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Keyword 1: the space of long embbedings

Kn,j :“ EmbpRj
,Rnq : the space of long embeddings Rj Ñ Rn

Kn,j :“ EmbpRj
,Rnq :“ hofib◆pEmbpRj

,Rnq Ñ ImmpRj
,Rnqq

Problem
Compute ⇡˚pKn,jq.
Compare n ´ j “ 2 and n ´ j • 3.
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Keyword 1: the space of long embbedings

Kn,j :“ EmbpRj
,Rnq

In 1966, Haefliger computed

⇡0Kn,j p2n ´ 3j ´ 3 “ 0, n ´ j • 3q.

The result depends only on parities of n and j.
In 2004, Budney, by using Goodwillie’s result, further showed

⇡2n´3j´3Kn,j pn ´ j • 3, j ‰ 1q

depends only on parities of n and j. (bi-periodicity)
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Keyword 1: the space of long embeddings

Kn,j :“ EmbpRj
,Rnq: the space of long embeddings mod immersions.

Thm. (Fresse-Turchin-Willwacher 2017)
For n ´ j • 3, j • 1, ⇡˚Kn,j b Q depends only on the parities of n, j up
to degree shifts.

Proof.
By a homotopy theoretical approach (called Goodwillie–Weiss embedding
calculus).
i

iEmbedding calculus gives Kn,j Ñ TkKn,j , which is, if n ´ j • 3, higher and higher
connected when k increases.
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Keyword 2: the hairy graph complex
Ə

HGCn,j : the hairy graph complex (defined later)
HGCn,j depends on the parities of n and j only.

Bn,j :“ H“top”pHGCn,jq
“top” “ any white vertex has exactly three edges.

5 / 54
Figure: Example of the differential of HGC



Keyword 2: the hairy graph complex
Ə

HGCn,j : the hairy graph complex (defined later)
Bn,j :“ H“top”pHGCn,jq

Thm. (Fresse–Turchin–Willwacher 2017)
For n ´ j • 3, j • 1, there is an isom

⇡˚Kn,j b Q – H˚pHGCn,jq
ii
Ex. (n, j: odd, n ´ j • 3)

Ə Since ‰ 0 P Bn,j , ⇡3pn´j´2q`pj´1qpKn,jq b Q ‰ 0.

Ə
iiAll path-components of Kn,j pn ´ j • 3q are homotopy equivalent.
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Keyword 2: the hairy graph complex
Dually, there exists a zigzag of quasi-isoms (in CDGAQ)

©
�HGCn,j

»– . . .
»Ñ A

˚
PLpKn,jq

In other words, ô �HGCn,j is a rational model of Kn,j pn ´ j • 3q.

Problem
Give a geometric meaning to I : H˚p�HGCn,jq Ñ H

˚pKn,j ,Qq.
Does H

˚p�HGCn,jq “survive” when n ´ j “ 2 ?

Rem. (Vassiliev–Kontsevich–Bar-Natan)
When pn, jq “ p3, 1q, the cohomology H

topp�HGCn,jq “survives” as the
space of Vassiliev invariants.
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Keyword 3: configuration space integrals

Formally, configuration space integrals (defined later) give a map

I :
©

}GCn,j ›Ñ A
˚
dR

pKn,jq pn ´ j • 2, j • 2qiii

from another graph complex }GCn,j . iv

Difficulty (Refer also to Leturcq’s problem session in ILDT 2021)
(1) Deal with obstructions for I to be a cochain map.
(2) Give dual cycles of Kn,j .
(3) Compute H

˚p}GCn,jq.

iiiThe case j “ 1 is developed by Bott, Taubes, Kohno, Cattaneo, Cotta-Ramusino,
Longoni, Sakai, and some others, though little is known when ˚‰top.

ivDefine A
˚
dRpXq by SsetpSing8

˚ pXq, A˚
dRp�qq.
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Keyword 3: configuration space integrals

Configuration space integrals give

I :
©

}GCn,j ›Ñ A
˚
dR

pKn,jq pn ´ j • 2, j • 2q

We have a decomposition

}GC
˚
n,j “

à

g•0

}GC
˚
n,jpgq,

where g is the first Betti number of graphs.

g “ 0, 1 and ˚ “ top: [Bott, Cattaneo–Rossi, Sakai, Watanabe]
g “ 2 and ˚ “ top: Today !
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1 Keywords and Overview (8p)

2 Main Result (4p)

3 Graph complexes and graph homologies (8p)

4 Cycles: ribbon presentations (14p)

5 Cocycles: configuration space integrals (14p)
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Our ultimate goal
Problem
Give an explicit zigzag of quasi-isoms between ô

HGC and A
˚
dR

pKn,jq. a

aFor simplicity, we write HGC for �HGC b R.

