MGR coloring invariants of Seifert surfaces Intelligence of low-dimensional topology

Katsunori Arai

The University of Osaka

2025/5/28

1 Handlebody-knots and spatial surfaces

2 Main result 1

3 Main result 2

1 Handlebody-knots and spatial surfaces

2 Main result 1

3 Main result 2

Introduction of §1

Handlebody-knot: handlebody embedded in S^3 .

- H_1 , H_2 : handlebody-knots. $H_1 \cong H_2 \xleftarrow{\text{def}} H_1$ is ambiently isotopic to H_2 .
- K: knot in $S^3 \Rightarrow N(K)$: handlebody-knot of genus 1.

Spatial surface: compact surface embedded in S^3 .

- F_1 , F_2 : spatial surfaces. $F_1 \cong F_2 \iff F_1$ is ambiently isotopic to F_2 .
- Oriented spatial surface with non-empty boundary is a Seifert surface for its boundary.

$$\begin{array}{l} \left\{ \mathsf{Knots} \right\} /_{\cong} \xrightarrow{\mathsf{nbhd}} \left\{ \mathsf{Handlebody}_{\mathsf{knots}} \right\} /_{\cong} \\ \xrightarrow{\mathsf{boundary}} \left\{ \mathsf{Oriented spatial surfaces} \right\} /_{\cong}. \end{array}$$

Handlebody-knots(1/2)

In this talk, graphs may have multiple edges and loops. Spatial trivalent graph: finite trivalent graph embedded in S^3 . Handlebody-knot: handlebody embedded in S^3 .

- H_1 , H_2 : handlebody-knots. $H_1 \cong H_2 \xleftarrow{\text{def}} H_1$ is ambiently isotopic to H_2 .
- G: spatial trivalent graph $\Rightarrow N(G)$: handlebody-knot.
- A diagram of a hdlbdy-knot H is a diagram of a spatial trivalent graph G s.t. $H \cong N(G)$.
- H(D): handlebody-knot presented by a diagram D.

Handlebody-knots(2/2)

 H_1 , H_2 : handlebody-knots, D_i : diagram of H_i (i = 1, 2).

Theorem (Ishii 2008)

 $H_1 \cong H_2 \iff D_1$ and D_2 are related by a finite seq. of R1-R6 moves and isotopies in S^2 .

Spatial surfaces(1/3)

Spatial surface: compact surface embedded in S^3 .

• F_1 , F_2 : spatial surfaces. $F_1 \cong F_2 \iff F_1$ is ambiently isotopic to F_2 .

Remark

In this talk, we assume that

- spatial surfaces are connected and oriented,
- spatial surfaces are neither 2-disks nor closed surfaces.

Spatial surfaces(2/3)

D: diagram of a spatial trivalent graph.

The spatial surface F(D) is obtained from the following.

We remark that full twists are presented by kinks in diagrams.

- $\forall F$: spatial surface, $\exists D$: diagram of a spatial trivalent graph s.t. $F \cong F(D)$.
- A diagram of a spatial surface F is a diagram D s.t. $F \cong F(D)$.

Spatial surfaces(3/3)

 F_1 , F_2 : spatial surfaces, D_i : diagram of F_i (i = 1, 2).

Theorem (Matsuzaki 2021)

 $F_1 \cong F_2 \iff D_1$ and D_2 are related by a fin. seq. of R2, R3, R5, R6 moves and iso. in S^2 .

Remark

 $\mathrm{R1}$ and $\mathrm{R4}$ moves change framings of spatial surfaces.

Katsunori Arai (The University of Osaka)

MGR coloring invariants of Seifert surfaces

1 Handlebody-knots and spatial surfaces

2 Main result 1

3 Main result 2

Katsunori Arai (The University of Osaka)

Introduction of $\S2$

The number of colorings by an algebraic system yields an invariant of "Object" \Rightarrow the algebraic system needs to have "Universal structure."

Object	Universal structure
Oriented knot	Quandle (Joyce 1982, Matveev 1982)
Knot	Symmetric quandle (Kamada 2007, Kamada-Oshiro 2010)
Handlebody-knot	Multiple conjugation quandle (Ishii 2015)
Spatial surface	?

