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anti-de Sitter (AdS) geometry should behave as a scaling parameter of a d-

dimensional field theory whose conformal fixed point exists at the boundary

of Md+1. We give a review of recent developments in this field, and show

that the Hamilton-Jacobi equation for such gravity system describes RG flows

of the field theory in a simple and correct manner. We further investigate

the situation where stringy corrections are taken into account, which turn

Einstein gravity into higher-derivative gravity. We clarify the meaning of these

corrections in terms of the holographic renormalization group, and derive a

Hamilton-Jacobi-like equation that determines the generating functional of the

boundary field theory. Using the expected duality between a higher-derivative

gravity system and N = 2 superconformal field theory in four dimensions,

we demonstrate that the resulting Weyl anomaly is consistent with the field

theoretic result.
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1 Introduction

The AdS/CFT correspondence [1] states that a gravitational theory on the (d + 1)-

dimensional anti-de Sitter space (AdSd+1) has a dual description in terms of a conformal

field theory (CFT) on the d-dimensional boundary. One of the most significant aspects of

the AdS/CFT correspondence is that it further gives us a framework to study the renor-

malization group (RG) structure of the boundary field theories. In this scheme of the

“holographic RG,” the extra radial coordinate in the bulk is regarded as parametrizing

the RG flow of the dual boundary field theory, and the evolution of bulk fields along the

radial direction is considered as describing the RG flow of the coupling constants in the

boundary field theory.

On the other hand, there have been several attempts to confirm the validity of the

duality beyond the classical Einstein gravity approximation. The AdS/CFT correspon-

dence is believed to be a duality between string theories and a certain class of quantum

field theories. In this sense, the AdS/CFT correspondence, and so the structure of the

holographic RG, must exist even when a gravity theory is subject to stringy corrections,

which turn the theory into higher-derivative gravity. We discuss that such corrections

correspond to the introduction of coupling constants which are coupled to highly irrele-

vant operators, and show that one can explicitly calculate the fixed-point action in the

presence of these irrelevant operators.

The organization of this proceeding is as follows. In §2, we give a review of the flow

equation that is obtained from the Hamilton-Jacobi equation [2]. In §3, we describe a

prescription for solving the flow equation and make some sample calculations to confirm

the RG interpretation of the flow equation. In §4, we review the general theory for a

higher-derivative system, and apply it to higher-derivative gravity. We derive a Hamilton-

Jacobi-like equation which is interpreted as a flow equation. §5 is devoted to a conclusion.

2 Hamilton-Jacobi equation and the flow equation



We consider Einstein gravity with bulk scalars φi(x, r) on a (d+ 1)-dimensional man-

ifold Md+1 with boundary Σd = ∂Md+1. The action is given by

Sd+1[GMN (x, r), φi(x, r)]

=

∫
Md+1

dd+1X
√

G

(
V (φ) −R +

1

2
Lij(φ)GMN ∂Mφ

i ∂Nφ
j

)
− 2

∫
Σd

ddx
√
GK .

(2.1)

Here XM = (xµ, r) (µ, ν = 1, 2, · · · , d; r0 ≤ r < ∞) are local coordinates on Md+1, and

we assume that Md+1 has only one boundary Σd at r = r0. To develop a Hamiltonian

formalism for this system, it is convenient to introduce the ADM parametrization of the

metric:

ds2 = GMN dX
MdXN

= N(x, r)2dr2 +Gµν(x, r)
(
dxµ + λµ(x, r)dr

)(
dxν + λν(x, r)dr

)
, (2.2)

where N and λµ are the lapse and the shift function, respectively. The action is then

expressed as

Sd+1[Gµν(x, r), φ
i(x, r), N(x, r), λµ(x, r)]

=

∫ ∞

r0

dr

∫
ddx

√
G

[
N

(
V (φ) − R+KµνK

µν −K2
)

+
1

2N
Lij(φ)

((
φ̇i − λµ∂µφ

i
)(
φ̇j − λµ∂µφ

j
)