HGC has too few graphs to be a source of morphisms.

Strategy (Y.)
For n ´ j • 2, j • 2, give a new graph complex GC and a zigzag

HGC
»–›
p

GC ›Ñ
I

A
˚
dR

pKn,jq.

of cochain maps.
Show I

˚ ˝ pp˚q´1 is injective.

The map I will be given by configuration space integrals.
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Main Result
Kn,j :“ EmbpRj

,Rnq.
g: the first Betti number of graphs

Thm. (Y.)
Assume n ´ j is even, n ´ j • 2 and j • 2. Then there exists a graph
complex DGC and a zigzag

HGC –›
p
DGC ›Ñ

I

A
˚
dR

pKn,jq

of cochain maps such that
(1) p

˚ : HtoppDGCq Ñ H
toppHGCq is surjective.

(2) If H P H
toppDGCpg “ 2qq and I

˚pHq “ 0, then p
˚pHq “ 0.
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Main Result
We have a decomposition

�HGC
˚
n,j “

à

g•0,k•1

�HGC
˚
n,jpk, gq,

where k is the order of graphs defined by |edges| ´ |white vertices|.

Cor. (Y.)
If n ´ j is even, n ´ j • 2 and j • 2,

dimHkpn´j´2q`pj´1qpKn,j ,Qq • dimBn,jpk, g “ 2q.

Cor. (Y.)
If j • 2, ⇡pj´1qpKj`2,jqu b Q is infinite dim. (u: unknot component)
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Background: Is our result new ?
Rem.
⇡j´1pKj`2,jqu b Q: infinite dim ñ ⇡j´1pKj`2,jqu b Q: infinite dim
v

Thm. (Hatcher ’83)
⇡˚pK3,1qu is trivial.

Thm. (Budney-Gabai ’19, Watanabe ’20)
For j • 2, ⇡j´1pKj`2,jqu b Q is infinite dim.
vi

v(RHS) ñ ⇡j´1pEmbpSj
, S

j`2quq b Q: infinite dim
viThey developed

Embedding calculus for EmbBpD1
, D

j`1 ˆ S
1q, and

Kontsevich characteristic classes of BDiffBpDj`1 ˆ S
1q respectively.
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Graph complexes and graph homologies

We introduce two graph complexes PGC and HGC.
There is a projection p : PGC Ñ HGC.

Several parts of H˚pHGCq is already computed.
(For g “ 2, refer to [Conant–Costello–Turchin–Weed ’14])
PGC has more graphs and hence is suited as a source of morphisms.
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The plain graph complex PGC

PGC is a cochain complex generated by connected plain graphs.
Plain graphs have two types of vertices and two types of edges.

White vertices have at least three dashed edges and no solid edges.
Black vertices have an arbitrary number of solid and dashed edges.
Each component has at least one black vertex.
No loop-edge is allowed.

Figure: Example of a plain graph

degp�q by pn ´ 1q|E | ` pj ´ 1q|E | ´ n|V | ´ j|V |.
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The plain graph complex PGC
degp�q “ pn ´ 1q|E | ` pj ´ 1q|E | ´ n|V | ´ j|V |.

A plain graph is admissible if it satisfies both of the following.
(I) Every black vertex without dashed edges must have at least three

solid edges. vii

(II) The restriction to solid edges consists of disjoint broken lines.

Figure: Example of an admissible plain graph

vii(I) + (II) ñEvery black vertex has at least one dashed edge and at most two solid
edges.
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The plain graph complex PGC
A label of a plain graph gives an orientation of a graph.
The orientation depends only on parities of n and j.

