UPSILON AND SECONDARY UPSILON INVARIANTS OF L-SPACE KNOTS

Masakazu Teragaito (Hiroshima University)

ILDT, 2023/05/25

Contents

1 Upsilon invariant and L-space knot

2 Problems and Results

3 Outline of Result 1

4 Outline of Result 2

5 Secondary Upsilon invariant and Result 3

UPSILON INVARIANT AND L-SPACE KNOT

UPSILON INVARIANT

Ozsváth-Stipsicz-Szabó (2017)

For a knot K, a piecewise linear, continuous function
$\Upsilon_{K}(t):[0,2] \rightarrow \mathbb{R}$ is assigned.

- concordance invariant
- $\Upsilon_{K}^{\prime}(0)=-\tau(K)$
- symmetric along $t=1$
- additive for connected sum
- $\Upsilon_{-K}=-\Upsilon_{K}$
- if K is smoothly slice, then $\Upsilon_{K}(t)=0$
- a lower bound for genus, 4 -genus, concordance genus

UPSILON INVARIANT

Ozsváth-Stipsicz-Szabó (2017)

For a knot K, a piecewise linear, continuous function
$\Upsilon_{K}(t):[0,2] \rightarrow \mathbb{R}$ is assigned.

- concordance invariant
- $\Upsilon_{K}^{\prime}(0)=-\tau(K)$
- symmetric along $t=1$
- additive for connected sum
- $\Upsilon_{-K}=-\Upsilon_{K}$
- if K is smoothly slice, then $\Upsilon_{K}(t)=0$
- a lower bound for genus, 4 -genus, concordance genus

Originally, [OSS] used t-modified knot Floer complex. Later, Livingston gave an interpretation on knot Floer complex $\mathrm{CFK}^{\infty}(K)$.

Example: Trefoll knot $T(2,3)$

$$
\Upsilon_{T(2,3)}(t)=-t \quad(0 \leq t \leq 1)
$$

EXAMPLE: Trefoll knot $T(2,3)$

$$
\Upsilon_{T(2,3)}(t)=-t \quad(0 \leq t \leq 1)
$$

- There is an inductive formula for torus knots.
- For any alternating (or, quasi-alternating) knot, $\Upsilon_{K}(t)=(1-|t-1|) \sigma / 2$.

L-SPACE KNOT

A knot is called an L-space knot if some positive Dehn surgery yields an L-space.

L-SPACE KNOT

A knot is called an L-space knot if some positive Dehn surgery yields an L-space.

OSS

The Upsilon invariant of an L-space knot is determined only by its Alexander polynomial.

L-SPACE KNOT

A knot is called an L-space knot if some positive Dehn surgery yields an L-space.

OSS

The Upsilon invariant of an L-space knot is determined only by its Alexander polynomial.

Borodzik-Hedden (2018)

For an L-space knot, the Upsilon invariant is the Legendre-Fenchel transform of a gap function, which has the same information as the Alexander polynomial.

EXAMPLE: $T(3,4)$

$$
\Delta(t)=1-t+t^{3}-t^{5}+t^{6} \rightarrow[1,2,2,1]
$$

Figure: gap function and Upsilon invariant

EXAMPLE: $T(3,4)$

$$
\Delta(t)=1-t+t^{3}-t^{5}+t^{6} \rightarrow[1,2,2,1]
$$

Figure: gap function and Upsilon invariant

$$
\begin{array}{|c||l|l|}
\hline 0 \leq t \leq 2 / 3 & y=t(x+3) & \Upsilon(t)=-3 t \\
\hline 2 / 3<t<4 / 3 & y=t x+2 & \Upsilon(t)=-2 \\
\hline 4 / 3 \leq t \leq 2 & y=t(x-3)+6 & \Upsilon(t)=3 t-6 \\
\hline
\end{array}
$$

Table: Legendre-Fenchel transformation

EXAMPLE: $T(3,4)$

$$
\Delta(t)=1-t+t^{3}-t^{5}+t^{6} \rightarrow[1,2,2,1]
$$

Figure: gap function and Upsilon invariant

L-space knot

The Upsilon invariant is determined only by the convex hull of gap function.

Problems and Results

■ If two L-space knots have distinct Alexander polynomials, but the gap functions share the same convex hull, then their Upsilon invariants coincide.

- No duplication among torus knots.
- Find among hyperbolic L-space knots.

