Intelligence of Low-dimensional Topology 2024

Grid homology and the connected sum of knots

Hajime Kubota*1

^{*1} Kyoto University

1 A very short survey of grid homology

- Grid homology (Manolescu, et.al., '07) is a combinatorial reconstruction of knot Floer homology. There are some versions of grid homology for a knot $K \in S^3$:
 - the bigraded $\mathbb{F}[U]$ -module $GH^-(K)$,
 - the bigraded \mathbb{F} -vector space $\widehat{GH}(K), \widetilde{GH}(K)^{*1}$.

$$GH^-(K) \cong HFK^-(S^3, K), \quad \widehat{GH}(K) \cong \widehat{HFK}(S^3, K).$$

- Q. Can we prove the results of HFK in the framework of GH?
- Q. Can we give new invariants using GH?

^{*1} $\widetilde{GH}(K) \cong \bigotimes_{2^n} \widehat{GH}(K)$, where n denotes the size of the grid diagram.

Some properties of HFK are shown in the framework of GH, e.g.

• GH is a categorification of the Alexander polynomial.

$$\sum_{d,s\in\mathbb{Z}} (-1)^d \cdot t^s \cdot \dim_{\mathbb{F}} \widehat{GH}_d(K,s) = \Delta_K(t).$$

• There is a skein exact sequence

$$\cdots \to GH^{-}(K_{+}) \to GH^{-}(K_{-}) \to GH^{-}(K_{0}) \to GH^{-}(K_{+}) \to \cdots$$

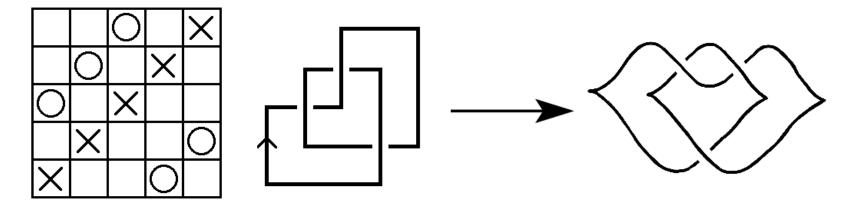
• If K_1, K_2 are connected by a genus g cobordism, then

$$|\tau(K_1) - \tau(K_2)| \le g.$$

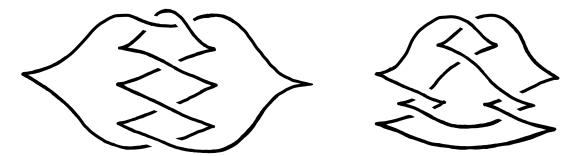
- \widehat{GH} of a quasi-alternating knot K is determined by $\Delta_K(t)$ and $\sigma(K)$.
- GH with coefficients in \mathbb{Z} .

3 Applications of GH

• The Legendrian grid (GRID) invariants λ^{\pm} (Ozsváth, et.al.,'08) -the homology classes of GH^- represented by the canonical cycles.



The following two Legendrian knots with topological type $m(5_2)$ are distinguished by λ^{\pm} . Both knots have tb=1 and r=0.

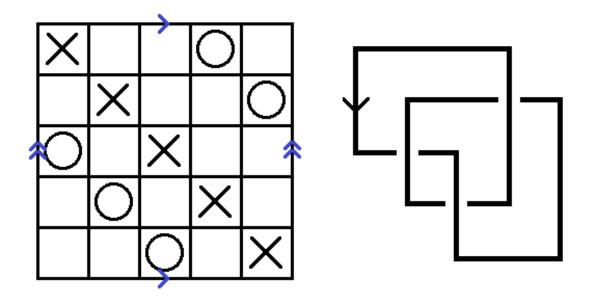


• λ^{\pm} are equivalent to the LOSS invariant (Baldwin, et.al., '13).