• Multiple group rack (Ishii-Matsuzaki-Murao 2020), Heap rack (Saito-Zappala 2024).

Main result 1 (A. 2025)

? is a groupoid rack.

• {Groupoid racks} \supset {Multiple group racks} \cup {Heap racks}.

Main result 1

Racks and quandles

Definition (Joyce 1982, Matveev 1982, Fenn-Rourke 1992)

$$\begin{array}{l} X: \mbox{ set, } \triangleleft : X \times X \to X: \mbox{ binary operation on } X. \\ X = (X, \triangleleft): \mbox{ quandle } & \stackrel{\text{def}}{\longleftrightarrow} \mbox{ (i)-(iii):} \\ (i) \ \forall x \in X, \ x \triangleleft x = x. \\ (ii) \ \forall y \in X, \ \mbox{the map } S_y : X \ni x \mapsto x \triangleleft y \in X \ \mbox{is bijective.} \\ (iii) \ \forall x, y, z \in X, \ (x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z). \\ X = (X, \triangleleft): \ \underline{\text{rack}} & \stackrel{\text{def}}{\longleftrightarrow} \ \mbox{ (ii) and (iii).} \end{array}$$

Example

- $n \in \mathbb{Z}_{>0}$. $R_n = (\mathbb{Z}_n, x \triangleleft y = 2y x)$: dihedral quandle.
- $n \in \mathbb{Z}_{>0}$. $C_n = (\mathbb{Z}_n, x \triangleleft y = x + 1)$: cyclic rack.
- $(X_1, \triangleleft_1), (X_2, \triangleleft_2)$: racks. $X_1 \times X_2$ is a rack w/ $(x_1, x_2) \triangleleft (y_1, y_2) = (x_1 \triangleleft_1 y_1, x_2 \triangleleft_2 y_2)$.

Groupoid racks (1/3)

Definition (Ishii 2015, Ishii-Matsuzaki-Murao 2020)

 $X = \bigsqcup_{\lambda \in \Lambda} G_{\lambda}$: disjoint union of groups, $\triangleleft : X \times X \to X$: binary operation on X.

 $X = (X, \triangleleft)$: <u>multiple conjugation quandle</u> (MCQ) $\xleftarrow{\text{def}}$ (i)-(iv):

(i)
$$\forall \lambda \in \Lambda$$
, $\forall a, b \in G_{\lambda}$, $a \triangleleft b = b^{-1}ab$.

(ii)
$$\forall x \in X, \forall \lambda \in \Lambda, \forall a, b \in G_{\lambda}, x \triangleleft (ab) = (x \triangleleft a) \triangleleft b \text{ and } x \triangleleft e_{\lambda} = x,$$

where e_{λ} is the identity element of G_{λ} .

(iii)
$$\forall x, y, z \in X$$
, $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

 $({\rm iv}) \ \forall x \in X, \, \forall \lambda \in \Lambda, \, \exists \mu \in \Lambda \, \, {\rm s.t.} \ \forall a, b \in G_{\lambda}, \, a \triangleleft x, b \triangleleft x \in G_{\mu} \, \, {\rm and} \, \, (ab) \triangleleft x = (a \triangleleft x)(b \triangleleft x).$

 $X = (X, \triangleleft)$: multiple group rack (MGR) $\xleftarrow{\text{def}}$ (ii)–(iv).

Groupoid racks (2/3)

 \mathcal{C} : groupoid $\xleftarrow{\text{def}}$ category in which all morphisms are invertible.

Definition (A. 2025)

C: groupoid, X = Mor(C): the set of all morphisms, $\triangleleft : X \times X \to X$: binary operation on X. $X = (X, \triangleleft)$: groupoid rack associated with $C \iff (i)-(iii)$:

(i)
$$\forall x, f, g \in X \text{ w} / \operatorname{cod}(f) = \operatorname{dom}(g), x \triangleleft (fg) = (x \triangleleft f) \triangleleft g \text{ and } x \triangleleft \operatorname{id}_{\lambda} = x,$$

where $\operatorname{id}_{\lambda}$ is the identity of $\lambda \in \operatorname{Ob}(\mathcal{C}).$

(ii)
$$\forall x, y, z \in X$$
, $(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)$.

