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1 Hyperbolic L–space knots

(Masakazu Teragaito)

A knot is called an L–space knot if it admits a positive Dehn surgery yielding an
L–space. It is not too much to say that L–space knots provide an important class
of knots from the perspective of Heegaard Floer theory.

We are interested in concordances from knots to L–space knots or among L–
space knots. There are several precedent works on this topic. Zemke [35] gives
an obstruction derived from knot Floer complex, and shows that T (4, 5)#T (4, 5),
T (4, 5)#T (6, 7), T (6, 7)#T (6, 7), −T (3, 4)#− T (4, 5)#T (5, 6) (and others) are not
concordant to an L–space knot or the mirror image of an L–space knot. This was
extend by Livingston [22] to show that no connected sum of at least two positive
torus knots is concordant to an L–space knot. Moreover, Allen [2] showed that if
T (p, q) and T (r, s) are positive torus knots and mT (p, q)#nT (r, s) (m,n ∈ Z) is
concordant to an L–space knot, then (m,n) = (1, 0) or (0, 1).

Question 1.1 (M. Teragaito). Do there exist distinct hyperbolic L–space knots which
are concordant?

Dunfield determines 632 hyperbolic L–space knots whose complements consist of at
most 9 ideal tetrahedra. The list can be found in [3], and Baker and Kegel [5] give
the braid words for these 632 knots. By Krcatovich [20], the Alexander polynomial
is a concordance invariant for L–space knots. That is, if two L–space knots K1 and
K2 are concordant, then they share the same Alexander polynomial. I confirmed
that there is no duplication of Alexander polynomials in Dunfield’s list of hyperbolic
L–space knots. This is the reason why I am skeptical about Question 1.1.

As Motegi informed me, it is known that any L–space knot is tight fibered. Re-
cently, Abe and Tagami [1] show that all tight fibered knots are minimal with respect
to ribbon concordance. Hence, Question 1.1 is negative if we replace ‘concordant’
with ‘ribbon concordant’.

Question 1.2 (M. Teragaito). Does there exist a hyperbolic L–space knot which is
concordant to a torus knot?

Again, I have checked that there is no example in Dunfield’s list.

2 Vanising of twisted Alexander polynomials of knots

(Masaaki Suzuki)

Let K be a knot and G(K) the knot group. For a finite group G and for a
homomorphism f : G(K) → G, we can consider the twisted Alexander polynomial

∆ρ◦f
K (t), where ρ : G → GL(|G|,Z) is the regular representation of G. In this

situation, Friedl and Vidussi showed the following.

Theorem ([9]) A knot K is non-fibered if and only if there exists a finite group G
and a surjective homomorphism f : G(K) → G such that the twisted Alexander
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polynomial ∆ρ◦f
K (t) is zero.

Then in [26] we define the minimal order O(K) of a knot K as the smallest order
of a finite group G such that there exists a surjective homorphism f : G(K) → G

with ∆ρ◦f
K (t) = 0. By the above theorem, O(K) is finite for any non-fibered knot

K. On the other hand, we define O(K) = +∞ for a fibered knot K.

Question 2.1 (T. Morifuji and M. Suzuki). For a non-fibered knot K, how can

we find a finite group such that ∆ρ◦f
K (t) = 0? Moreover, can we determine O(K)

explicitly for a given knot K? In particular, what is a finite group G such that
∆ρ◦f

73
(t) = 0? We have an inequality 125 ≤ O(52) ≤ 2520, then what is O(52)

precisely?

We see that the twisted Alexander polynomial is not zero for any abelian group.
Then it is natural to ask another class of finite groups.

Question 2.2 (T. Morifuji and M. Suzuki). Can we characterize finite groups such

that ∆ρ◦f
K (t) ̸= 0 for any K and f?

We are not sure the minimal order O(K) is unbounded or not.

Question 2.3 (T. Morifuji, Y. Nozaki, and M. Suzuki). Is the minimal order O(K)
unbounded?

3 Calculation of the 3-loop invariant of knots

(Kouki Yamaguchi)

The Kontsevich invariant χ−1Z(K) of knots is a powerful invariant which is uni-
versal among all quantum invariants of knots and Vassiliev invariants of knots, and
it is expected that the Kontsevich invariant would classify knots. The Kontsevich
invariant of a (0-framed) knot K can be presented in the following form, which is
called the loop expansion,

log(χ−1Z(K)) = +
finite∑
i

+
finite∑

i

+
finite∑

i

+ (terms of (> 3)-loop part),
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where ∆K(t) denotes the Alexander polynomial, and pi,j(e
h), qi,j(e

h), ri,j(e
h) are

polynomials in e±h. Here, a labeling of f(h) = c0 + c1h + c2h
2 + c3h

3 + · · · im-
plies that ,

= + + + + …

.