4 Grid diagram

Definition. A grid diagram g is an $n \times n$ grid of squares on the torus, some of which are decorated with O- (sometimes O^* -) and X-markings such that

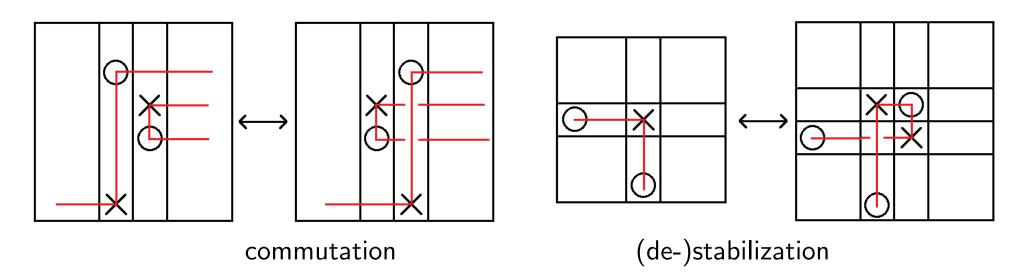
- Each row and column has just one O and one X,
- No square is marked with both an O and an X.



Let $\{\alpha_i\}_{i=1}^n, \{\beta_i\}_{i=1}^n$ be horizontal and vertical circles on g.

Fact. Every knot is represented by grid diagrams.

Fact. Two grid diagrams representing the same knot are connected by a finite sequence of commutations and (de-)stabilizations.

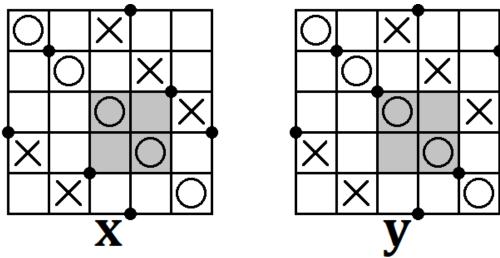


6 A state, a rectangle

Definition. • A state of g is an n-tuple of points on the torus such that each horizontal and vertical circle contains a point.

• Let S(g) be the set of states of g.

Definition. For $\mathbf{x}, \mathbf{y} \in \mathbf{S}(g)$ with $\#(\mathbf{x} \cap \mathbf{y}) = n - 2$, an (empty) rectangle r from \mathbf{x} to \mathbf{y} is a rectangular region on g such that (i) The NE and SW corners are $\mathbf{x} \setminus \mathbf{x} \cap \mathbf{y}$ and the NW and SE corners are $\mathbf{y} \setminus \mathbf{x} \cap \mathbf{y}$, and (ii) r contains no points of $\mathbf{x} \cup \mathbf{y}$ in its interior.



Let $Rect^{\circ}(\mathbf{x}, \mathbf{y})$ be the set of empty rectangles from \mathbf{x} to \mathbf{y} .

7 The definition of the grid chain complex $GC^{-}(g)$

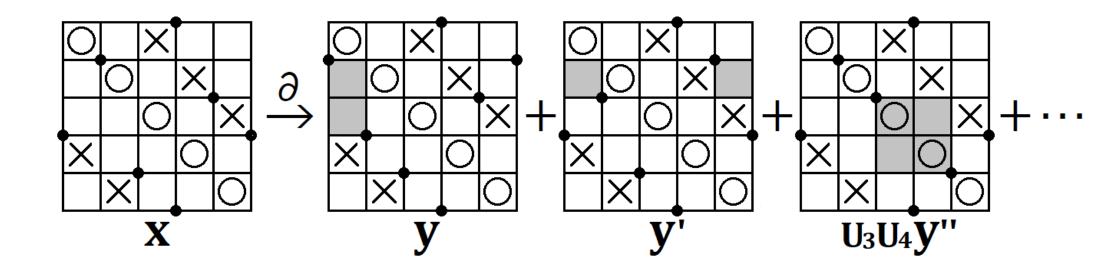
Number the markings: $\mathbb{O} = \{O_i\}_{i=1}^n$, $\mathbb{X} = \{X_i\}_{i=1}^n$.

Definition. • Let $GC^-(g)$ be the $\mathbb{F}[U_1,\ldots,U_n]$ -module freely generated by $\mathbf{S}(g)$.

