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Skein modules

The skein module of a 3-manifold M is the (C(q%)—vector space
spanned by isotopy classes of framed links in M, modulo the
Kauffman bracket relations:
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The skein module of a 3-manifold M is the (C(q%)—vector space
spanned by isotopy classes of framed links in M, modulo the
Kauffman bracket relations:
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We denote it Sk(M).

Note: We can interpret framed links locally as morphisms between
tensor powers of the defining representation in Rep Ugsly.
Considering a different Lie group G gives a more general notion of
skein module Skg(M).

* = we know how to generalize to G = GLy, SLy.



Skein module dimensions

Let M be compact, oriented, and without boundary.

It was shown in [Gunningham-Jordan-Safronov 23] that
dim Sk(M) < o

but the proof is not constructive.
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Skein module dimensions

Let M be compact, oriented, and without boundary.

It was shown in [Gunningham-Jordan-Safronov 23] that
dim Sk(M) < o

but the proof is not constructive.

Some computations:

M=L(p,q) dimSk(M)=|[5]+1 [Hoste-Przytycki 93]
M = T3 dimSk(M) <9 [Carrega 17]
dim Sk(M) = 9 [Gilmer 18]
M=%,xS dimSk(M)<2%*l+2g—1 [Gilmer-Masbaum 19]
dim Sk(M) > 226+1 + 2g — 1  [Detcherry-Wolff 21]

This talk: dimensions for mapping tori of T2, from [Kinnear 25].



Mapping tori of T?
Let v € Mod(T?). Consider
M., = (T? x[0,1])/((a,0) ~ (v(a),1)).

Note M, =~ M, as oriented manifolds iff v and ¢ are conjugate (~)
in Mod(T?). Recall

Mod(T?) = SLy(Z) = (S, T|§* = 1d,(ST)® = §?).



Mapping tori of T?
Let v € Mod(T?). Consider
M., = (T? x[0,1])/((a,0) ~ (v(a),1)).

Note M, =~ M, as oriented manifolds iff v and ¢ are conjugate (~)
in Mod(T?). Recall

Mod(T?) = SLy(Z) = (S, T|§* = 1d,(ST)® = §?).

» |tr(y)| = 0: then v ~ £S5 for S = ((1) _01>

» |tr(y)| = 1: then v ~ LE* for E = (1 —01)

» |tr(y)| =2: theny ~ £T" for T = ((1) 1) ,neZ.

| tr(7)| > 2: classfication by continued fractions.

v



Main Theorem

Theorem
Lety = <" 3) € SLy(Z). Then dim Sk(M,) is as follows:

c

> |tr(y)| = 0: then dim Sk(M,) = 6.

> |tr(y)| = 1: then dim Sk(M,) = 4

» |tr(y)| = 2: theny ~ £T", and

9+ k n=2k

dim Sk(M,) = {6+k n=2k+1
> |tr(y)| > 2: then
dim Sk(M,)) = | tr(y)] +2c0)+1
where

c(y) =#{me{ged(a—1,b,c,d — 1),tr(y)} : m even}.



Main Theorem

Theorem
Let v € SLo(Z). Then dim Sk(M,) is given by

r. + r_ _ 3
dim Sk(M,) = ¢ 4 Hiil a; + 2P+ N Hi:l a; +2°

2 2
where ry is the rank of
_ w o X
IdFy = (y z)
and ”
¢ —

aii_ :ng(W7X7}/7Z)7 a%_ = LJM

a

are the invariant factors of Id ¥v, and

pr = #{a’ even: 1 <i<ri}.



Elements of proof

Lemma (% [Carrega 17])

For M a 3-manifold, Sk(M) is graded by H1(M;Z/27Z).

~» For M = M,, skeins wrap the monodromy direction either an
even or odd number of times.
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Elements of proof

Lemma (% [Carrega 17])

For M a 3-manifold, Sk(M) is graded by H1(M;Z/27Z).

~» For M = M,, skeins wrap the monodromy direction either an
even or odd number of times.

Lemma (% [Gunningham-Jordan-Vazirani 24])

Let M be a 3-manifold, and fix T?> = M. Then Sk(M) is spanned
by skeins which intersect T2 at most once.

~~ Fix T? transverse to the monodromy direction. Then we can
assume skeins wrap the monodromy direction exactly 0 or 1 times.

So
Sk(M,) = So @ S1.



Twisted Hochschild homology

Recall Sk(T? x[0,1]) is an algebra. Denote this SkAlg(T?).

We see that

So = HHJ(SkAlg(T?)) = SkAlg(T?)/(ab — by(a)).