Def.
As a vector space,

PGCn,j “ QtLabeled, admissible plain graphsu
Ori relations .

Def.
The differential dPGC of PGC is defined by

dPGCp�q “
ÿ

ePEp�q
e‰

˘�{e.
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The plain graph complex PGC
dPGCp�q “ ∞

ePEp�q
e‰

˘�{e

pPGC, dPGCq is a cochain complex.

Example

The signs arise when labels of vertices and edges are permuted and
when d “jumps” vertices.
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The hairy graph complex HGC
HGC is a cochain complex generated by hairy graphs.
Hairy graphs are admissible plain graphs that satisfy the following.

No solid edge exists.
Each black vertex has exactly one dashed edge.

A segment is called a hair .

Figure: Example of a hairy graph
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The hairy graph complex HGC

Def.
As a vector space,

HGCn,j “ QtLabeled hairy graphsu
Ori relations .

Def.
The differential dHGC of HGC is defined by

dHGC “
ÿ

ePEp�q
e“

˘�{e.
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Relasionship between PGC and HGC

Thm. (Y.)
The projection PGC

top Ñ HGC
top induces an epimorphism between the

top cohomologies.

Proof.
(Sketch)

Dually, we show the map: �˚ : HtoppHGCq Ñ HtoppPGCq induced
by the inclusion is injective.
In fact, we can construct a left inverse

�˚ : HtoppPGCq Ñ HtoppHGCq, �˚�˚ “ id

by induction on the number of black vertices.
This construction of �˚ is motivated by Bar-Natan’s construction of
�

´1 : ApS1q Ñ B.
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Cycles: ribbon presentations
(i) 1-loop (g “ 1) [Sakai, Watanabe ’12]

What: kpn ´ j ´ 2q-cycle

cpWkq : pSn´j´2qk Ñ Kn,j

How: Perturb the wheel-like ribbon presentation

The cycle cpWkq is detected by the graph Wk with k hairs:
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Cycles: ribbon presentations
(ii) 2-loop (g “ 2) [Y.]

What: pkpn ´ j ´ 2q ` pj ´ 1qq-cycle

dp⇥pp, q, rqq : pSn´j´2qk ˆ S
j´1 Ñ Kn,j

(p, r • 1, q • 0, p ` q ` r ` 1 “ k)
How: Perturb a ribbon presentation with one node

The cycle dp⇥pp, q, rqq is detected by the graph ⇥pp, q, rq:
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The process for giving a cycle from ⇥pp, q, rq

Recall p, r • 1, q • 0, p ` q ` r ` 1 “ k.

(1) Diagram Dp⇥pp, q, rqq
Ó

(2) Ribbon presentation P p⇥pp, q, rqq
Ó

(3) S
j´1 ˆ pSn´j´2qˆk cycle of submanifolds (« Rj) in Rn

Ó
(4) Desired cycle dp⇥pp, q, rqq : Sj´1 ˆ pSn´j´2qˆk Ñ Kn,j
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The diagram associated with ⇥pp, q, rq

A diagram Dp⇥pp, q, rqq is obtained from ⇥pp, q, rq as follows.
Orient three edges of ⇥.
Replace each hair with the oriented line with two open chords

.

Exceptionally replace the leftmost (resp. rightmost) hair of the upper
(resp. lower) edge with

presp. q.

Connect ends of chords as expected.
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The diagram associated with ⇥pp, q, rq

Figure: Graph ⇥p4, 3, 2q and Diagram Dp⇥p4, 3, 2qq)
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The process for giving a cycle from ⇥pp, q, rq
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Ribbon presentations

Def. (Habiro-Kanenobu-Shima (’99) (’01))
A ribbon presentation P “ DYB is an oriented immersed 2-disk in R3 s.t.

D “ pD0, ˚q Y D1 ¨ ¨ ¨ Y Dl: disks (Di « D
2).

B “ B1 Y ¨ ¨ ¨ Y Bl: bands (Bi « I ˆ I).
Each band connects two disks.
Each band can intersect with the interiors of disks except for D0.

