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Definition

M : a 3-manifold.
A contact structure ξ on M is a plane field on M satisfying, when
ξ = ker α for a local 1-form α on M , α ∧ dα 6= 0.
Then (M, ξ) is called a contact 3-manifold.

Example

(x, y, z) : the standard coordinate on R3.
αstd := dz + xdy.
ξstd := ker αstd = 〈 ∂

∂x ,
∂
∂y − x ∂

∂z 〉R.
Then ξstd is a contact structure on R3.
ξstd is called the standard contact structure on R3.

Definition

(M, ξ) : a contact 3-manifold.
A smooth knot K in (M, ξ) is called Legendrian if
TpK ⊂ ξp for any p ∈ K.
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Definition

K0,K1 : Legendrian knots in a contact 3-manifold (M, ξ).
K0 is said to be Legendrian isotopic to K1 if there exists an isotopy φt of
M (t ∈ [0, 1]) such that φ0 is idM , φ1(K0) is K1 and φt(K0) is
Legendrian for any t ∈ [0, 1].

Legendrian isotopic is more strict equivalence relation than ambient
isotopic. Actually, two Legendrian unknots below are not Legendrian
isotopic.

We consider the classification of Legendrian knots up to Legendrian
isotopy.
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We only consider Legendrian knots in (R3, ξstd).

R3 3 (x, y, z) 7→ (y, z) ∈ R2 : the front projection.

Front diagrams of Legendrian knots have the following features.
γ(t) = (x(t), y(t), z(t)) : a parametrization of a Legendrian knot K.
Since αstd(γ

′(t)) = 0,
z′(t) + x(t)y′(t) = 0.

(1) Each point (y(t), z(t)) in R2 with y′(t) = 0 is a singular
point called a cusp.

(2) Due to x(t) = −dz
dy (t), at each crossing the slope of the

overcrossing is smaller than that of the undercrossing.
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Theorem

K0,K1 : Legendrian knots in (R3, ξstd).
Di : the front diagram of Ki (i = 0, 1).
Then K0 and K1 are Legendrian isotopic if and only if
D0 and D1 are related by a finite sequence of the following three types of
local moves.

The moves are called the Legendrian Reidemeister moves.
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Several invariants of Legendrian knots computed from diagrams

1. Classical invariants

2. Legendrian contact homology (Chekanov-Eliashberg DGA)
(vanishing for stabilized Legendrian knots)

3. Ruling polynomial
(vanishing for stabilized Legendrian knots)

4. Rack coloring invariants
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The classical invariants of Legendrian knots

(1) the Thurston-Bennequin number tb(K) ∈ Z
(an invariant of unoriented Legendrian knots)

(2) the rotation number rot(K) ∈ Z
(an invariant of oriented Legendrian knots)

tb(K) is the twisting number of the contact plane ξ relative to a Seifert
surface of K along K.
rot(K) is the rotation number of the tangent vector of K on the contact
plane ξ along K.

tb(K) = w(D)− 1

2
c(D),

rot(K) =
1

2
(dc(D)− uc(D)),

where w(D) : the writhe of D,
c(D) : the number of the cusps of D,
dc(D) : the number of the downward cusps of D,
uc(D) : the number of the upward cusps of D.
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Note that rot(−K) = −rot(K),
where −K is the same knot as K with the reverse orientation.

These two Legendrian unknots are not Legendrian isotopic.

K : a Legendrian knot in (R3, ξstd) with the knot type K.

Theorem (Bennequin (1983))

tb(K) + |rot(K)| ≤ 2g(K)− 1.

Theorem (Rudolph (1997))

tb(K) + |rot(K)| ≤ 2gs(K)− 1.
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Definition

A knot type K is called Legendrian simple if the following holds for any
two Legendrian knots K0 and K1 of the knot type K :
if tb(K0) = tb(K1) and rot(K0) = rot(K1), then K0 and K1 are
Legendrian isotopic.

In other words, Legendrian simplicity of K means that the pair of the
classical invariants completely classifies the Legendrian isotopy classes of
K.

Theorem (Eliashberg-Fraser (2009))

The unknot is Legendrian simple.

Theorem (Etnyre-Honda (2001))

Each torus knot is Legendrian simple.

Theorem (Etnyre-Honda (2001))

The figure eight knot is Legendrian simple.
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Definition

(X, ∗) is called a rack if X is a set with a binary operation ∗ satisfying the
following conditions for all x, y, z ∈ X :

∗ x : X → X is a bijection,

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

A rack which satisfies x ∗ x = x for all x ∈ X is called a quandle.