.

For details, see [11, 21, 27]. The 1-loop part is presented by the Alexander polyno-
mial. The 2-loop part is presented by the 2-loop polynomial ΘK(t1, t2, t3), which is
given by

ΘK(t1, t2, t3) =
∑
m

ϵ=±1
{i,j,k}={1,2,3}

pm,1(t
ϵ
i)pm,2(t

ϵ
j)pm,3(t

ϵ
k) ∈ Q[t±1

1 , t±1
2 , t±1

3 ]/(S3×Z/2Z, t1t2t3 = 1).

Further, the 3-loop part is presented by the 3-loop invariant (or, the 3-loop polyno-
mial) ΛK(t1, t2, t3, t4), which is given by

ΛK(t1, t2, t3, t4)

=
∑
i

τ∈S4

qi,1(t
sgnτ
τ(1) t

−sgnτ
τ(4) )qi,2(t

sgnτ
τ(2) t

−sgnτ
τ(4) )qi,3(t

sgnτ
τ(3) t

−sgnτ
τ(4) )qi,4(t

sgnτ
τ(2) t

−sgnτ
τ(3) )qi,5(t

sgnτ
τ(3) t

−sgnτ
τ(1) )qi,6(t

sgnτ
τ(1) t

−sgnτ
τ(2) )

∆K(t1t
−1
4 )∆K(t2t

−1
4 )∆K(t3t

−1
4 )∆K(t2t

−1
3 )∆K(t3t

−1
1 )∆K(t1t

−1
2 )

+
∑
i

τ∈S4

ri,1(t
sgnτ
τ(1) t

−sgnτ
τ(4) )ri,2(t

sgnτ
τ(2) t

−sgnτ
τ(4) )ri,3(t

sgnτ
τ(3) t

−sgnτ
τ(4) )ri,5(t

sgnτ
τ(3) t

−sgnτ
τ(1) )ri,6(t

sgnτ
τ(1) t

−sgnτ
τ(2) )

∆K(tτ(1)t
−1
τ(4))

2∆K(tτ(2)t
−1
τ(4))∆K(tτ(3)t

−1
τ(4))∆K(tτ(3)t

−1
τ(1))∆K(tτ(1)t

−1
τ(2))

∈ 1

∆̂2
·Q[t±1

1 , t±1
2 , t±1

3 , t±1
4 ]/(S4, t1t2t3t4 = 1),

where we put

∆̂ = ∆K(t1t
−1
4 )∆K(t2t

−1
4 )∆K(t3t

−1
4 )∆K(t2t

−1
3 )∆K(t3t

−1
1 )∆K(t1t

−1
2 ).

In particular, if ∆K(t) = 1, then ΛK(t1, t2, t3, t4) is a polynomial, so in this case, we
call it the 3-loop polynomial. For details, see [34]. In general, for an arbitrarily given
knot K, it is not easy to calculate the 2-loop polynomial and the 3-loop invariant
of K concretely.

For the 2-loop polynomial, some clasper surgery formulas are concretely presented
in [28], which describe the changes of the 2-loop polynomial under clasper surgeries.
Such formulas are useful to calculate the 2-loop polynomial for some classes of knots.
However, such clasper surgery formulas have not been presented concretely yet for
the 3-loop invariant so far.

Problem 3.1 (K. Yamaguchi). Present clasper surgery formulas concretely for the
3-loop invariant for clasper surgeries along claspers such as

and .
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From the viewpoint of the classification problem of knots, it is an important
problem to determine the image of the Kontsevich invariant. When we restrict this
problem to the (≤ 3)-loop part, it is a problem to determine the set of possible
values of the triple

(
∆K(t),ΘK(t1, t2, t3),ΛK(t1, t2, t3, t4)

)
. We consider a further

simplified case of this problem in the following problem.

Problem 3.2 (K. Yamaguchi). For a (0-framed) knot K with ∆K(t) = 1 and
ΘK(t1, t2, t3) = 0, determine the set of possible values of the 3-loop polynomial
ΛK(t1, t2, t3, t4).

4 An embedding of the Kauffman bracket skein algebra of
a surface into a localized quantum torus

(Ramanujan Santharoubane)

For Σ a compact connected oriented surface with genus at least one without
boundary component, we denote by S(Σ) the skein algebra of Σ × [0, 1], we see it
as a Z[A±1]-algebra. For a given pants decomposition P of Σ, a localized quantum
torus A(P) is defined in [7]. Recall that we need first to consider the quantum
torus T (P) over Z[A±1] with variables {Ee, Qe | e ∈ P} where all variables commute
except Qe and Ee (for all e ∈ P) that satisfy QeEe = AEeQe. Viewed as a ring, the
quantum torus T (P) is an integral domain so we can define A(P) to be a Z[A±1]-
algebra containing T (P) where AkQ2

e−A−kQ−2
e is invertible for all e ∈ P and k ∈ Z.