 $(\text{iii}) \ \forall x, f, g \in X \ \mathsf{w} / \ \mathrm{cod}(f) = \mathrm{dom}(g), \ \mathrm{cod}(f \triangleleft x) = \mathrm{dom}(g \triangleleft x) \ \mathsf{and} \ (fg) \triangleleft x = (f \triangleleft x)(g \triangleleft x).$

Groupoid racks (3/3)

An MGR $X = \bigsqcup_{\lambda \in \Lambda} G_{\lambda}$ can be regarded as the grpd. rack ass. with the following grpd. C.

- $\operatorname{Ob}(\mathcal{C}) = \Lambda$, $\operatorname{Mor}(\lambda, \mu) = \begin{cases} G_{\lambda} & (\lambda = \mu), \\ \emptyset & (\lambda \neq \mu). \end{cases}$, Composition: $G_{\lambda} \times G_{\lambda} \to G_{\lambda}$; $(a, b) \mapsto ab$.
- The identity morphism of $\lambda \in \Lambda$ is identity element of the group G_{λ} .
- The inverse morphism of a morphism $x \in G_{\lambda}$ is $x^{-1} \in G_{\lambda}$.

Proposition

X: groupoid rack associated with a groupoid C. If C satisfies that $\forall \lambda, \mu \in Ob(C)$ with $\lambda \neq \mu$, $Mor(\lambda, \mu) = \emptyset$, then X is an MGR.

Proposition

(X, ⊲): grpd. rack associated with a grpd. C. If C satisfies the following, then X is an MCQ.
(i) ∀λ, μ ∈ Ob(C) with λ ≠ μ, Mor(λ, μ) = Ø.
(ii) ∀λ ∈ Ob(C), ∀a, b ∈ Mor(λ, λ), a ⊲ b = b⁻¹ab.

Groupoid rack colorings (1/4)

D: diagram of a spatial trivalent graph. Y-orientation of D: orientation of D without sinks and sources.

Remark (Ishii 2015, Lebed 2015)

Every diagram admits a Y-orientation.

Y-oriented diagram: diagram with a Y-orientation.

Main result 1

Groupoid rack colorings (2/4)

D: Y-oriented diagram, X: set, $\triangleleft : X \times X \to X$, $P \subset X \times X$, $\mu : P \to X$. $C : \mathcal{A}(D) \to X$: X-coloring of $D \xleftarrow{\text{def}} C$ satisfies the following conditions.

 $\operatorname{Col}_X(D)$: the set of all X-colorings of D.

Main result 1 (A. 2025)

- (X, \triangleleft) : groupoid rack $\Rightarrow |\operatorname{Col}_X(D)|$: invariant of the spatial surface F(D).
- $|\operatorname{Col}_X(D)|$ is an invariant of the spatial surface $F(D) \Rightarrow \bigcup_{(x,y)\in P} \{x,y\}$: groupoid rack.

Main result 1

Groupoid rack colorings (3/4)

D: Y-oriented diagram, $\mathcal{A}(D)$: the set of all arcs of D, X: groupoid rack.

 $C: \mathcal{A}(D) \to X: X$ -coloring of $D \xleftarrow{\mathsf{def}} C$ satisfies the following conditions.

 $\operatorname{Col}_X(D)$: the set of all X-colorings of D.

Theorem (Ishii 2015)

- X: $MCQ \Rightarrow |Col_X(D)|$ is an invariant of the handlebody-knot H(D).
- $|Col_X(D)|$ is an invariant of the handlebody-knot $H(D) \Rightarrow X$: MCQ.

