On metrics for quandles

Ryoya Kai

Osaka Metropolitan University

2025/5/28 Intelligence of Low-dimensional Topology @ RIMS

This talk is based on <u>arXiv:2505.07535</u> joint work with Kohei Iwamoto (Ritsumeikan Univ.) and Yuya Kodama (Kagoshima Univ.).

duction Preliminary: Quandles OCO	duction	Preliminary: Quandles	Preliminary: Schreier graph	Metrics for quandles
-----------------------------------	---------	-----------------------	-----------------------------	----------------------

Introduction (1/2)

- A quandle is an algebraic system, which can be regarded as a generalization of the conjugation of a group.
- Quandles are studied in many branches of mathematics;
 - as an invariant of knots in knot theory,
 - > as discretization of symmetric spaces in symmetric space theory.
- Much research has focused on finite quandles;
 - for computability of knot invariants,
 - for correspondence of compact symmetric spaces.
- On the other hand, there are many interesting quandles on infinite sets.
 - knot quandles for most (classical or surface) knots,
 - discrete subquandles of non-compact symmetric spaces.

Motivation

Intro

• • •

We want to construct some tools to study countable quandles.

Examples

Introduction

Preliminary: Quandles

Preliminary: Schreier graph

Metrics for quandles

Examples

Introduction (2/2)

<u>Idea</u>

Introduce some notions and ideas in geometric group theory to quandle theory.

Geometric group theory

Discrete groups are studied from a geometric view point.

- (1) (group G, generating set S) \rightsquigarrow the word metric d_S (i.e. a Cayley graph).
- (2) $S, T \subset G$: finite generating sets
 - \implies (G, d_S) and (G, d_T) are quasi-isometric.
- (3) Quasi-isometry invariants (e.g. # ends, Gromov hyperbolicity, ...) of the metric space (G, d_S) become invariants of the group G.

Introduction 00•	Preliminary: Quandles	Preliminary: Schreier graph	Metrics for quandles	Examples
		Contents		

- 1. Preliminary: Quandles
 - review the notion of quandles and some natural actions on them.
- 2. Preliminary: Schreier graphs
 - review the Schreier graph, which is a generalization of the Cayley graph.
- 3. Metrics for quandles
 - define two metrics for a quandle using natural actions of groups.
 - these metrics are determined up to the choice of "generating sets".
- 4. Examples
 - give some examples of quandles quasi-isometric to typical metric spaces.

 Introduction
 Preliminary: Quandles
 Preliminary: Schreier graph
 Metrics for quandles
 Examples

 000
 000
 000
 0000
 0000
 0000

Quandles

Definition (Joyce (1982), Matveev (1982))

 $\begin{array}{l}X: \text{ non-empty set with a binary operation } \triangleleft : X \times X \to X.\\ (X, \triangleleft): \ensuremath{\textit{quandle}}\ \text{if the following conditions hold:}\\ \textbf{1.} \ensuremath{x \triangleleft x = x}\ \text{for any } x \in X,\\ \textbf{2. the map } s_y: X \to X \ \text{defined by } s_y(x) := x \triangleleft y \ \text{is bijective for any } y \in X,\\ \textbf{3.} \ensuremath{(x \triangleleft y) \triangleleft z = (x \triangleleft z) \triangleleft (y \triangleleft z)}\ \text{for any } x, y, z \in X. \end{array}$

Introduction

Preliminary: Quandles

Preliminary: Schreier graph

Metrics for quandles

Examples

Example of quandles

Example (conjugation quandle)

$$\begin{array}{l} G: \text{ group, } z \in G, \ z^G := \{g^{-1}zg \mid g \in G\}. \\ \rightsquigarrow \operatorname{Conj}(z^G) := (z^G, x \triangleleft y := y^{-1}xy): \ \text{the $conjugation quandle$ on x^G}. \end{array}$$

Example (infinite dihedral quandle)

 $R_{\infty} := (\mathbb{Z}, x \triangleleft y := 2y - x)$: the *infinite dihedral quandle*.

 $R_{\infty}\cong\operatorname{Conj}(R_{0}^{D_{\infty}})$,

where D_{∞} : the infinite dihedral group, $R_0 \in D_{\infty}$: the reflection at 0.