• Define the differential ∂ algorithmically by

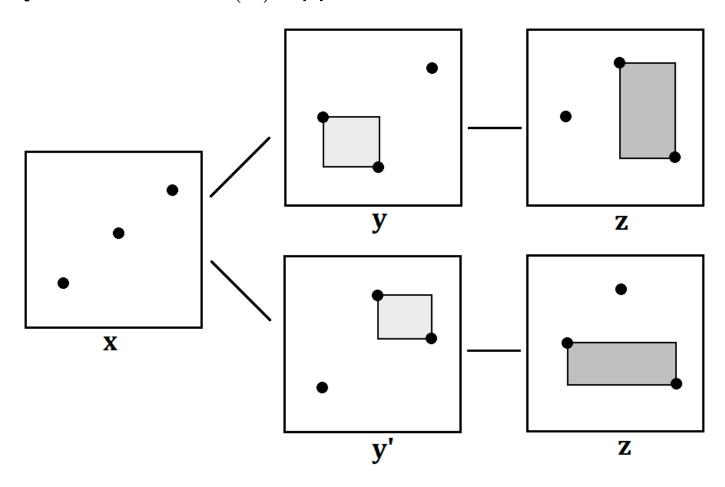
$$\partial(\mathbf{x}) = \sum_{\mathbf{y} \in \mathbf{S}(g)} \sum_{\{r \in \text{Rect}^{\circ}(\mathbf{x}, \mathbf{y}) | r \cap \mathbb{X} = \emptyset\}} U_{1}^{O_{1}(r)} \cdots U_{n}^{O_{n}(r)} \mathbf{y},$$

where $U_i(r) = 1$ if $O_i \in r$ and $O_i(r) = 0$ if $U_i \notin r$



Proposition. $\partial \circ \partial = 0$.

Proof. Every state in $\partial \circ \partial(\mathbf{x})$ appears two times.



9 The absolute gradings

 $GC^-(g)$ has two absolute gradings, Maslov grading and Alexander grading.

• There are two combinatorial function $M, A \colon \mathbf{S}(g) \to \mathbb{Z}$. If there is a rectangle $r \in \mathrm{Rect}^{\circ}(\mathbf{x}, \mathbf{y})$, we have

$$M(\mathbf{x}) - M(\mathbf{y}) = 1 - 2\#(r \cap \mathbb{O}),$$

$$A(\mathbf{x}) - A(\mathbf{y}) = \#(r \cap \mathbb{X}) - \#(r \cap \mathbb{O}).$$

• $GC^{-}(g)$ has two gradings M, A defined by

$$M(U_1^{k_1} \cdots U_n^{k_n} \mathbf{x}) = M(\mathbf{x}) - 2(k_1 + \cdots + k_n),$$

 $A(U_1^{k_1} \cdots U_n^{k_n} \mathbf{x}) = A(\mathbf{x}) - (k_1 + \cdots + k_n).$

- The differential ∂ drops M by 1 and preserve A.
- $GC^-(g)=\bigoplus_{d,s\in\mathbb{Z}}GC^-_d(g,s)$ is a bigraded chain complex, where $GC^-_d(g,s)$ is the subspace with (M,A)=(d,s).

- $GC^-(g)$ has two combinatorial gradings, Maslov and Alexander gradings. These gradings are absolute gradings.
- $GC^{-}(g) = \bigoplus_{d,s \in \mathbb{Z}} GC_{d}^{-}(g,s)$ is a bigraded chain complex.

Definition. Let $GH^-(g)$ be the homology of $GC^-(g)$ regarded as bigraded $\mathbb{F}[U]$ -module, where the action of U is induced by multiplication by U_i .

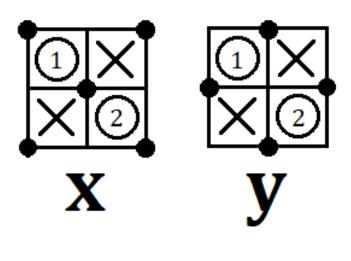
Fact. multiplication by U_i is chain homotopic to multiplication by U_j .