Groupoid rack colorings (4/4)

Definition (Saito-Zappala 2024)

$$\begin{split} R &= (R,*): \text{ rack.} \\ R \times R \text{ is a rack with } (x,y) \triangleleft (z,w) = ((x*^{-1}z)*w, (y*^{-1}z)*w), \text{ where } x*^{-1}z := S_z^{-1}(x). \\ \text{The heap rack } R \times R \text{ is the rack } (R \times R, \triangleleft) \text{ with the partial operation } (x,y)(y,z) = (x,z). \end{split}$$

A heap rack X can be regarded as a groupoid rack. D: Y-oriented diagram.

Theorem (Saito-Zappala 2024)

 $|Col_X(D)|$ is an invariant of the spatial surface F(D).

1 Handlebody-knots and spatial surfaces

2 Main result 1

3 Main result 2

Introduction of §3

Main result 2

- $\forall L$: oriented link, $\exists \{(F_n, F'_n)\}_{n \in \mathbb{N}}$: pairs of Seifert surfaces for L s.t.:
 - (i) $\forall n \in \mathbb{N}, N(F_n) \cong N(F'_n)$ as handlebody-knots.
- (ii) $\forall n \in \mathbb{N}$, Seifert matrices of F_n and F'_n are unimodular-congruent.

(iii) $\forall n \in \mathbb{N}, F_n \ncong F'_n$ as spatial surfaces.

 $\begin{array}{l} \hline & \underbrace{\text{Outline of proof}}_{\text{(Step 1) Construct such a family } \{(F_n, F'_n)\}_{n \in \mathbb{N}}.\\ \text{(Step 2) Check that } \forall m, n \in \mathbb{N}, \ F_m \not\cong F_n.\\ \text{(Step 3) Verify the claims (i)-(iii).} \end{array}$

(Step 1) Construct $\{(F_n, F'_n)\}_{n \in \mathbb{N}}$ (1/3)

L: oriented link.

F: Seifert surface for L with $F \ncong (2-\text{disk})$.

D: diagram of F.

Figure: A diagram D of the Seifert surface F

Main result 2

(Step 1) Construct $\{(F_n, F'_n)\}_{n \in \mathbb{N}}$ (2/3) For each $n \in \mathbb{N}$, take the following diagrams D_n and D'_n .

(Step 1) Construct $\{(F_n, F'_n)\}_{n \in \mathbb{N}}$ (3/3)

• $\partial F(D_n) \cong \partial F(D'_n) \cong \partial F(D) \cong L.$

- For each $n \in \mathbb{N}$, define $F_n := F(D_n)$ and $F'_n := F(D'_n)$.
- $\{(F_n,F'_n)\}_{n\in\mathbb{N}}$: pairs of Seifert surfaces for L.

(Step 2) Check that $\forall m, n \in \mathbb{N}$, $F_m \not\cong F_n$

V: Seifert matrix of the Seifert surface F(D) for L.

$$\begin{array}{l} \text{For each } k \in \mathbb{N}, \ F_k \ \text{has the Seifert matrix} \ V_k = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 4 & 0 & 0 \\ -1 & 0 & 0 & 4 + 2k & 0 \\ 0 & 0 & 0 & 0 & V \end{pmatrix}.\\ s = \max\left\{i \in \mathbb{N} \mid \exists \ \text{non-zero} \ (i \times i) \text{-minor of} \ V\right\} \ (\text{If } \nexists \ s, \ \text{we set} \ s = 0).\\ E_{k,3+s} := \gcd\left\{(3+s) \times (3+s) \text{-minors of} \ V_k\right\}. \end{array}$$

Definition and Proposition

 $\begin{array}{l} F_1, F_2: \text{ spatial surfaces, } V_i: \text{ Seifert matrix of } F_i \ (i=1,2). \\ (\text{i}) \ F_1 \cong F_2 \Rightarrow V_1 \text{ and } V_2 \text{ are unimodular-congruent, i.e., } \exists P: \text{ unimodular s.t. } V_1 = P^T V_2 P. \\ (\text{ii}) \ \forall k \in \mathbb{N}, \ \gcd\{k \times k\text{-minors of } V_i\} \text{ is an invariant of } F_i. \end{array}$

For any $m, n \in \mathbb{N}$, $E_{m,3+s} \neq E_{n,3+s}$. By the above Prop., $F_m \ncong F_n$.