R. Kai (OMU) j.w.w. K.Iwamoto & Y.Kodama

On metrics for quandles

Introduction	Preliminary: Quandles ○○●	Preliminary: Schreier graph	Metrics for quandles	Examples

Groups acting on quandles

• $Aut(X) := \{f : X \to X \mid f : bij. qdle. hom.\}$: the automorphism group.

•
$$fg := g \circ f \ (f, g \in \operatorname{Aut}(X)) \rightsquigarrow X \curvearrowleft \operatorname{Aut}(X).$$

• X: homogeneous $\stackrel{\text{def}}{\iff} X \curvearrowleft \operatorname{Aut}(X)$: transitive.

▶ $Inn(X) := \langle s_x \mid x \in X \rangle_{grp} < Aut(X)$: the *inner automorphism group*.

• X: connected $\stackrel{\text{def}}{\longleftrightarrow} X \curvearrowleft \operatorname{Inn}(X)$: transitive. Each orbit of $X \curvearrowright \operatorname{Inn}(X)$ is called a *connected component*.

▶
$$\text{Dis}(X) := \langle s_x s_y^{-1} \mid x, y \in X \rangle_{\text{grp}} < \text{Aut}(X)$$
: the *displacement group*.

Example

In	tr	od	lu	ct	ic	n	
00	C)					

Preliminary: Quandles

Preliminary: Schreier graph ●○ Metrics for quandles

Examples

Schreier graph

Schreier grpah

 $\begin{array}{l} X: \mbox{ set, } G: \mbox{ group, } S \subset G: \mbox{ generating set, } X \curvearrowleft G. \\ \mbox{ Then, the } {\it Schreier \mbox{ graph }} {\rm Sch}(X;G,S) \mbox{ is a graph with } \\ \mbox{ Vertex set } V = X, \\ \mbox{ Edge set } E = \{(x,x \cdot g) \mid x \in X, g \in S\}. \end{array}$

Remark

 $G \curvearrowleft G$ given by $x \cdot g := xg$ $\rightsquigarrow Sch(G; G, S)$ is the Cayley graph of G with respect to S.

Properties of Schreier graph

- {connected components \subset Sch(X; G, S)} $\stackrel{1:1}{\longleftrightarrow}$ {orbits of $X \curvearrowleft G$ }.
- ► Each connected component of Sch(X; G, S) becomes a metric space by the path metric d^{Sch}_S.
- An orbit O is a metric space by the restriction of $d_S^{\text{Sch.}}$.
- \rightarrow The metric space $(O, d_S^{\rm Sch})$ depends on the choice of S. Proposition

 $\begin{array}{l} S,T\subset G \text{: finite generating sets, } O \text{: an orbit of } X\curvearrowleft G \text{.} \\ \Longrightarrow \ \mathrm{id}:(O,d_S^{\mathrm{Sch}})\to (O,d_T^{\mathrm{Sch}}) \text{: quasi-isometry.} \end{array}$

 \rightarrow The quasi-isometry class $[(O,d_S^{\rm Sch})]$ is determined independently of S.

Schreier graphs associated with guandles

Definition

- X: quandle.
- **1.** $\Gamma_A^{\text{Inn}}(X) := \text{Sch}(X; \text{Inn}(X), A)$, where $A \subset \text{Inn}(X)$: generating set.
- **2.** $\Gamma_{U}^{\text{Dis}}(X) := \text{Sch}(X; \text{Dis}(X), U)$, where $U \subset \text{Dis}(X)$: generating set.

• $\Gamma_{A}^{\text{Inn}}(X)$ is a generalization of a *diagram of a quandle* defined by Winker (1984). (:) $T \subset X$: generating set as quandles $\implies s(T) \subset Inn(X)$: generating set. **Proposition**

$$\{\operatorname{conn. comp.} \subset \Gamma_A^{\operatorname{Inn}}(X)\} \xleftarrow{1:1} \{\operatorname{conn. comp.} \subset X\} \xleftarrow{1:1} \{\operatorname{conn. comp.} \subset \Gamma_U^{\operatorname{Dis}}(X)\}$$

 \rightarrow Each component becomes a metric space by the path metric.