■ If two L-space knots have distinct Alexander polynomials, but the gap functions share the same convex hull, then their Upsilon invariants coincide.

- No duplication among torus knots.
- Find among hyperbolic L-space knots.

■ Since the gap function is not convex, another Legendre-Fenchel transformation of the Upsilon invariant does not return the gap function. So, we cannot restore the Alexander polynomial, in general.

- However, find examples for which the Alexander polynomial can be restored from the Upsilon invariant.

Theorem 1

There exist infinitely many pairs of hyperbolic L-space knots, which have distinct Alexander polynomials, but share the same Upsilon invariant.

Theorem 1

There exist infinitely many pairs of hyperbolic L-space knots, which have distinct Alexander polynomials, but share the same Upsilon invariant.

Concretely, consider the closures of 4-braids ($n \geq 1$).

$$
\begin{aligned}
& K_{1}:\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{4 n} \sigma_{2}^{-1}\left(\sigma_{2} \sigma_{3}\right)^{6}, \\
& K_{2}:\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)^{4 n} \sigma_{3}^{-1}\left(\sigma_{2} \sigma_{3}\right)^{6}
\end{aligned}
$$

A PAIR OF HYPERBOLIC L-SPACE KNOTS

Perform $(-1 / n)$-surgery on C_{1} and ($-1 / 2$)-surgery on C_{2}.

Figure: K_{1} and K_{2}

Result 2

There exist hyperbolic L-space knots such that their Alexander polynomials can be restored from Upsilon invariants (through Legendre-Fenchel transformation).

Result 2

There exist hyperbolic L-space knots such that their Alexander polynomials can be restored from Upsilon invariants (through Legendre-Fenchel transformation).

Theorem 2

Let K be hyperbolic L-space knot t09847 or v2871.
Then the Alexander polynomial is restored from the Upsilon invariant.
That is, if an L-space knot K^{\prime} satisfies $\Upsilon_{K}(t)=\Upsilon_{K^{\prime}}(t)$, then $\Delta_{K}(t) \doteq \Delta_{K^{\prime}}(t)$.

Result 2

There exist hyperbolic L-space knots such that their Alexander polynomials can be restored from Upsilon invariants (through Legendre-Fenchel transformation).

Theorem 2

Let K be hyperbolic L-space knot t09847 or v2871.
Then the Alexander polynomial is restored from the Upsilon invariant.
That is, if an L-space knot K^{\prime} satisfies $\Upsilon_{K}(t)=\Upsilon_{K^{\prime}}(t)$, then $\Delta_{K}(t) \doteq \Delta_{K^{\prime}}(t)$.
$t 09847$: $\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)^{3}\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}\right) \sigma_{1}$,
v2871: $\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)^{3}\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}\right) \sigma_{1}^{3}$.

OUTLINE OF RESULT 1

Proposition

For $n \geq 1, K_{1}$ and K_{2} satisfy the following:

- hyperbolic.

■ $(16 n+21)$-surgery on $K_{1},(16 n+20)$-surgery on K_{2} yield L-spaces.

- Alexander polynomials are distinct.
[Montesinos trick]
[Torres formula]
- Upsilon invariants coincide.
$n=1$
$K_{1}=m 240, K_{2}=t 10496$ in SnapPy's census

Figure: Gap functions of K_{1} and K_{2}
$n=1$
$K_{1}=m 240, K_{2}=t 10496$ in SnapPy's census

Figure: Gap functions of K_{1} and K_{2}

These share the same convex hull $\Longrightarrow \Upsilon_{K_{1}}(t)=\Upsilon_{K_{2}}(t)$

ALEXANDER POLYNOMIAL

$$
\begin{aligned}
\Delta_{K_{1}}(t)= & \sum_{i=0}^{n}\left(t^{8 n+12+4 i}-t^{8 n+11+4 i}\right)+\left(t^{8 n+9}-t^{8 n+8}\right) \\
& +\sum_{i=0}^{n}\left(t^{4 n+6+4 i}-t^{4 n+4+4 i}\right)+\left(t^{4 n+3}-t^{4 n+1}\right) \\
& +\sum_{i=0}^{n-1}\left(t^{4+4 i}-t^{1+4 i}\right)+1 . \\
\Delta_{K_{2}}(t)= & \sum_{i=0}^{n}\left(t^{8 n+12+4 i}-t^{8 n+11+4 i}\right)+\left(t^{8 n+9}-t^{8 n+8}\right) \\
& +\sum_{i=0}^{2 n-1}\left(t^{4 n+8+2 i}-t^{4 n+7+2 i}\right)+\left(t^{4 n+6}-t^{4 n+4}\right) \\
& +\left(t^{4 n+3}-t^{4 n+1}\right)+\sum_{i=0}^{n-1}\left(t^{4+4 i}-t^{1+4 i}\right)+1 .
\end{aligned}
$$