(Step 3) (i) $N(F_n) \cong N(F'_n)$

• $N(F_n) \cong H(D_n)$ and $N(F'_n) \cong H(D'_n)$.

(Step 3) (ii) Seifert matrices of F_n and F'_n are unimodular-congruent

V: Seifert matrix of the spatial surface F(D).

• $\forall n \in \mathbb{N}$, F_n and F'_n have the same Seifert matrix

$$\begin{pmatrix} 0 & 0 & 0 & 0 & \mathbf{0} \\ 0 & 0 & 1 & 0 & \mathbf{0} \\ -1 & 0 & 4 & 0 & \mathbf{0} \\ -1 & 0 & 0 & 4 + 2n & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & V \end{pmatrix}$$

(Step 3) (iii)
$$F_n \ncong F'_n$$
 (1/5)

Example (MGR)

$$X = (R_3 \times C_2) \times \mathbb{Z}_2 = igsqcup_{(x,i) \in R_3 \times C_2} \{(x,i)\} \times \mathbb{Z}_2$$
 is an MGR with

$$((x,i),a) \triangleleft ((y,j),b) = \begin{cases} ((x,i),a) & \text{if } b = 0, \\ ((2y-x,i+1),a) & \text{if } b = 1 \end{cases}, \ ((x,i),a)((x,i),b) = ((x,i),a+b).$$

This construction is motivated by (Ishii 2015, Ishii-Matsuzaki-Murao 2020).

Main result 2

$$(\text{Step 3}) \text{ (iii)} \ F_n \ncong F'_n \text{ (3/5)}$$

$$\operatorname{Col}_X(D; ((x, i), d)) := \operatorname{Col}_X \left(\underbrace{ \begin{array}{c} \bullet & D \\ ((x, i), d) \end{array}}_{((x, i), d)} \right).$$
Then,
$$|\operatorname{Col}_X(D_n)| = \bigsqcup_{((x, i), (b, c, d)) \in (R_3 \times C_2) \times \mathbb{Z}_2^3} |\operatorname{Col}_X(D; ((x, i), d))|$$

$$= 4 \left(\bigsqcup_{((x, i), d) \in X} |\operatorname{Col}_X(D; ((x, i), d))| \right).$$

Remark

 $\operatorname{Col}_X($

Then,

 $|Col_X(D_n)| > 0$ because $|Col_X(D; ((x, i), 0))| > 0$ for any $(x, i) \in R_3 \times C_2$.

Main result 2

Coloring conditions at vertices v_1 and v_2 .

$$\begin{cases} i-a=i \pmod{2},\\ i+e=i \pmod{2}. \end{cases}$$

Thus,

(Step 3) (iii) $F_n \ncong F'_n$ (5/5)

Remark

For any $(x,i) \in R_3 imes C_2$,

$$\bigcup_{b \in C_2} \left| \operatorname{Col}_X(- 3_1 - 1); (x, i), b) \right| = \left| \operatorname{Col}_X(4; (x, i), 0) \right| + 3 \left| \operatorname{Col}_X(4; (x, i), 1) \right|$$
$$= 4.$$

$$\begin{aligned} \left|\operatorname{Col}_{X}(D'_{n})\right| &= \bigsqcup_{((x,i),(b,c,d))\in(R_{3}\times C_{2})\times\mathbb{Z}_{2}^{3}} \left(\left|\operatorname{Col}_{X}(D,((x,i),d))\right| \cdot \left|\operatorname{Col}_{X}(\operatorname{\operatorname{Sol}}(x,i),b)\right|\right)\right) \\ & \underset{=}{\operatorname{\mathsf{Rem.}}} 8\left(\bigsqcup_{((x,i),d)\in X}\left|\operatorname{Col}_{X}(D,((x,i),d))\right|\right) > \left|\operatorname{Col}_{X}(D_{n})\right|. \end{aligned}$$

Therefore, $F_n \ncong F'_n$. <u>Katsunori Arai</u> (The University of Osaka)

Thank you for your attention!!