Since the axioms of a quandle correspond to the Reidemeister moves,
quandle colorings of diagrams bring knot invariants.

We consider the axioms correspond to the Legendrian Reidemeister moves
in order to obtain invariants of Legendrian knots.
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Definition (K.)

(X, ∗, f, g) is called a bi-Legendrian rack if (X, ∗) is a rack and f and g
are maps on X satisfying the following conditions for all x, y ∈ X :

f ◦ g = g ◦ f,
fg(x ∗ x) = x,

f(x ∗ y) = f(x) ∗ y,
g(x ∗ y) = g(x) ∗ y,
x ∗ f(y) = x ∗ y,
x ∗ g(y) = x ∗ y.

Example

(G, ∗) : a conjugation quandle, i.e. G is a group and x ∗ y = y−1xy for
x, y ∈ G. Take z ∈ Z(G) and define f(x) := zx.
Then (G, ∗, f, f−1) is a bi-Legendrian quandle.
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Example

X : a set.
f, g : bijections on X such that they are commutative.
Define

x ∗ y := (f ◦ g)−1(x).

Then (X, ∗, f, g) is a constant bi-Legendrian rack.

Example

(Z8, ∗, f, g) is a bi-Legendrian rack if we define

x ∗ y = 3x+ 2y,

f(x) = x+ 4,

g(x) = 5x+ 4.
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An arc of a front diagram means a part of the diagram each of whose end
is either an undercrossing or a cusp and which contains neither
undercrossings nor cusps in its interior.

D : the front diagram of a Legendrian knot K in (R3, ξstd).
(X, ∗, f, g) : a bi-Legendrian rack.
An (X, ∗, f, g)-coloring c of D is a map

c : {arcs of D} → X

such that at each crossing and each cusp the relations below hold.
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Col(D,X) := {(X, ∗, f, g)-colorings of D}.

Proposition (K.)

#Col(D,X) is invariant under the Legendrian Reidemeister moves.
Namely, #Col(D,X) is an invariant of a Legendrian knot K, denoted by
#Col(K,X).
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It is known that any Legendrian unknot is Legendrian isotopic to Kp,n for
some p, n ∈ Z≥0 (0 ≤ p ≤ n).

tb(Kp,n) = −1− n, rot(Kp,n) = 2p− n.

Theorem (K.)

For any n ∈ Z≥0, there exists a bi-Legendrian rack (Xn, ∗, f, g) such that
n+ 1 Legendrian unknots Kp,n (0 ≤ p ≤ n) are simultaneously
distinguished by #Col(Kp,n, Xn).
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Theorem (K.)

K0,K1 : Legendrian knots in (R3, ξstd).
If K0 and K1 are of the same knot type, tb(K0) = tb(K1) and
rot(K0) = rot(K1),
then #Col(K0, X) = #Col(K1, X) for any bi-Legendrian quandle
(X, ∗, f, g).

Theorem (K.)

K2,K3 : the Chekanov knots.
Then #Col(K2, X) = #Col(K3, X) for any bi-Legendrian rack
(X, ∗, f, g).

Theorem (K.)

K4,K5 : Legendrian knots with the knot type 63.
Then #Col(K4, X) = #Col(K5, X) for any bi-Legendrian rack
(X, ∗, f, g).
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K2 and K3 are of the same knot type m(52), tb(K2) = tb(K3) = 1 and
rot(K2) = rot(K3) = 0.
However, Chekanov (2002) proved K2 and K3 are not Legendrian isotopic
by using Legendrian contact homology.
K2 and K3 are called the Chekanov knots.
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K4 and K5 are of the same knot type 63, tb(K4) = tb(K5) = −4 and
rot(K4) = rot(K5) = 1.
However, Ng (2003) proved K4 and K5 are not Legendrian isotopic by
using Legendrian contact homology.

22 / 30



Karmakar, Saraf and Singh defined the fundamental bi-Legendrian rack of

a Legendrian knot as an analogue of the fundamental quandle of a knot.
[arXiv:2301.06854].

D : the front diagram of a Legendrian knot K in (R3, ξstd).

Definition (Karmakar-Saraf-Singh)

The fundamental bi-Legendrian rack bLR(K) of K is generated by the
arcs of D and crossings and cusps give the relations.
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D : the front diagram of a Legendrian knot K in (R3, ξstd).
(X, ∗, f, g) : a bi-Legendrian rack.