Formal semigroup

For an L-space knot K,

$$
\Delta_{K}(t)=1-t^{a_{1}}+t^{a_{2}}+\cdots-t^{a_{k-1}}+t^{a_{k}}
$$

where $1=a_{1}<a_{2}<\cdots<a_{k}=2 g(K)$.

Formal semigroup

For an L-space knot K,

$$
\Delta_{K}(t)=1-t^{a_{1}}+t^{a_{2}}+\cdots-t^{a_{k-1}}+t^{a_{k}}
$$

where $1=a_{1}<a_{2}<\cdots<a_{k}=2 g(K)$.
Expand $\Delta_{K}(t) /(1-t)$ as a formal power series:

$$
\frac{\Delta_{K}(t)}{1-t}=\sum_{s \in \mathcal{S}_{K}} t^{s}
$$

The set \mathcal{S}_{K} is a subset of non-negative integers, called the formal semigroup of K.

Formal semigroup

For an L-space knot K,

$$
\Delta_{K}(t)=1-t^{a_{1}}+t^{a_{2}}+\cdots-t^{a_{k-1}}+t^{a_{k}}
$$

where $1=a_{1}<a_{2}<\cdots<a_{k}=2 g(K)$.
Expand $\Delta_{K}(t) /(1-t)$ as a formal power series:

$$
\frac{\Delta_{K}(t)}{1-t}=\sum_{s \in \mathcal{S}_{K}} t^{s}
$$

The set \mathcal{S}_{K} is a subset of non-negative integers, called the formal semigroup of K.
For example, for $T(p, q)$,

$$
\mathcal{S}=\langle p, q\rangle=\{a p+b q \mid a, b \geq 0\}
$$

is a semigroup.

$K_{1}(n=1)$

$$
\begin{aligned}
\Delta_{K_{1}}(t)= & 1-t+t^{4}-t^{5}+t^{7}-t^{8}+t^{10}-t^{12}+t^{14}-t^{16}+t^{17}-t^{19}+t^{20}-t^{23}+t^{24} \\
= & (1-t)+t^{4}(1-t)+t^{7}(1-t)+t^{10}\left(1-t^{2}\right)+t^{14}\left(1-t^{2}\right)+t^{17}\left(1-t^{2}\right) \\
& +t^{20}\left(1-t^{3}\right)+t^{24}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Delta_{K_{1}}(t)}{1-t}= & 1+t^{4}+t^{7}+t^{10}+t^{11}+t^{14}+t^{15}+t^{17}+t^{18}+t^{20}+t^{21}+t^{22}+\frac{t^{24}}{1-t} \\
= & 1+t^{4}+t^{7}+t^{10}+t^{11}+t^{14}+t^{15}+t^{17}+t^{18}+t^{20}+t^{21}+t^{22} \\
& +t^{24}\left(1+t+t^{2}+\ldots\right)
\end{aligned}
$$

$K_{1}(n=1)$

$$
\begin{aligned}
\Delta_{K_{1}}(t)= & 1-t+t^{4}-t^{5}+t^{7}-t^{8}+t^{10}-t^{12}+t^{14}-t^{16}+t^{17}-t^{19}+t^{20}-t^{23}+t^{24} \\
= & (1-t)+t^{4}(1-t)+t^{7}(1-t)+t^{10}\left(1-t^{2}\right)+t^{14}\left(1-t^{2}\right)+t^{17}\left(1-t^{2}\right) \\
& +t^{20}\left(1-t^{3}\right)+t^{24}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Delta_{K_{1}}(t)}{1-t}= & 1+t^{4}+t^{7}+t^{10}+t^{11}+t^{14}+t^{15}+t^{17}+t^{18}+t^{20}+t^{21}+t^{22}+\frac{t^{24}}{1-t} \\
= & 1+t^{4}+t^{7}+t^{10}+t^{11}+t^{14}+t^{15}+t^{17}+t^{18}+t^{20}+t^{21}+t^{22} \\
& +t^{24}\left(1+t+t^{2}+\ldots\right)
\end{aligned}
$$