27 / 54Figure: Example of a ribbon presentation



The long embedding associated with a ribbon presentation
VP :“ B ˆ r´1{4, 1{4sj´1 î

D ˆ r´1{2, 1{2sj´1 (thickening)
 pP q :“ BVP#◆pRjq Ä Rn is a long embedding with k crossings.
A crossing is a link of of D̂i « S

jzpt and B̂i « I ˆ S
j´1.

28 / 54Figure: The i-th crossing



Moves of ribbon presentations
Habiro, Kanenobu, Shima introduced the following moves.
These moves do not change isotopy classes of corresponding
embeddings.

29 / 54

Figure: Example of moves of ribbon presentations



The ribbon presentation associated with Dp⇥pp, q, rqq

A ribbon presentation P p⇥pp, q, rqq is obtained from Dp⇥pp, q, rqq .

Replace and with

Exceptionally, replace with

Intersect a disk with a band if they are connected by chords. Assign
the label ‹ to this crossing.
Connect the end of each band to the based disk.

Two disks of must intersect with bands in opposite

orientation.
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The diagram associated with ⇥pp, q, rq

Figure: Diagram Dp⇥p4, 3, 2qq)
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The ribbon presentation associated with Dp⇥pp, q, rqq
node = a disk which does not intersect with bands
P p⇥pp, q, rqq has k “ p ` q ` r ` 1 crossings and one node.

32 / 54
Figure: Ribbon presentation P p⇥p4, 3, 2qq. The node is drawn in gray.



Properties of P p⇥pp, q, rqq

Notation
Let "i “ ˘1. Write P p⇥pp, q, rqqp"1, "2, . . . , "kq for the ribbon

presentation obtained by changing the jth crossing ‹

to when "j “ 1, and to when "j “ ´1.

Prop. (Y.)
After several cross-change moves are performed to P p⇥pp, q, rqq,
P p⇥pp, q, rqqp1, 1, . . . , 1q is equivalent to the trivial presentation.
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Cross-change moves
We perform the following cross-change move to P p⇥pp, q, rqq.

Figure: Cross-change move

The move might change the cycles we later define.
However, the move does not affect the pairing argument we later
discuss.
cf. Vassiliev invariants of order § k vanish for singular knots with
pk ` 1q singular points.
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Properties of P p⇥pp, q, rqq
Prop. (Y.)
After several cross-change moves are performed to P p⇥pp, q, rqq,
P p⇥pp, q, rqqp1, 1, . . . , 1q is equivalent to the trivial presentation.

Proof.
We perform cross-changes as in the figure. Then the resulting presentation
becomes trivial, after moves including S4.
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The process for giving a cycle from ⇥pp, q, rq

Recall p, r • 1, q • 0, p ` q ` r ` 1 “ k.

(1) Diagram Dp⇥pp, q, rqq
Ó

(2) Ribbon presentation P p⇥pp, q, rqq
Ó

(3) S
j´1 ˆ pSn´j´2qˆk cycle of submanifolds (« Rj) in Rn

Ó
(4) Desired cycle dp⇥pp, q, rqq : Sj´1 ˆ pSn´j´2qˆk Ñ Kn,j
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The cycle of submanifolds associated with P p⇥pp, q, rqq

Rn “ R3 ˆ Rn´j´2 ˆ Rj´1

See the parameter space S
n´j´2 as

tpx3, . . . , xn´j`1q P Rn´j´1 | px3 ´ 1q2 ` x
2
4 ` ¨ ¨ ¨ ` x

2
n´j`1 “ 1u.viii

In particular, S0 “ tx3 “ 0, x3 “ `2u.

Def. (Watanabe ’06)
The perturbation of a crossing (with ‹) is the operation to replace the
band B with the perturbed band Bpvq (v P S

n´j´2).

viiiAssume the x3 coordinate is perpendicular to bands, near crossings.
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Perturbation of a crossing

37 / 54

Figure: Perturbation of a crossing (n ´ j “ 3)



The cycle of submanifolds associated with P p⇥pp, q, rqq

P “ P p⇥pp, q, rqq has k crossings.
Each band Bj has one or two crossings.
For each v “ pv1, . . . , vkq P pSn´j´2qk,

Pv :“ D Y Bpvq “
§

Di Y
§

Bjpv1, v2, . . . , vkq

Def.
The cycle cp⇥pp, q, rqq : pSn´j´2qk Ñ Kn,j is defined by

v fi›Ñ  pPvq :“ BVPv#◆pRjq.
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The cycle of submanifolds associated with P p⇥pp, q, rqq

Recall our ribbon presentation has a node
Bi

Bj

.