One of the main result in [7] was to build an embedding

σP : S(Σ) → A(P).

The first natural question is to know what happens when we change the pants
decomposition. It is known that we can go from one pant decomposition to another
via a finite number of elementary moves.

Question 4.1 (R. Santharoubane). Given two pants decompositions P ,P ′ of Σ,
can we find a Z[A±1]-algebra homomorphism φP,P ′ : A(P) → A(P ′) such that σP ′ =
φP,P ′ ◦ σP?

A positive answer to this question would allow us to define an universal localized
quantum torus in which S(Σ) would embed.

Another problem concerns Aut(A(P), S(Σ)) which is the group of automorphisms
of A(P) being the identity on σP(S(Σ)).

Question 4.2 (R. Santharoubane). What is Aut(A(P), S(Σ))?

In [10], Frohman and Gelca built an embedding of the skein algebra of the torus
into a quantum torus (not localized) and they proved that the image of the skein
algebra of the torus (by the embedding) is exactly the invariant set of certain auto-
morphisms of the quantum torus. This allowed them to get a beautiful formula for
the product of simple curves in the skein algebra of the torus. Hence we can raise
the following vague question.
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Question 4.3 (R. Santharoubane). Can we get from the knowledge of σP and
Aut(A(P), S(Σ)), a formula à la Frohman-Gelca for the product of two curves in
S(Σ)?

5 The distance on Teichmüller space via renormalized vol-
ume

(Hidetoshi Masai)2

Let S be a closed surface of genus g ≥ 2, and T (S) the Teichmüller space of
S. The space of quasi-Fuchsian manifolds is parameterized by T (S) × T (S). Let
qf(X, Y ) denote the quasi-Fuchsian manifold corresponding to (X,Y ) ∈ T (S) ×
T (S). We denote by VR(X,Y ) the renormalized volume of the quasi-Fuchsian man-
ifold qf(X, Y ). The map VR : T (S) × T (S) is not a distance. In fact, it is known
([23, Theorem 7.2]) that the function VR : T (S)× T (S) → R does NOT satisfy the
triangle inequality.

In [23], we define a distance dR on T (S) via the renormalized volume, and demon-
strate that the distance dR is natural to the volume of hyperbolic 3-manifolds. Given
X, Y ∈ T (S), let

dR(X,Y ) := sup
Z∈T (S)

VR(X,Z)− VR(Y, Z).

One important feature of dR is the following.

Theorem ([23]) Let ψ ∈ MCG(S) be a pseudo-Anosov mapping class and M(ψ) =
S×I/(x, 1) ∼ (ψ(x), 0) denote the mapping torus of ψ. Then the translation distance
of ψ with respect to dR is equal to the hyperbolic volume of M(ψ), that is, for any
X ∈ T (S), we have

lim
n→∞

1

n
dR(X,ψ

nX) = vol(M(ψ)).

In the proof, we utilize some ergodic theory, which is inspired by Karlsson-Ledrappier
[14, Proof of Theorem 1.1], see [23, Theorem 7.10] for the proofs.

The distance dR is still very mysterious. Similarly to the case of Weil-Petersson
(WP) metric, as (T (S), dR) is not complete, we may not use Hopf-Rinow Theorem
to find geodesics.

Question 5.1 (H. Masai). Is (T (S), dR) a geodesic space?

As dR(·, ·) ≤ 3
√
π(g − 1)dwp(·, ·), one easily sees that T̂ (S) is contained in the

completion of (T (S), dR).

Question 5.2 (H. Masai). What is the metric completion of (T (S), dR)?

2Department of Mathematics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo. 152-8551.
Japan.

Email: masai@math.titech.ac.jp
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Also it is interesting to understand the action of pseudo-Anosov maps. Let ψ ∈
MCG(S) be pseudo-Anosov. Then the axis of ψ should be a geodesic of dR invariant
under ψ.

Question 5.3 (H. Masai). Does every pseudo-Anosov map have a (unique?) geodesic
axis?

The distance dR is quasi-isometric to dwp [23], and (T (S), dwp) is CAT(0) [33].
Although CAT(0)-ness is not invariant under quasi-isometry, we might expect:

Question 5.4 (H. Masai). Is (T (S), dR) a CAT(0) space?

The horoboundaries may be used to identify isometry groups (see e.g. [31]). In
[31], except for some sporadic cases, Walsh identified the isometry group of the
Thurston metric with the so-called extended mapping class groups (see [31] for the
definition).