Theorem (Manolescu, et.al.,'07). If g and g' represent the same knot, then $GH^-(g) \cong GH^-(g')$.

The idea of the proof. g and g' are connected by grid moves. We can construct a combinatorial quasi-isomorphism corresponding to each grid move.

11 Example

 $g: 2 \times 2$ grid diagram representing the unknot.



$$\mathbf{x}: (M, A) = (0, 0),$$

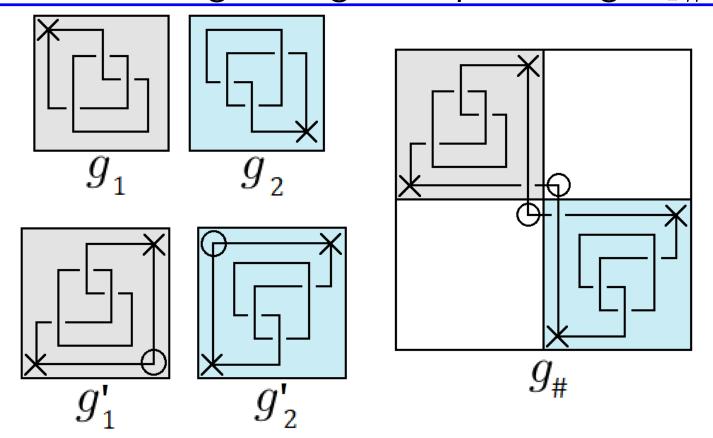
$$\mathbf{y}: (M, A) = (1, 1),$$

$$U_1, U_2 : (M, A) = (-2, -1).$$

$$\partial(\mathbf{x}) = 0, \ \partial(\mathbf{y}) = U_1\mathbf{x} + U_2\mathbf{x}.$$

$$GH^-(g) \cong \mathbb{F}[U].$$

12 Main results : a grid diagram representing $K_1 \# K_2$



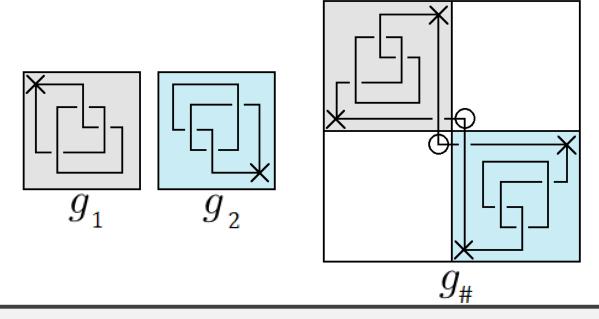
Let g_1, g_2 be diagrams representing K_1, K_2 . g_1', g_2' are obtained from g_1, g_2 by a stabilization. $g_\#$ is obtained from g_1', g_2' . $g_\#$ represents $K_1 \# K_2$.

 $GC^-(g_1')$ is a complex over $\mathbb{F}[U_1,\ldots,U_n]$. $GC^-(g_2')$ is a complex over $\mathbb{F}[U_{n+1},\ldots,U_{2n}]$. $GC^-(g_\#)$ is a complex over $\mathbb{F}[U_1,\ldots,U_{2n}]$.

13 Main results: a Künneth formula

Theorem (K,'24). There are a subcomplex $C \subset GC^-(g_\#)$ and two quasi-isomorphisms

$$C \to GC^{-}(g_{\#})$$
 and $C \to \frac{GC^{-}(g_{1}) \otimes_{\mathbb{F}} GC^{-}(g_{2})}{U_{1} = U_{2n}}$.