■ $\mathcal{S}=\{0,4,7,10,11,14,15,17,18,20,21,22\} \cup\{24,25,26, \ldots\}$

$$
\begin{aligned}
\Delta_{K_{1}}(t)= & 1-t+t^{4}-t^{5}+t^{7}-t^{8}+t^{10}-t^{12}+t^{14}-t^{16}+t^{17}-t^{19}+t^{20}-t^{23}+t^{24} \\
= & (1-t)+t^{4}(1-t)+t^{7}(1-t)+t^{10}\left(1-t^{2}\right)+t^{14}\left(1-t^{2}\right)+t^{17}\left(1-t^{2}\right) \\
& +t^{20}\left(1-t^{3}\right)+t^{24}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Delta_{K_{1}}(t)}{1-t}= & 1+t^{4}+t^{7}+t^{10}+t^{11}+t^{14}+t^{15}+t^{17}+t^{18}+t^{20}+t^{21}+t^{22}+\frac{t^{24}}{1-t} \\
= & 1+t^{4}+t^{7}+t^{10}+t^{11}+t^{14}+t^{15}+t^{17}+t^{18}+t^{20}+t^{21}+t^{22} \\
& +t^{24}\left(1+t+t^{2}+\ldots\right)
\end{aligned}
$$

■ $\mathcal{S}=\{0,4,7,10,11,14,15,17,18,20,21,22\} \cup\{24,25,26, \ldots\}$
■ $4 \in \mathcal{S}$, but $8 \notin \mathcal{S} \Longrightarrow \mathcal{S}$ is not a semigroup.

For K_{1} and K_{2},

HYPERBOLICITY

For K_{1} and K_{2},
■ The formal semigroup is not a semigroup, so it is not a torus knot.

For K_{1} and K_{2},
■ The formal semigroup is not a semigroup, so it is not a torus knot.

- Assume that K_{i} is satellite for a contradiction.

For K_{1} and K_{2},
■ The formal semigroup is not a semigroup, so it is not a torus knot.
■ Assume that K_{i} is satellite for a contradiction.

- The bridge number is 4 , so its companion is 2-bridge and the pattern knot has wrapping number 2.

HYPERBOLICITY

For K_{1} and K_{2},

- The formal semigroup is not a semigroup, so it is not a torus knot.
- Assume that K_{i} is satellite for a contradiction.
- The bridge number is 4 , so its companion is 2-bridge and the pattern knot has wrapping number 2.
- We know that the companion and pattern are L-space knots.

HYPERBOLICITY

For K_{1} and K_{2},

- The formal semigroup is not a semigroup, so it is not a torus knot.
- Assume that K_{i} is satellite for a contradiction.
- The bridge number is 4 , so its companion is 2-bridge and the pattern knot has wrapping number 2.
- We know that the companion and pattern are L-space knots.
- In addition, the pattern is braided by Baker-Motegi.

HYPERBOLICITY

For K_{1} and K_{2},

- The formal semigroup is not a semigroup, so it is not a torus knot.

■ Assume that K_{i} is satellite for a contradiction.

- The bridge number is 4 , so its companion is 2-bridge and the pattern knot has wrapping number 2.
- We know that the companion and pattern are L-space knots.
- In addition, the pattern is braided by Baker-Motegi.
- Hence, the companion is a 2-bridge torus knot, and K_{i} is its 2-cable.

HYPERBOLICITY

For K_{1} and K_{2},

- The formal semigroup is not a semigroup, so it is not a torus knot.
- Assume that K_{i} is satellite for a contradiction.
- The bridge number is 4 , so its companion is 2-bridge and the pattern knot has wrapping number 2.
- We know that the companion and pattern are L-space knots.
- In addition, the pattern is braided by Baker-Motegi.
- Hence, the companion is a 2-bridge torus knot, and K_{i} is its 2-cable.
- However, the formal semigroup of an iterated torus L-space knot is a semigroup by Shida Wang.

MONTESINOS TRICK FOR K_{1}

(16n+21)-surgery yields a Seifert fibered L-space.