Question 5.5 (H. Masai). Is Isom(T (S), dR) equal to the extended mapping class
group? What about self-maps on T (S) preserving VR?

Since we are taking supremum in the definition of dR, several properties of VR
(say, smoothness) is not a priori inherited to dR. Let us finish the paper with the
following question.

Question 5.6 (H. Masai). Is there a Riemannian or a Finsler metric on T (S)
which defines dR?

6 Invariants of 3-manifolds obtained from the Heisenberg
doubles of Hopf algebras

(Sakie Suzuki)

The Heisenberg double of a finite-dimensional Hopf algebra H has a canonical
element that satisfies a pentagon relation [17]. By associating the canonical element
with ideal tetrahedra, we constructed in [24, 25] an invariant Z(M, f ;H) for framed
closed 3-manifolds (M, f) with vanishing first Betti number b1(M).

Let us take H = uq(sl
+
2 ) the small quantum Borel subalgebra with q the n-th

primitive root of unity. In this case we have

Z(S3, f ;uq(sl
+
2 )) = q−1,

where f is the framing extending the combing induced by the Hopf fibering, and we
have

Z(L(2, 1), f ;uq(sl
+
2 )) = 2q−11− q−⌊n+1

2
⌋

1− q−1
,

where L(2, 1) is the lens space and f is the framing extending the canonical combing
induced by its Seifert fibered structure. When q is a primitive root of unity of odd
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order N , the above values match, up to multiplication by q, the SO(3) Witten-

Reshetikhin-Turaev (WRT) invariant τ
SO(3)
N (M) [19, 29, 32] times the cardinality

|H1(M)| of the first homology group.

Question 6.1 (S. M. Mihalache, S. Suzuki, Y. Terashima [25]). Let M be a closed
oriented framed 3-manifold with b1(M) = 0. For a primitive root of unity q of odd
order N , is it true that

Z(M, f ;uq(sl
+
2 )) = qk · |H1(M)| · τSO(3)

N (M)

for some integer k?

Recall that the WRT invariant is an invariant of 2-framed 3-manifold, where
one usually chooses canonical 2-framing to compute it. Since framing f induces a
2-framing v2, it is natural to ask the following question.

Question 6.2 (S. M. Mihalache, S. Suzuki, Y. Terashima [25]). Under the same
assumption in Question 6.1, does the following equation hold?

Z(M, f ;uq(sl
+
2 )) = |H1(M)| · τSO(3)

N (M, v2).

The Turaev-Viro invariant [6, 30] is defined as a state sum invariant using tri-
angulations and 6j-symbols. In particular, we can obtain the invariant TVr(M)
associated with the quantum group Uq(sl2), where q

1/2 is a 4r-th primitive root of
unity. It is known that the Turaev-Viro invariant is equal to the absolute square of
the WRT invariant.

Problem 6.3 (S. M. Mihalache, S. Suzuki, Y. Terashima). Reconstruct TVr(M)
from Z(M, f ;uq(sl

+
2 )) by establishing a relation between the canonical element and

the 6j-symbol.

Problem 6.4 (S. M. Mihalache, S. Suzuki, Y. Terashima). More generally, construct
6j-symbols from the canonical elements of the Heisenberg doubles.

For the quantum Borel subalgebra Uℏ(sl
+
2 ) (ℏ-adic ver.) of sl2, the pentagon

equation of the canonical element of Heisenberg double turns out to be essentially
the Fadeev-Kashaev’s pentagon identity for the quantum dilogarithm [8, 17]. The
pentagon identity for the quantum dilogarithm was the crucial result sitting behind a
sequence of important works [4, 12, 13, 15, 16, 18] related to the Kashaev invariant of
links, the volume conjecture, and investigation of 3-manifolds invariants and TQFT
using the quantum dilogarithm and quantum Teichmüller Theory.

Problem 6.5 (S. M. Mihalache, S. Suzuki, Y. Terashima). Define Z(M, f ;H) for
the infinite dimensional Hopf algebra H = Uℏ(sl2), which realizes an invariant asso-
ciating the quantum dilogarithm with ideal tetrahedra. Generalize it to TQFT and
establish a relation with the quantum Teichmüller Theory.

Problem 6.6 (S. M. Mihalache, S. Suzuki, Y. Terashima). Formulate a volume
conjecture using the anticipated invariant Z(M, f ;Uh(sl2)) in Problem 6.5 (or using
the family Z(M, f ;uq(sl

+
2 )) for roots of unity) by specifying a relation between the

canonical element of the Heisenberg double and the volume of ideal tetrahedra.
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