Twisted Hochschild homology

Recall Sk(T? x[0,1]) is an algebra. Denote this SkAlg(T?).
We see that
So = HHJ(SkAlg(T?)) = SkAlg(T?)/(ab — by(a)).

Similarly,
S1 = HHJ(E)

for E the algebra of framed (1, 1) tangles in T2 x[0, 1], modulo
skein relations.



Twisted Hochschild homology

Recall Sk(T? x[0,1]) is an algebra. Denote this SkAlg(T?).
We see that
So = HHJ(SkAlg(T?)) = SkAlg(T?)/(ab — by(a)).

Similarly,
S1 = HHJ(E)

for E the algebra of framed (1, 1) tangles in T2 x[0, 1], modulo
skein relations.

Can give an explicit presentation of E as a 4-dimensional algebra,

and calculate
dim $; = dim HHJ(E) = 2¢0).
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Twisted Hochschild homology *
The calculation of HH(SkAlg(T?)) involves the following steps:
» [Frohman-Gelca 00]: SkAlg(T?) = A%/?Z for

A =C(q (XL YEL /(XY - g2 ¥X).

v

HHg (A/?2) = DPuwez/oz HHg" (A)z/22.
HH]" (A) = C(q2)[Tors(coker(Id —w~))].

Invariant factors:

v

v
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Z/27-coinvariants: roughly identify pairs under negation, so
half dimension. But fixed points (even af) require correction.



Twisted Hochschild homology *
The calculation of HH(SkAlg(T?)) involves the following steps:
» [Frohman-Gelca 00]: SkAlg(T?) = A%/?Z for

A =C(q (XL YEL /(XY - g2 ¥X).

v

HHg (A/?2) = DPuwez/oz HHg" (A)z/22.
HH]" (A) = C(q2)[Tors(coker(Id —w~))].

Invariant factors:

v

v

re
coker(Id ¥v) = 2"+ @ (P Z/a7.
i—1

v

Z/27-coinvariants: roughly identify pairs under negation, so
half dimension. But fixed points (even af) require correction.

All together gives:

r + - _— _
[[iZ,a" +2°+ n [[iZ a7 +2°

dim 50 = 5 5
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action of the mapping class groups of 3-manifolds.
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Corollary
There does not exist a symmetric monoidal functor
Z: Bord‘(ﬁﬁ) — Vect

sending a 3-manifold to its skein module, and giving the natural
action of the mapping class groups of 3-manifolds.

» Z symmetric monoidal: for ¢ € Mod(M),
tr(Z(¢)) = Z(M x4 S1).
Then dim Z(M) = Z(M x S1).
For block inclusion ¢ : SLy(Z) — SL3(Z), we have
T3 xL(V)Sl ~ S x (T? x,SY).
Then dim Sk(M,) = Z(M,, x S1) = tr(Z(1(v))).
Natural Mod(T®) action on Sk(T?) described explicitly in

[Carrega 17]: permutes basis elements. So traces of this
action are bounded above by dim Sk(T3) = 9.
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Corollary
There does not exist a symmetric monoidal functor
Z: Bord‘(ﬁﬁ) — Vect

sending a 3-manifold to its skein module, and giving the natural
action of the mapping class groups of 3-manifolds.

» Z symmetric monoidal: for ¢ € Mod(M),
tr(Z(¢)) = Z(M x4 S1).
Then dim Z(M) = Z(M x S1).
For block inclusion ¢ : SLy(Z) — SL3(Z), we have
T3 xL(V)Sl ~ S x (T? x,SY).
Then dim Sk(M,) = Z(M,, x S1) = tr(Z(1(v))).
Natural Mod(T®) action on Sk(T?) described explicitly in

[Carrega 17]: permutes basis elements. So traces of this
action are bounded above by dim Sk(T3) = 9.

But dim Sk(M,) is not bounded above.

v

v

v

v

v
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Further questions

» G = GLy,SLy? (Bierent—Jordan—Vancraeynest—Vazirani)
» Mapping tori of >,? ~» problem session
» Domain of extension to a TQFT? ~~ problem session

» We can organise (m, n)-tangles on T? into a category
SkCat(T?), and interpret

Sk(M,,) = HHJ (SkCat(T?)).

What about HH]}? (Bai, Kinnear)

» We considered coker(Id F+). In the paper
[Chun-Gukov-Park-Sopenko 20] this is identified with the
(almost) abelian flat SLy(C)-connections on M., and is used
to define the so-called Z-invariant. Is there a connection with
skein theory?
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