- The metric d^{Inn}_A induced by Γ^{Inn}_A(X) is called the *inner metric*.
 The metric d^{Dis}_L induced by Γ^{Ins}_L(X) is called the *displacement metric*.

R. Kai (OMU) i.w.w. K.Iwamoto & Y.Kodama

On metrics for quandles

Independence of the choise of the generating set

Theorem

Introduction

X: quandle, $O \subset X$: connected component.

- **1.** $A, B \subset \text{Inn}(X)$: finite generating sets $\implies (O, d_A^{\text{Inn}}) \sim_{q.i.} (O, d_B^{\text{Inn}})$.
- **2.** $U, V \subset \text{Dis}(X)$: finite generating sets $\implies (O, d_U^{\text{Dis}}) \sim_{q.i.} (O, d_V^{\text{Dis}})$.

Remark

- \blacktriangleright X: finitely generated \implies Inn(X): finitely generated.
- ▶ $\exists X$: finitely generated quandle s.t. Dis(X): **NOT** finitely generated.

Examples

troduction	Preliminary: Quandles	Preliminary: Schreier graph	Metrics for quandles	Examples

Difference between the two metrics

In general, $d^{\rm Inn}$ and $d^{\rm Dis}$ are **NOT** quasi-isometric. **example:** R_∞

Introduction 000	Preliminary: Quandles	Preliminary: Schreier graph	Metrics for quandles	Examples
	-			

Special cases

Proposition

- X: homogeneous quandle, $O, O' \subset X$: connected component.
- ► $A \subset Inn(X)$: finite generating set $\implies (O, d_A^{Inn}) \sim_{q.i.} (O', d_A^{Inn})$.
- ▶ $U \subset \text{Dis}(X)$: finite generating set $\implies (O, d_U^{\text{Dis}}) \sim_{q.i.} (O', d_U^{\text{Dis}})$.

Proposition

X: quandle, $U \subset \text{Dis}(X)$: finite generating set. $O \subset X$: connected component, $O \curvearrowleft \text{Dis}(X)$: free $\implies (\text{Dis}(X), d_U) \sim_{q.i.} (O, d_U^{\text{Dis}}).$

► X: non-trivial quandle $\implies X \curvearrowleft Inn(X)$: NOT free. (\because) $s_x(x) = x \triangleleft x = x$ for any $x \in X$.

Introduction 000	Preliminary: Quandles	Preliminary: Schreier graph	Metrics for quandles	Examples •0000

Free quandle

A: finite set with
$$\#A \ge 2$$
, $F[A]$: free group on A.
 $FQ[A] := (A \times F[A])/(a, u) \sim (a, a^n u).$
 $\rightsquigarrow (FQ[A], [(a, u)] \triangleleft [(b, v)] := [a, uv^{-1}bv])$: free quandle.
Proposition

Remark

Dis(FQ[A]) is NOT finitely generated.

Generalized Alexander quandles

 $\begin{array}{l} G: \text{ group, } \sigma: G \to G: \text{ group automorphism.} \\ \rightsquigarrow \operatorname{GAlex}(G, \sigma) := (G, g \triangleleft h := \sigma(gh^{-1})h): \text{ generalized Alexander quandle.} \\ \blacktriangleright O \curvearrowleft \operatorname{Dis}(X): \text{ free } \iff O \cong \operatorname{GAlex.} \quad \blacktriangleright \text{ GAlex: homogeneous quandle.} \\ \hline \text{Theorem} \end{array}$

 $X := \operatorname{GAlex}(G, \sigma), S \subset \operatorname{Dis}(X)$: finite generating set $\implies \forall O \subset X$: connected component, $(O, d_S^{\operatorname{Dis}}) \sim_{q.i.} (\operatorname{Dis}(X), d_S)$

Lemma (cf. Higashitani–Kurihara (2024))

Let
$$X := \text{GAlex}(G, \sigma)$$
.
 \blacktriangleright $\text{Dis}(X) \cong P := e \cdot \text{Inn}(X) < G$.
 \flat $\sigma : x \mapsto g^{-1}xg \ (g \in G) \implies P = [\langle \langle g \rangle \rangle_G, \langle \langle g \rangle \rangle_G]$.
 $(\langle \langle g \rangle \rangle_G: \text{ the normal closure of } \{g\} \text{ in } G.)$