S
j´1 family : move one tube (B̂i) around the other tube (B̂j)

Then we obtain a cycle dp⇥pp, q, rqq : pSn´j´2qk ˆ S
j´1 Ñ Kn,j

39 / 54
Figure: The additional Sj´1 family
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Cocycles: configuration space integrals
We give a geometric correspondence

I : PGC Ñ AdRpKn,jq.

I is given by configuration space integrals
(in the same way as [Bott, Cattaneo, Rossi, Sakai, Watanabe]).

Notice: configuration space integrals may not give cochain maps.
(D obstruction called hidden faces)

Thm. (Y. advised by Turchin)
I is a cochain map “up to homotopy”.
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Cocycles: configuration space integrals
Def. (Configuration spaces)

CkpRnq – pRnqˆkz�, p� “
§

i‰j

tyi “ yjuqa

aThough CkpRnq is open, there is a canonical compactification of it.

Def. (Configuration space bundles)
Es,t is the bundle over Kn,j defined by the pullback

Cs`tpRnq

Kn,j ˆ CspRjq CspRnq

Es,t

restriction
evaluation at u “ 1

(Recall Kn,j consists of t uuPr0,1s s.t.  u P ImmpRj
,Rnq,  1 P Kn,j . )
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Cocycles: configuration space integrals

If � has s black vertices
p´jq

and t white vertices
p´nq

, use Es,t.
Each oriented dashed (resp. solid) edge e gives a direction map

Pe : Es,t Ñ S
n´1 presp. Pe : Es,t Ñ S

j´1q.

42 / 54

Figure: Example of the direction map



Cocycles: configuration space integrals
�: a (labeled) plain graph

Def.
Define a form Ip�q P AdRpKn,jq as follows. For a simplex f : �m Ñ Kn,j ,

Ip�qpfq :“ ⇡˚⌦f p�q “
ª

Cs,t

⌦f p�q P AdRp�mq,

where ⌦f p�q :“ pP p�q ˝ fq˚pô
!Sj´1 ^ ô

!Sn´1q.

Es,t

±
S
j´1 ˆ ±

S
n´1

�m Kn,j

f
˚
Es,t

f

⇡

P p�q “ ±
e
Pe

⇡

f : a “smooth” simplex
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Cocycles: configuration space integrals
The correspondence

I : PGC Ñ AdRpKn,jq
is not necessarily a cochain map.
In fact,

p´1q|�|`1
dIp�q “

ª

BCs,t

⌦p�q “
ÿ

SÑV p�qY8
|S|•2

ª

rCS

⌦p�q,

where rCS is the configuration s.t. the vertices of S are infinitely close.
The obstructions

dIp�q ´ Ipd�q “ p
ÿ

SÑV p�q
|S|•3

`
ÿ

S“V p q
q

ª

rCS

⌦p�q

are called hidden face contributions.
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How to cancel hidden faces ?

Some hidden faces vanish by symmetries and rescaling of the faces.
Other faces are canceled by introducing correction terms.
We interpret adding correction terms as replacing graph complexes.

Thm. (Y. advised by Turchin)
When n ´ j • 2, there exists a graph complex DGC and a zigzag

PGC
»–›
p

DGC ›Ñ
I

A
˚
dR

pKn,jq,

of cohain maps.
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pKn,jq,

of cohain maps.
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Cocycle-cycle pairngs

Recall we have a zigzag

HGC –›
p
PGC

»–› DGC ›Ñ
I

A
˚
dR

pKn,jq.

We showed p
˚ : HtoppPGCq Ñ H

toppHGCq is surjective.
We know H

toppHGCpg “ 2qq is infinite-dim
[Conant–Costello–Turchin–Weed ’14].