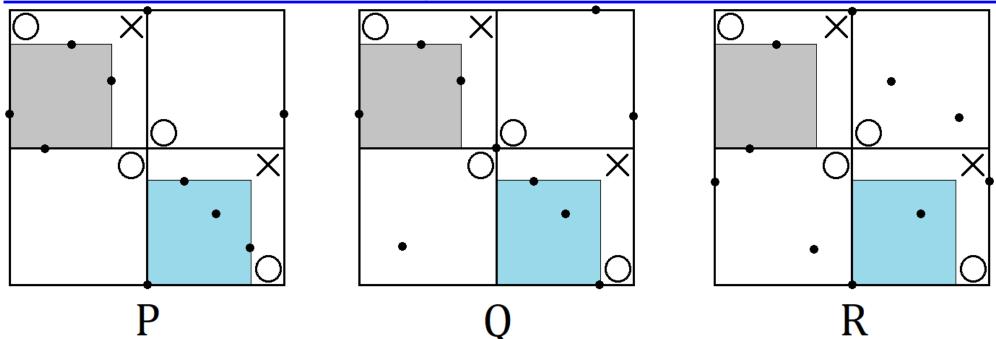


Corollary. $GH^{-}(K_1 \# K_2) \cong GH^{-}(K_1) \otimes_{\mathbb{F}[U]} GH^{-}(K_2)$.

Definition. $\tau(K) = -i$, where $GH^-(K) \cong \mathbb{F}[U]_{(2i,i)} \oplus \text{Tors.}$

Corollary. $\tau(K_1 \# K_2) = \tau(K_1) + \tau(K_2)$.

14 The construction of C



Classify the states $S(g_{\#}) = P \sqcup Q \sqcup R$, where

 ${f P}$: n points each in the gray and light blue areas,

 ${f Q}$: two points at $\alpha_1\cap\beta_1$ and $\alpha_{n+1}\cap\beta_{n+1}$, and n-1 points each in the gray and light blue area,

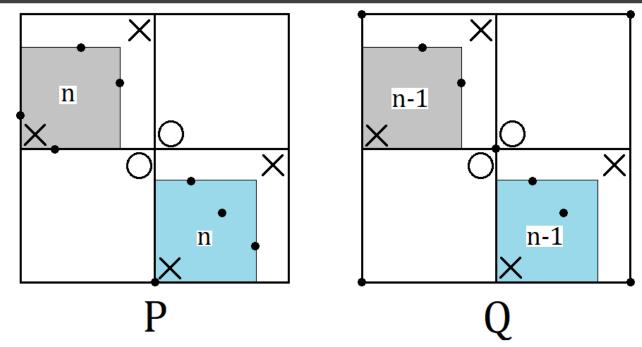
 ${f R}$: the others.

Let C be the free $\mathbb{F}[U_1,\ldots,U_{2n}]$ -module generated by $\mathbf{P}\cup\mathbf{Q}$.

15 The construction of C

C: the free $\mathbb{F}[U_1,\ldots,U_{2n}]$ -module generated by $\mathbf{P}\cup\mathbf{Q}$.

Proposition. C is the subcomplex of $GC^-(g_\#)$



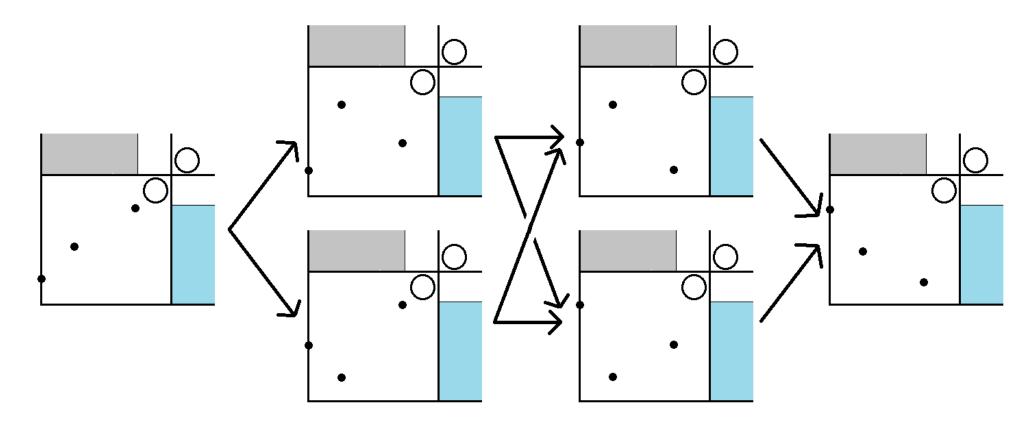
Proof. The differential of C can not count a rectangle satisfying $r \cap \{\text{the gray area}\} \neq \emptyset$ and $r \cap \{\text{the light blue area}\} \neq \emptyset$.