Ex: Euclidean space and hyperbolic plane

Proposition

$$\forall O \subset \operatorname{GAlex}(\mathbb{Z}^n,t)$$
: conn. comp., $(O,d^{\operatorname{Dis}}) \sim_{\operatorname{q.i.}} \mathbb{E}^k \ (k = \operatorname{rank}(t-1))$

Proposition

$$\begin{array}{l} \Delta^+(p,q,r) := \langle a,b,c \mid a^p = b^q = c^r = abc = 1 \rangle, \ \sigma : x \mapsto a^{-1}xa. \\ X := \mathrm{GAlex}(\Delta^+(p,q,r),\sigma). \\ \frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1 \implies \forall O \subset X: \ \text{connected component, } (O, d^{\mathrm{Dis}}) \sim_{\mathrm{q.i.}} \mathbb{H}^2 \end{array}$$

Remark

$$\begin{split} Y &:= \operatorname{Conj}(\{a\}^{\Delta^+(p,q,r)}) < \operatorname{Conj}(\Delta^+(p,q,r)) \\ &\implies \exists X \twoheadrightarrow Y : \text{ quandle homomorphism \& } Y \subset \mathbb{H}^2 : \text{ discrete subquandle.} \end{split}$$

ntroduction	Preliminary: Quandles	Preliminary: Schreier graph	Metrics for quandles	Examples ○○○●○

Ex: 3-dimensional geometry (1/2)

 $\mathcal{O}(K,n)$: 3-orbifold with

basespace S^3 ,

singular locus a knot $K \subset S^3$ with the cone-angle $2\pi/n$. $G_n(K) := \pi_1^{\operatorname{orb}}(\mathcal{O}(K,n)) \cong G(K)/\langle\langle \mu^n \rangle\rangle_{G(K)} \ (\mu \in G(K): \text{ meridian}).$ $\sigma \in \operatorname{Aut}(G_n(K)) : x \mapsto \mu^{-1}x\mu, \ X_n(K) := \operatorname{GAlex}(G(K), \sigma).$ Proposition

Dis(X) ≅ π₁(M_n(K)), where M_n(K): n-branched covering space of S³ along K.
 O(K, n): geometric
 ∀O ⊂ X_n(K): connected component, (O, d^{Dis}) ∼_{q.i.} O(K,n).

▶ $\exists X_n(K) \twoheadrightarrow Q_n(K)$: quandle homomorphism.

ntroduction	Preliminary: Quandles	Preliminary: Schreier graph	Metrics for quandles	Examples ○○○○●

Ex: 3-dimensional geometry (2/2)

We can construct many quandles quasi-isometric to 3-dim. Geometries:

$$S^2 imes \mathbb{R}, S^3, \mathbb{E}^3, \mathrm{Nil}, \mathbb{H}^2 imes \mathbb{R}, \widetilde{\mathrm{SL}}_2, \mathrm{Sol}, \mathbb{H}^3.$$

Example

K: hyperbolic knot, n: "enough large" ⇒ X_n(K) ~_{q.i.} H³ (cf. hyperbolic Dehn surgery theorem).
X₃(4₁) ~_{q.i.} E³, X₆(3₁) ~_{q.i.} Nil (cf. Dunbar(1988)).
X₂(Pretzel(-2,3,7)) ~_{q.i.} SL₂ (cf. Montesinos trick).

We can distinguish many countable quandles !

R. Kai (OMU) j.w.w. K.Iwamoto & Y.Kodama

On metrics for quandles

Summary

- We have defined two metrics for each connected component of a quandle by natural actions.
- Their quasi-isometry classes are determined up to the choice of "generating sets", but they are different.
- We gave examples of quandles quasi-isometric to typical metric spaces.

On going work

- Construct quandles whose components with d^{Inn} are quasi-isometric to typical metric spaces.
- Study the case $X \curvearrowleft \text{Dis}(X)$ is not free.
- Study quasi-isometric invariants for quandles.

(e.g. properties of Gromov hyperbolic quandles.)