+N2Gµν∂µφ
i∂νφ

j
) ]

≡
∫ ∞

r0

dr

∫
ddx

√
GLd+1[G, φ,N, λ], (2.3)

where · = ∂/∂r. Here R and ∇µ are the scalar curvature and the covariant derivative

with respect to Gµν , respectively, and Kµν is the extrinsic curvature defined by

Kµν =
1

2N

(
Ġµν −∇µλν −∇νλµ

)
, K = GµνKµν . (2.4)

Since the conjugate momenta are given by

Πµν = Kµν −GµνK, Πi =
1

N
Lij(φ)

(
φ̇j − λµ ∂µφ

j
)
, (2.5)

the action (2.3) can be rewritten into the first-order form by the Legendre transformation,

Sd+1[Gµν , φ
i,Πµν,Πi, N, λ

µ] ≡
∫ ∞

r0

dr

∫
ddx

√
G

[
ΠµνĠµν + Πiφ̇

i −NH− λµPµ
]
,

(2.6)
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with

H ≡ Π2
µν −

1

d− 1

(
Πµ

µ

)2
+

1

2
Lij(φ)Πi Πj − V (φ) +R − 1

2
Lij(φ)G

µν ∂µφ
i ∂νφ

j,

Pµ ≡ −2∇νΠ
µν + Πi ∇µφi. (2.7)

Here N and λµ simply behave as Lagrange multipliers, giving the Hamiltonian and mo-

mentum constraints:

1√
G

δSd+1

δN
= H = 0, (2.8)

1√
G

δSd+1

δλµ
= Pµ = 0. (2.9)

Let Gµν(x, r) and φ̄i(x, r) be the classical solutions of the bulk action with the bound-

ary conditions,1

Gµν(x, r=r0) = Gµν(x), φ̄i(x, r=r0) = φi(x). (2.10)

We also define Π
µν

(x, r) and Πi(x, r) to be the classical solutions of Πµν(x, r) and Πi(x, r),

respectively. Then, substituting these classical solutions into the bulk action, we obtain

the classical action which is a functional of the boundary values, Gµν(x) and φi(x):

S[Gµν(x), φ(x)] ≡ Sd+1

[
Gµν(x, r), φ̄

i(x, r), Π
µν

(x, r), Πi(x, r), N(x, r), λµ(x, r)
]
.(2.11)

The Hamilton-Jacobi equation shows that the classical conjugate momenta evaluated at

r = r0 are given by

Πµν(x) ≡ Π
µν

(x, r0) =
−1√
G

δS

δGµν(x)
, Πi(x) ≡ Πi(x, r0) =

−1√
G

δS

δφi(x)
. (2.12)

Substituting (2.12) into the Hamiltonian constraint (2.8), we thus obtain the flow equation

[2]:2

{S, S}(x) = Ld(x), (2.13)

1One generally needs two boundary conditions for each field, since the equation of motion is a second-

order differential equation in r. Here, one of the two is assumed to be already fixed by demanding the

regular behavior of the classical solutions inside Md+1 (r → +∞) [1].
2The classical action does not depend on the coordinate r0 explicitly. This can be proved also by the

Hamilton-Jacobi equation, since the Hamiltonian is a linear combination of constraints and thus vanishes

for the classical solutions. This reflects the invariance of the gravity system under diffeomorphisms in

the r direction. The momentum constraint (2.9) ensures the invariance of S under a d-dimensional

diffeomorphism along the fixed time slice r = r0.
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with

{S, S}(x) ≡
(

1√
G

)2
[
− 1

d− 1

(
Gµν

δS

δGµν

)2

+

(
δS

δGµν

)2

+
1

2
Lij(φ)

δS

δφi

δS

δφj

]
,

(2.14)

Ld(x) ≡ V (φ)− R +
1

2
Lij(φ)G

µν∂µφ
i∂νφ

j. (2.15)

3 Solution to the flow equation and its RG interpre-

tation

In this section we give a prescription for solving the flow equation [2][3], and reveal the

RG structure in the flow equation.

