) = 1 − t + t4 − t5 + t7 − t9 + t10 − t13 + t14
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CANDIDATES

Proposition

Let m ≥ 3 be an integer, and let
∆(t) = 1 − t + tm − tm+1 + tm+2 − t2m+1 + t2m+2. Then its gap
function, defined formally, is restorable from the convex hull.

There exists a hyperbolic knot whose Alexander polynomial is
∆(t).
∆ satisfies Krcatovich’s condition.
If m = 3, then ∆(t) is the Alexander polynomial of T (3, 5).
Similar polynomials can be given more.
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SECONDARY UPSILON INVARIANT
AND RESULT 3



KNOT FLOER COMPLEX OF L–SPACE KNOT

For K = T (3, 7),

∆K (t) = 1 − t + t3 − t4 + t6 − t8 + t9 − t11 + t12.

Hence, the staircase diagram St(K ) of CFK∞(K ) is specified by

[1, 2, 1, 2, 2, 1, 2, 1]

on the (alg,Alex)-plane.
Black vertices have Maslov grading 0, but white ones have 1.
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KNOT FLOER COMPLEX

figure eight knot
(2, 1)-cable of T (2, 3)
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T (3, 7): GAP FUNCTION AND UPSILON
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Υ′(t) is singular at t = 2/3 and 4/3.
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SECONDARY UPSILON INVARIANT

Secondary Upsilon invariant is defined at each singularity t of
Υ′(t).

Put t = 2/3, and let Lt be the line with slope 1 − 2/t = −2
touching St(K ) from south-west. [Support line]
Lt meets St(K ) in at least 2 points.
The top most is p−

t = (0, 6), and the bottom most is
p+

t = (2, 2). [pivot points]
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Figure: The staircase diagram St(K ) of T (3, 7).
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SECONDARY UPSILON INVARIANT

Consider the part of St(K ) between two pivot points.
For s ∈ [0, 2], let Ls be the line with slope 1 − 2/s touching it
from north-east. (L0 is vertical.)
Let ξ be the intercept of Ls when s ̸= 0.
Υ2

K ,t(s) = −s ξ −ΥK (t) (s ̸= 0), −2 alg(p+
t )−ΥK (t) (s = 0).

6

5

4

3

2

1

0 654321

Figure: Pivot points
p−

t = (0, 6), p+
t = (2, 2)

for t = 2/3

ΥK (2/3) = −4

Υ2
K ,2/3(s) =

{
−2s (0 ≤ s ≤ 2/3)
−5s + 2 (2/3 ≤ s ≤ 2)
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RESULT 3

Define Φ: R2 → R2 by Φ(x , y) = (x − y , 2x).
For p ∈ R2, Φ1(p) denotes the first coordinate of Φ(p).

Result 3
Let K be an L–space knot. Let t0 ∈ (0, 2) be a singularity of Υ′

K (t),
and let p± be the corresponding pivot points on St(K ). Then

Υ2
K ,t0(s) = G∗(s)−ΥK (t0),

where G∗(s) is the concave conjugate of the gap function G(x)
restricted on [Φ1(p−),Φ1(p+)].

* G∗(s) = minx∈I(sx − G(x)).
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T (3, 7), t = 2/3
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Υ2
K ,2/3(s) =

{
−2s (0 ≤ s ≤ 2/3)
−5s + 2 (2/3 ≤ s ≤ 2)
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ΥK (2/3) = −4
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