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1 Introduction

The second order derivative of the free energy with respect to a environmental parameter g
diverges at the critical point, when an ordinary second-order phase transition occurs. The
correlation length of the system has a singularity at the critical point gc

� � jg � gcj
�� : (1)

In the renormalization group (RG) method, the critical point is given as a �xed point of the
RG. The maximal eigenvalue b1 in the linearized RG ow near the �xed point gives the inverse
of the critical exponent

b1 = 1=�:

Here, we do not have to solve any recursion relation or di�erential equation explicitly to obtain
critical exponents. one has to only diagonarize the scaling matrix at the �xed point of RG. On
the other hand, in an in�nite-order phase transition, the free energy has an essential singularity,
and any order derivative of the free energy does not diverge. The correlation length shows
strong divergence at the critical point with

� � expAjg � gcj
�~� :

In this case, a thermodynamic quantity scaled with a positive power of the correlation length
does not diverge at any order derivative, such as a free energy, while that with a negative power
diverges. The Kosterlitz-Thouless (KT) transition is the well-known example as an in�nite-order
phase transitions. This transition appears in c = 1 conformal �eld theories with a marginal
perturbation. In this case, the critical exponent is ~� = 1, or 1=2 universally. In this case,
the scaling matrix at the critical point vanishes, and then the renormalization group equation
becomes nonlinear di�erential equation. Commonly the critical exponent ~� is obtained by
integrating the di�erential equation of the renormalization group explicitly. In general situation,
however, the renormalization group equation cannot be integrated explicitly. In this talk, I
present a method of RG for RG, which enables us to extract the universal critical exponent
~� from the nonlinear di�erential equation in an algebraic way [1]. It will be shown that the
inverse of the critical exponent 1=~� is given by the maximal eigenvalue of the scaling matrix in
the linearized RG for RG. In section 2, I describe the method of RG for RG briey. In section 3,
I give several non-trivial examples of quantum spin systems which di�ers from the universality
class of the KT transition.
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2 Renormalization group for renormalization group

Here, I study a system with coupling constants g = (g1; g2; � � � ; gn). The running coupling
parameter x(t;g) obeys the following RG di�erential equation

dx

dt
= V(x) (2)

with an initial condition x(0;g) = g. The real parameter t is logarithm of a scale parameter
in the RG transformation. Here I call t time. The vector �eld V(x) is sometimes called beta
function. Let the origin be a �xed point of this RG V(0) = 0. The correlation length � in the
system is considered as the scale determined by the time when the solution x spends near the
�xed point. If the beta function is expanded in xi at the �xed point,

Vi(x) =
X

j

Aj
ixj +
X

jk

Cjk
i xjxk + � � �

the maximal eigenvalue of the scaling matrix Aj
i gives the inverse of the critical exponent

1=�. This well-known fact implies that one does not have to integrate the di�erential equation
explicitly in order to obtain the leading behavior in critical phenomena. Here, I consider the
case that the �rst derivative of the beta function vanishes at the �xed point. This situation
yields in�nite-order phase transition. For example in the KT transition which is famous as an
in�nite-order transition, the RG equation of the KT transition is

dx1
dt

= �x22

dx2
dt

= �x1x2; (3)

which can be integrated explicitly. The spending time of the running coupling near the �xed
point is evaluated and the characteristic length of the system � is obtained as a function of the
initial data

� � expAjg � gcj
�1=2:

Since the RG equation cannot be solved explicitly in general, I apply a RG method to the RG
nonlinear di�erential equation. Here, we consider the RG di�erential equation

dxi
dt

=
X

jk

Cjk
i xjxk:

If the function x(t;g) is a solution of this equation, e�x(e� t;g) becomes a solution of this
equation. On the basis of this scaling relation, I de�ne a renormalization group transformation
for the initial parameter. First, �x a surface S in the coupling constant space and consider the
problem with an initial parameter on this surface. Let us de�ne a transformation R� : S ! S
for an arbitrary real parameter �

R� (g) = e�x(s(�);g);
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where s(�) is determined for a given � in such away that the point e�x(s(�);g) is on the surface
S. Here, I call R� RG transformation for RG. I show the following properties of RG for RG.