MONTESINOS TRICK FOR K_{1}

Montesinos trick for K_{1}

The last is the Montesinos knot $M(-3 / 7,-1 / 3,-1 / n)$.
By the criterion, its double cover is an L-space.

MONTESINOS TRICK FOR K

(16n+20)-surgery yields an L-space.

MONTESINOS TRICK FOR K_{2}

$(16 n+20)$-surgery yields an L-space.

Perform two resolutions to obtain ℓ_{∞} and ℓ_{0}.

MONTESINOS TRICK FOR K

For ℓ_{∞},

The last is the $(-3,3, n-1)$-pretzel knot, whose double cover is an L-space.

MONTESINOS TRICK FOR K2

For ℓ_{0},

Perform two further resolutions to obtain $\ell_{0 \infty}\left(=\ell_{\infty}\right)$ and ℓ_{00}.

MONTESINOS TRICK FOR K_{2}

ℓ_{00} is the connected sum of the Hopf link and the Montesinos knot $M(1 / 2,-1 / 3, n /(2 n+1))$.
Then its double cover is an L-space.

Outline of Result 2

Result 2

Theorem 2

Let K be hyperbolic L-space knot t09847 or v2871. Then the Alexander polynomial is restored from the Upsilon invariant.
That is, if an L-space knot K^{\prime} satisfies $\Upsilon_{K}(t)=\Upsilon_{K^{\prime}}(t)$, then $\Delta_{K}(t) \doteq \Delta_{K^{\prime}}(t)$.

Result 2

Theorem 2

Let K be hyperbolic L-space knot t09847 or v2871.
Then the Alexander polynomial is restored from the Upsilon invariant.
That is, if an L-space knot K^{\prime} satisfies $\Upsilon_{K}(t)=\Upsilon_{K^{\prime}}(t)$, then $\Delta_{K}(t) \doteq \Delta_{K^{\prime}}(t)$.
$t 09847$: $\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)^{3}\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}\right) \sigma_{1}$, v2871: $\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)^{3}\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}\right) \sigma_{1}^{3}$.

Result 2

Theorem 2

Let K be hyperbolic L-space knot t09847 or v2871.
Then the Alexander polynomial is restored from the Upsilon invariant.
That is, if an L-space knot K^{\prime} satisfies $\Upsilon_{K}(t)=\Upsilon_{K^{\prime}}(t)$, then $\Delta_{K}(t) \doteq \Delta_{K^{\prime}}(t)$.
$t 09847$: $\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)^{3}\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}\right) \sigma_{1}$,
v2871: $\left(\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right)^{3}\left(\sigma_{2} \sigma_{1}^{2} \sigma_{2}\right) \sigma_{1}^{3}$.

■ Are there infinitely many such hyperbolic L-space knots?

EASY EXAMPLES (TORUS KNOTS)

$$
\begin{array}{l|l}
T(3,4) & \Delta(t)=1-t+t^{3}-t^{5}+t^{6} \\
\hline T(3,5) & \Delta(t)=1-t+t^{3}-t^{4}+t^{5}-t^{7}+t^{8}
\end{array}
$$

Figure: Gap functions of $T(3,4)$ and $T(3,5)$

■ Each segment of the graph has slope 0 or 2.
■ These $\Delta(t)$ are restorable from $\Upsilon(t)$.

BAD EXAMPLE

K: (-2,3,7)-pretzel knot

$$
\Delta_{K}(t)=1-t+t^{3}-t^{4}+t^{5}-t^{6}+t^{7}-t^{9}+t^{10}
$$

$\Delta(t)=1-t+t^{3}-t^{5}+t^{7}-t^{9}+t^{10}$ shares the same convex hull.
$K=t 09847$

$$
\Delta_{K}(t)=1-t+t^{4}-t^{5}+t^{7}-t^{9}+t^{10}-t^{13}+t^{14}
$$

CANDIDATES

Proposition

Let $m \geq 3$ be an integer, and let
$\Delta(t)=1-t+t^{m}-t^{m+1}+t^{m+2}-t^{2 m+1}+t^{2 m+2}$. Then its gap
function, defined formally, is restorable from the convex hull.

CANDIDATES

Proposition

Let $m \geq 3$ be an integer, and let
$\Delta(t)=1-t+t^{m}-t^{m+1}+t^{m+2}-t^{2 m+1}+t^{2 m+2}$. Then its gap
function, defined formally, is restorable from the convex hull.