3.1 Solution to the flow equation

In a most naive form of the AdS/CFT correspondence, we take r0=−∞ and assume that

the classical metric GMN(x, r) is AdS: ds2 = GMN dX
M dXN = dr2 + exp(−2r/l) (dxµ)2

(l is called the “radius” of the AdS although the AdS space is noncompact). Then the

scalar fields φi(x) are interpreted as the sources coupled to scaling operators Oi(x) of the

boundary CFT, and the classical action S[Gµν(x)=exp(−2r0/l)δµν, φ
i(x)] is regarded as

the generating functional of the CFT: S =
〈∫
ddxφi(x)Oi(x)

〉
CFT

. However, since there

appears divergence in the integration around r∼−∞, we need to set r0 to be finite, which

turns out to be introducing a UV cutoff into the boundary field theory. Furthermore, if

we take into account back-reactions from the scalar fields to the metric, we still should

leave arbitrariness to the boundary values of the metric, Gµν(x).

We thus are led to decompose the classical action into two parts:3

1

2κ2
d+1

S[G(x), φ(x)] =
1

2κ2
d+1

Sloc[G(x), φ(x)] + Γ[G(x), φ(x)]. (3.1)

Now Γ[G,φ] is the non-local part of S[G, φ], which is interpreted as the generating func-

tional of the d-dimensional field theory in the presence of the background metric Gµν(x),

3We have recovered the (d + 1)-dimensional Newton constant 2κ2
d+1.
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while Sloc[G, φ] is the local counter term, which can be expressed as an integral of differ-

ential polynomials of Gµν(x) and φi(x):

Sloc[G(x), φ(x)] =

∫
ddx

√
G(x)Lloc(x)

=

∫
ddx

√
G(x)

∑
w=0,2,4,···

[Lloc(x)
]
w
. (3.2)

Here we have arranged the sum over local terms according to the weight w that is defined

additively from the following rule [3]:

weight

Gµν(x), φ
i(x), Γ[G,φ] 0

∂µ 1

R, Rµν , ∂µφ
i∂νφ

j, · · · 2

δΓ/δGµν(x), δΓ/δφ
i(x) d

The last line is a natural consequence of the relation w(Γ[G,φ]) = 0, since δΓ =
∫
ddx

(δφ(x)× δΓ/δφ(x) + · · · ). Then, substituting the above equation into the flow equation

(2.13) and comparing terms of the same weight, we obtain a sequence of equations that

relate the off-shell bulk action (2.6) to the classical action (3.1). They take the following

form:

√
GLd =

[
{Sloc, Sloc}

]
0
+

[
{Sloc, Sloc}

]
2
, (3.3)

0 =
[
{Sloc, Sloc}

]
w

(w = 4, 6, · · · , d − 2), (3.4)

0 = 2
[
{Sloc, Γ}

]
d
+

[
{Sloc, Sloc}

]
d
, (3.5)

...

Eqs. (3.3) and (3.4) determine [Lloc]w (w = 0, 2, · · · , d− 2), which together with eq. (3.5)

in turn determine the non-local functional Γ.

By parametrizing [Lloc]0 and [Lloc]2 as

[Lloc]0 = W (φ), (3.6)

[Lloc]2 = −Φ(φ)R +
1

2
Mij(φ)G

µν ∂µφ
i ∂νφ

j, (3.7)
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one can easily solve (3.3) to obtain4

V (φ) = − d

4(d− 1)
W (φ)2 +

1

2
Lij(φ) ∂iW (φ) ∂jW (φ) , (3.8)

−1 =
d − 2

2(d− 1)
W (φ) Φ(φ)− Lij(φ) ∂iW (φ) ∂jΦ(φ) , (3.9)

1

2
Lij(φ) = − d − 2

4(d− 1)
W (φ)Mij(φ) − Lkl(φ) ∂kW (φ) Γ

(M )
l;ij (φ) , (3.10)

0 = W (φ)∇2 Φ(φ) + Lij(φ) ∂iW (φ)Mjk(φ)∇2φk . (3.11)

Here ∂i = ∂/∂φi, and Γ
(M )k
ij (φ) ≡ Mkl(φ) Γ

(M )
l;ij (φ) is the Christoffel symbol constructed

from Mij(φ).