Let P and Q be the free modules generated by \mathbf{P} and \mathbf{Q} .

We have $\partial(P) \subset P$ and $\partial(Q) \subset C$, i.e., $C = \operatorname{Cone}(Q \to P)$.

16 Key observation 1

• $GC^-(g_\#)/C$ is "the sum of many acyclic complexes" .



Each subcomplex of n-dimensional cube is acyclic.

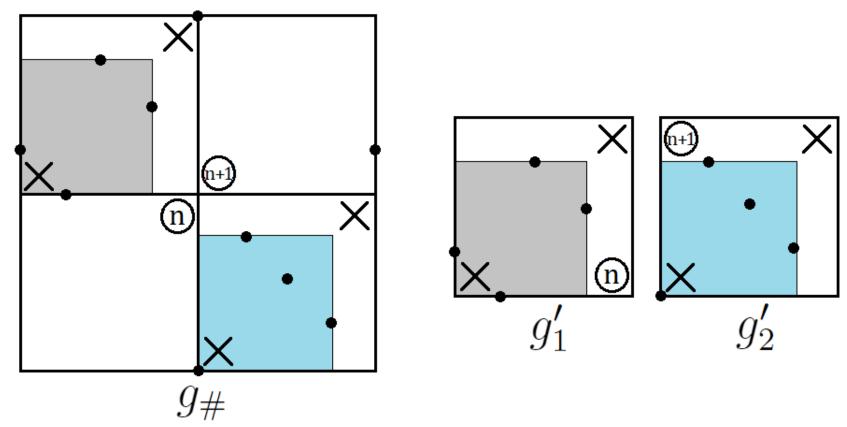
 $\Longrightarrow GC^{-}(g_{\#})/C$ is acyclic.

 \Longrightarrow the inclusion $C \to GC^-(g_\#)$ is a quasi-isomorphism.

17 Key observation 2 : P v.s. $GC^{-}(g_1') \otimes_{\mathbb{F}} GC^{-}(g_2')$

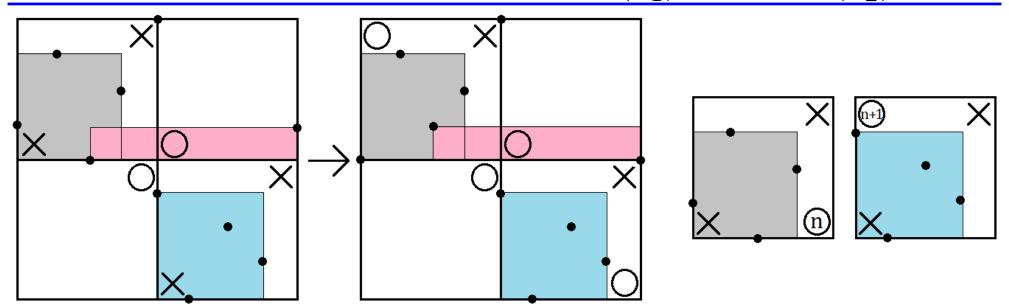
C: the free $\mathbb{F}[U_1,\ldots,U_{2n}]$ -module generated by $\mathbf{P}\cup\mathbf{Q}$.

P: the free $\mathbb{F}[U_1,\ldots,U_{2n}]$ -module generated by \mathbf{P} .



There is a natural identification of states $\mathbf{P} \to \mathbf{S}(g_1') \times \mathbf{S}(g_2')$. The differential of P moves two points either in the gray or light blue area.