- There exists a hyperbolic knot whose Alexander polynomial is $\Delta(t)$.
■ Δ satisfies Krcatovich's condition.
■ If $m=3$, then $\Delta(t)$ is the Alexander polynomial of $T(3,5)$.
■ Similar polynomials can be given more.

SECONDARY UPSILON INVARIANT AND RESULT 3

KNOT FLOER COMPLEX OF L-SPACE KNOT

For $K=T(3,7)$,

$$
\Delta_{K}(t)=1-t+t^{3}-t^{4}+t^{6}-t^{8}+t^{9}-t^{11}+t^{12} .
$$

Hence, the staircase diagram $\mathrm{St}(K)$ of $\mathrm{CFK}^{\infty}(K)$ is specified by

$$
[1,2,1,2,2,1,2,1]
$$

on the (alg, Alex)-plane.
Black vertices have Maslov grading 0, but white ones have 1.

Knot Floer complex

figure eight knot

(2, 1)-cable of $T(2,3)$

- $\Upsilon^{\prime}(t)$ is singular at $t=2 / 3$ and $4 / 3$.

SECONDARY UPSILON INVARIANT

Secondary Upsilon invariant is defined at each singularity t of $r^{\prime}(t)$.

■ Put $t=2 / 3$, and let L_{t} be the line with slope $1-2 / t=-2$ touching $\operatorname{St}(K)$ from south-west.
[Support line]

- L_{t} meets $\operatorname{St}(K)$ in at least 2 points.
- The top most is $p_{t}^{-}=(0,6)$, and the bottom most is $p_{t}^{+}=(2,2)$.
[pivot points]

Figure: The staircase diagram $\operatorname{St}(K)$ of $T(3,7)$.

SECONDARY UPSILON INVARIANT

Consider the part of $\operatorname{St}(K)$ between two pivot points.
■ For $s \in[0,2]$, let L_{s} be the line with slope $1-2 / s$ touching it from north-east. (L_{0} is vertical.)

- Let ξ be the intercept of L_{s} when $s \neq 0$.
- $\Upsilon_{K, t}^{2}(s)=-s \xi-\Upsilon_{K}(t)(s \neq 0),-2 \operatorname{alg}\left(p_{t}^{+}\right)-\Upsilon_{K}(t)(s=0)$.

Figure: Pivot points

$$
\begin{aligned}
& \Upsilon_{K}(2 / 3)=-4 \\
& \Upsilon_{K, 2 / 3}^{2}(s)= \begin{cases}-2 s & (0 \leq s \leq 2 / 3) \\
-5 s+2 & (2 / 3 \leq s \leq 2)\end{cases}
\end{aligned}
$$

$p_{t}^{-}=(0,6), p_{t}^{+}=(2,2)$
for $t=2 / 3$

■ Define $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\Phi(x, y)=(x-y, 2 x)$.
$■$ For $p \in \mathbb{R}^{2}, \Phi_{1}(p)$ denotes the first coordinate of $\Phi(p)$.

■ Define $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $\Phi(x, y)=(x-y, 2 x)$.
$■$ For $p \in \mathbb{R}^{2}, \Phi_{1}(p)$ denotes the first coordinate of $\Phi(p)$.

Result 3

Let K be an L-space knot. Let $t_{0} \in(0,2)$ be a singularity of $\Upsilon_{K}^{\prime}(t)$, and let $p^{ \pm}$be the corresponding pivot points on $\operatorname{St}(K)$. Then

$$
\Upsilon_{K, t_{0}}^{2}(s)=G^{*}(s)-\Upsilon_{K}\left(t_{0}\right)
$$

where $G^{*}(s)$ is the concave conjugate of the gap function $G(x)$ restricted on $\left[\Phi_{1}\left(p^{-}\right), \Phi_{1}\left(p^{+}\right)\right]$.
${ }^{*} G^{*}(s)=\min _{x \in I}(s x-G(x))$.

$T(3,7), t=2 / 3$

$$
\Upsilon_{K, 2 / 3}^{2}(s)= \begin{cases}-2 s & (0 \leq s \leq 2 / 3) \\ -5 s+2 & (2 / 3 \leq s \leq 2)\end{cases}
$$

$\Upsilon_{K}(2 / 3)=-4$