Thm. (Y. )
If H P H

toppDGCpg “ 2qq and I
˚pHq “ 0, we have p

˚pHq “ 0
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Cocycle-cycle pairngs

Example (simplest odd case)
Suppose pn, jq = (odd, odd), n ´ j • 2 and j • 3. There exists a
non-trivial graph cocycle in HGC

toppk “ 3, g “ 2q that includes ⇥p1, 0, 1q.
Hence we have

H
3pn´j´2q`pj´1qpKn,j ,Qq ‰ 0.

Example (simplest even case)
Suppose pn, jq = (even, even), n ´ j • 2 and j • 2. There exists a
non-trivial graph cocycle in HGC

toppk “ 7, g “ 2q that includes ⇥p3, 2, 1q.
Hence we have

H
7pn´j´2q`pj´1qpKn,j ,Qq ‰ 0.
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Cocycle-cycle pairings
Suppose p ` q ` r ` 1 “ k, p, r • 1, q • 0.
H: a 2-loop, top graph cocycle of order § k,

H “
ÿ

i

wp�iq
|Autp�iq|�i.

ix

Let p˚
k
: DGC

toppg “ 2q Ñ HGC
toppg “ 2, kq be the projection.

Key prop. (Counting formula)

† IpHq, dp⇥pp, q, rqq °“ ˘wp⇥pp, q, rqq.
where ˘ depends only on the oriented graph ⇥pp, q, rq.

Proof of Thm.
Assume Key prop. Then if IpHq is exact, p˚

k
pHq “ 0.

ixAssume �i fl �j if i ‰ j, and assume �i has no ori. reversing auto.
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Cocycle-cycle pairings
Consider the four graphs D1, D2, D3, D4 without white vertices
obtained by performing STU relations to ⇥pp, q, rq as follows.
Take orientations of the graphs so that

wp⇥pp, q, rqq “ wpD1q ` wpD2q ` wpD3q ` wpD4q.
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Figure: Graph D1, D2, D3,D4



Cocycle-cycle pairings
Recall H “ ∞

i

wp�iq
|Autp�iq|�i.

wp⇥pp, q, rqq “ wpD1q ` wpD2q ` wpD3q ` wpD4q.

Notation

† �i, Dj °:“
#
0 p�i is not isom to Djq
˘1 p�i is isom to Djq

Lemma
If a graph �i has order § k,

† Ip�iq, dp⇥pp, q, rqq °“ ˘
ÿ

j“1,2,3,4

|AutpDjq| † �i, Dj °,
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Cocycle-cycle pairings

Proof of Key prop.
Assuming lemma, we have

† IpHq, dp⇥pp, q, rqq ° “ ˘
ÿ

i

wp�iq
|Autp�iq|

ÿ

j“1,2,3,4

|AutpDjq| † �i, Dj °

“ ˘pwpD1q ` wpD2q ` wpD3q ` wpD4qq
“ ˘wp⇥pp, q, rqq.
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Cocycle-cycle pairings

Proof of Lemma.
The pairing † Ip�iq, dp⇥pp, q, rqq ° is equal to counting graphs on
the diagram D “ Dp⇥pp, q, rqq.

On the segment , only is allowed.

On , only or is allowed.
We can show decorated graphs are not counted.
There are four plain graphs counted, which are D1, . . . , D4.
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Cocycle-cycle pairings
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Figure: Graph D2 is counted on the diagram Dp⇥pp, q, rqq



Some questions
(Q1) Detect torsions of ⇡˚Kn,j by the geometric approach.

Thm. (Haefliger, Budney)
Let n ´ j • 3 and 2n ´ 3j ´ 3 • 0. Then

⇡2n´3j´3Kn,j »
#
Z pj “ 1 or n ´ j oddq
Z2 pj ° 1 and n ´ j evenq

(Q2) Establish configuration space integrals for EmbpM,Rnq.

Thm. (Fresse-Turchin-Willwacher ’20)
M : a complement of a compact mfd in Rj , M ‰ Rj if n ´ j “ 2.
Then ⇡˚

`
EmbpM,Rnq,Q

˘
is controlled by R-decorated hairy graph

complex, where R » APLpM Y 8q.
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