1. A one parameter semi group property of RG for RG
R�2R�1 = R�1+�2 .

2. A straight ow line in the original RG corresponds to a �xed point of this RG for RG.

3. The maximal eigenvalue of the scaling matrix in the RG for RG gives the inverse of the
critical exponent 1=~�:

Therefore, one can obtains the critical exponent ~� without solving the di�erential equation
explicitly.

3 Examples

In two parameter systems, by solving the RG equation explicitly, one can check the method of
RG for RG, such as a critical exponent ~� = 1=2 in the KT transition. Here, I present three other
nontrivial examples of one dimensional quantum spin systems, a spin 1 bilinear-biquadratic
model [3], a spin-orbital model [4] and a zigzag chain model [5], which shows in�nite-order
transitions di�erent from the KT universality class. The phase diagram of each model has a
rich structure. A spin 1 bilinear-biquadratic model is well-known as a system with the Haldane
gap. A Bethe ansatz solvable point is a critical point, where the system is described in SU(3)
Wess-Zumino-Witten (WZW) model with c = 2. This system shows an in�nite-order transition
from the Haldane gap phase to a gapless phase at this critical point. The critical exponent
~� = 3=5 is obtained both in integrating the RG equation and the RG for RG method. In a one
dimensional spin-orbital model, one non-trivial critical point is a Bethe ansatz solvable point
where the system is described in the SU(4) WZW model with c = 3. There are an extended
gapless phase and dimer gap phase, where the transition between two phases is in�nite-order.
The critical exponent ~� = 2=3 or 1 are obtained in both ways. In the zigzag chain model, an
interesting new phenomenon is discovered recently. In the Hamiltonian of the spin 1/2 zigzag
chain model

H =
X

i

(J1~Si � ~Si+1 + J2~Si � ~Si+2); (4)

there are three critical points J1 = �4J2, J1 = 4:149 � � � J1, and J1 = 0. The transition at
J1 = �4J2 corresponds to the ferromagnetic transition that is �rst order. The next one at
J1 = 4:149 � � � J2 is the transition from antiferromagnetic gapless phase to the dimer gapped
phase which is the KT type transition with ~� = 1. The transition at J1 = 0 is a non-KT type
in�nite-order transition with ~� = 2=3 obtained by RG for RG method. Around this point, the
system is described in (c = 1CFT)2 with �ve marginal perturbations. The RG equation of this
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system in the one-loop approximation is

l
dx1
dl

= x21 � x3x4 � x24;

l
dx2
dl

= x22 + x3x4 + x23;

l
dx3
dl

= �
1

2
x1x3 +

3

2
x2x3 + x2x4;

l
dx4
dl

= x1x3 +
3

2
x1x4 �

1

2
x2x4;

l
dx5
dl

=
1

2
x3x4; (5)

where the initial values of this equation are given in certain functions of J1 and J2. The RG
equation indicates the instability of the critical point J1 = 0 for the perturbation J1 6= 0. Indeed
in the antiferromagnetic region J1 > 0, the system is dimerized where the translational sym-
metry of this model is broken. In a �eld theory description, the corresponding chiral symmetry
breaking occurs. The numerical calculation shows the �nite correlation length, dimerization
order parameter and the energy gap [2]. The gap scaling formula eq.(1) with ~� = 2=3 �ts the
data surprisingly well even for relatively large J1. In the ferromagnetic region J1 < 0, however,
the gap has never been observed in numerical calculation. This fact is puzzling because the
ferromagnetic perturbation seems to yield the same instability as in the antiferromagnetic one.
Now, I understand this puzzle as follows [5]. This RG has a �xed line

x1 = x2 = 0; x3 + x4 = 0: (6)

and the eigenvalues of the scaling matrix on this �xed line all vanish. Studying the ow near
this �xed line, all perturbations is found to be marginally relevant. The ow becomes quite
slow near this �xed line, however, �nally the ow runs away from the �xed line. Since the
running coupling x(t) spends long time near the �xed line, the characteristic length scale of
the system becomes always an astronomical length scale. Therefore, the correlation length is
�nite but quite long in an extended region. At the same time the energy gap is �nite, but very
tiny without �ne-tuning of the coupling J1. The scaling formula eq.(1) of the correlation length
holds only for small jJ1j. This spin model is a rare example of a strong scale reduction without
�ne-tuning of the coupling constant.
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