Remark

An (X, ∗, f, g)-coloring of D is regarded as a homomorphism from the
fundamental bi-Legendrian rack bLR(K) of K to (X, ∗, f, g).
Hence the fundamental bi-Legendrian rack bLR(K) of K is the universal
invariant for bi-Legendrian rack coloring numbers #Col(K,X).

K : a Legendrian knot in (R3, ξstd) with the knot type K.

Remark

The fundamental quandle of K is obtained from the fundamental
bi-Legendrian rack bLR(K) of K by adding the relation f(x) = g(x) = x
for any generator x of bLR(K).
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Theorem (Karmakar-Saraf-Singh (2023))

Legendrian unknots are completely classified by the fundamental
bi-Legendrian rack bLR(K).

Theorem (Karmakar-Saraf-Singh (2023))

Legendrian left-handed trefoil knots are completely classified by the
fundamental bi-Legendrian rack bLR(K).
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We introduce a 4-Legendrian rack as a generalization of a bi-Legendrian
rack.

Definition (K.)

(X, ∗, fL, fR, gL, gR) is called a 4-Legendrian rack if (X, ∗) is a rack and
fL, fR, gL and gR are maps on X satisfying the following conditions for all
x, y ∈ X :

fL ◦ gR = gR ◦ fL = fR ◦ gL = gL ◦ fR,
fLgR(x ∗ x) = x,

fL(x ∗ y) = fL(x) ∗ y,
fR(x ∗ y) = fR(x) ∗ y,
gL(x ∗ y) = gL(x) ∗ y,
gR(x ∗ y) = gR(x) ∗ y,
x ∗ fL(y) = x ∗ fR(y) = x ∗ y,
x ∗ gL(y) = x ∗ gR(y) = x ∗ y.
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D : the front diagram of a Legendrian knot K in (R3, ξstd).
(X, ∗, fL, fR, gL, gR) : a 4-Legendrian rack.
An (X, ∗, fL, fR, gL, gR)-coloring c of D is a map

c : {arcs of D} → X

such that at each crossing and each cusp the relations below hold.

Col(D,X) := {(X, ∗, fL, fR, gL, gR)-colorings of D}.

Proposition (K.)

#Col(D,X) is invariant under the Legendrian Reidemeister moves.
Namely, #Col(D,X) is an invariant of a Legendrian knot K, denoted by
#Col(K,X).
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We define the fundamental 4-Legendrian rack of a Legendrian knot.

D : the front diagram of a Legendrian knot K in (R3, ξstd).

Definition

The fundamental 4-Legendrian rack 4LR(K) of K is generated by the
arcs of D and crossings and cusps give the relations.

The fundamental 4-Legendrian rack 4LR(K) is the universal invariant for
4-Legendrian rack coloring numbers.

Remark

The fundamental bi-Legendrian rack bLR(K) of K is obtained from the
fundamental 4-Legendrian rack 4LR(K) of K by adding the relation
fL(x) = fR(x)(= f(x)) and gL(x) = gR(x)(= g(x)) for any generator x
of 4LR(K).
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Theorem (K.)

K0,K1 : Legendrian knots in (R3, ξstd).
If K0 and K1 are of the same knot type, tb(K0) = tb(K1) and
rot(K0) = rot(K1),
then #Col(K0, X) = #Col(K1, X) for any 4-Legendrian quandle
(X, ∗, fL, fR, gL, gR).

Theorem (K.)

K2,K3 : the Chekanov knots.
Then the fundamental 4-Legendrian racks 4LR(K2) and 4LR(K3) are
isomorphic.

Theorem (K.)

K4,K5 : Legendrian knots with the knot type 63.
Then the fundamental 4-Legendrian racks 4LR(K4) and 4LR(K5) are
isomorphic.
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Future works (problem)

1. Can rack coloring invariants distinguish Legendrian knots with the same
classical invariants?

2. Are the classical invariants recovered from rack coloring invariants?

3. Relation to Legendrian contact homology or rulings?
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A positive (or negative) stabilization S+ (or S−) is an operation
represented by adding two downward (or upward) cusps to a trivial arc for
the front diagram. S± changes the Legendrian isotopy class and does not
change the knot type. Note that S+S− = S−S+.

tb(S±(K)) = tb(K)− 1,

rot(S±(K)) = rot(K)± 1.

31 / 30


	Legendrian knots
	Classical invariants of Legendrian knots
	Rack coloring invariants of Legendrian knots
	Appendix