18 Key observation 2 : P v.s. $GC^-(g_1') \otimes_{\mathbb{F}} GC^-(g_2')$



The rectangles counted by ∂ may contain O_{n+1} but can not contain O_n . The identification $\mathbf{P} \to \mathbf{S}(g_1') \times \mathbf{S}(g_2')$ induces the isomorphism

$$P \cong \frac{GC^{-}(g_{1}') \otimes_{\mathbb{F}} GC^{-}(g_{2}')}{U_{n} = U_{n+1}}[U],$$

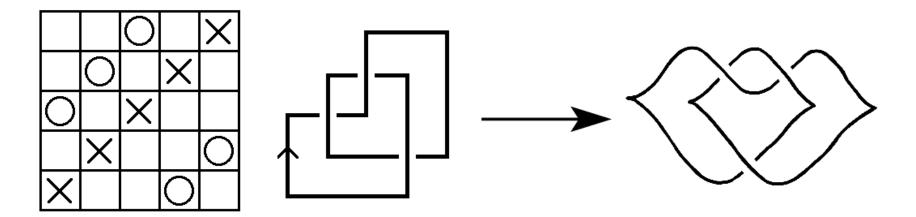
where $U_i \mapsto U_i$ for $i \neq n$ and $U_n \mapsto U$.

There are quasi-isomorphisms $GC^-(g_i) \to GC^-(g_i)$ for i = 1, 2.

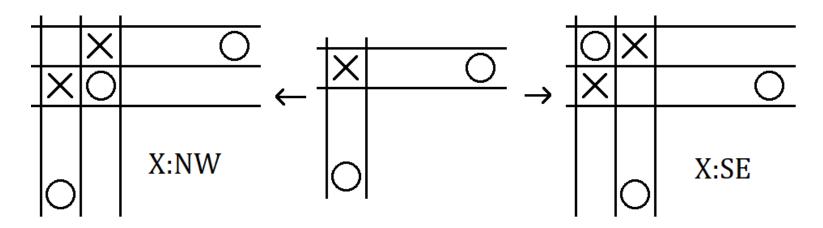
In fact,
$$C=\operatorname{Cone}(Q\to P)\cong \frac{GC^-(g_1)\otimes_{\mathbb{F}}GC^-(g_2)}{U_n=U_{n+1}}$$

19 grid homology and Legendrian knots

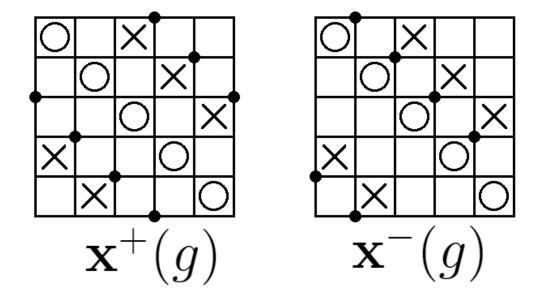
Any Legendrian knot is represented by grid diagrams.



Fact. Two grid diagrams representing the same Legendrian knot are connected by a finite sequence of commutations and (de-)stabilizations of types X:NW and X:SE.



For a grid diagram g, let $\mathbf{x}^+(g), \mathbf{x}^-(g)$ be the canonical states.



The homology classes $\lambda^{\pm}(g) := [\mathbf{x}^{\pm}(g)] \in GH^{-}(g)$ are called the Legendrian grid invariant.

Theorem (Ozsváth, et.al., '08). Suppose that g and g' represent the Legendrian isotopic knots. Then there is a bigraded isomorphism $\phi \colon GH^-(g) \to GH^-(g')$ such that $\phi(\lambda^\pm(g)) = \lambda^\pm(g')$.

21 The additivity of the Legendrian grid invariant

The additivity of the Legendrian grid invariant using HFK (Vértesi, '08).

Theorem (K,'24). Let g_1 , g_2 , and $g_\#$ be grid diagrams representing Legendrian knots \mathcal{K}_1 , \mathcal{K}_2 , and $\mathcal{K}_1 \# \mathcal{K}_2$ respectively. Then there is an isomorphism

$$\Phi \colon GH^{-}(g_1) \otimes GH^{-}(g_2) \to GH^{-}(g_{\#}),$$

such that
$$\Phi(\lambda^{\pm}(g_1) \otimes \lambda^{\pm}(g_2)) = \lambda^{\pm}(g_{\#}).$$