The equation (3.5) becomes

1√
G

[
−2Gµν

δΓ

δGµν

+ βi(φ)
δΓ

δφi

]
=

−2(d− 1)

2κ2
d+1W (φ)

[
{Sloc, Sloc}

]
d
, (3.12)

where

βi(φ) =
2(d− 1)

W (φ)
Lij(φ)

∂W (φ)

∂φj
. (3.13)

In the following subsections, eq. (3.12) will be shown to describe the RG flow of the

generating functional of the boundary field theory.

We conclude this subsection with a comment on the term [Lloc]d in the expansion (2.1).

From the equation (3.5), this term would add some local terms to the right hand side of

(3.12). However, the contribution from [Lloc]d always takes a form of a total derivative.

This can be understood by observing that possible contributions from [Lloc]d vanish for

constant dilatations [4]. We have neglected such total derivative in the expression (3.12).

3.2 RG flow and classical trajectory

We consider the classical solution

Gµν(r, x) =
1

a(r)2
δµν, φ

i
(r, x) = φi(a(r)), (3.14)

with the boundary condition

Gµν(r = r0, x) =
1

a2
δµν , φ

i
(r = r0, x) = φi (const.). (3.15)

4The expression for d = 4 can be found in Ref. [2].
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From (2.12), the boundary values of the conjugate momenta are evaluated as

Πµν(x) = −1

2
a−2W (φ)δµν, Πi(x) = −∂W (φ)

∂φi
. (3.16)

On the other hand, from (2.5), Πµν and Πi are expressed as

Πµν(x) = (d − 1)
ȧ

a3
δµν, Πi(x) = Lijφ̇

j (3.17)

Combining these equations, we can verify

a
d

da
φi(a) =

2(d− 1)

W (φ)
Lij(φ)

∂W (φ)

∂φj
, (3.18)

which agrees with the function (3.13). Since a gives a unit length of the d-dimensional

space, eq. (3.18) shows that the classical trajectory φ
i
(r, x) can be interpreted as the RG

flow of the boundary field theory with the functions βi(φ) being the RG beta functions.

One can further show [2] that the Callan-Symanzik equation holds for the correlation

functions defined by 〈Oi1(x1) · · · Oin(xn)〉 (a, φ) ≡ δnS/δφi1(x1) · · · δφin(xn)
∣∣
(3.15)

.

3.3 Weyl anomaly

Since Γ[G,φ] is regarded as the generating functional of the boundary field theory, the

first term of the equation (3.12) should give the vacuum expectation value of the trace

of the energy-momentum tensor of the boundary field theory. Thus, for the configuration

βi = 0, the right hand side of the equation (3.12) expresses the Weyl anomaly of the

boundary field theory:

− 2√
G
Gµν

δΓ

δGµν
≡ 〈T µ

µ 〉 =
−2(d− 1)

2κ2
d+1W (φ)

[
{Sloc, Sloc}

]
d
. (3.19)

As an example, we consider five-dimensional dilatonic gravity (d = 4) with a single

scalar field, setting V = −d(d− 1)/l2 = −12/l2 and L = 1:

L4 = −12

l2
−R +

1

2
Gµν ∂µφ∂νφ. (3.20)

In this case, all the functions W , M and Φ do not depend on φ, and eqs. (3.8)–(3.10) are

solved as

Sloc[G, φ] =

∫
d4x

√
G

(
−6

l
− l

2
R +

l

2
Gµν∂µφ∂νφ

)
. (3.21)
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We can further calculate
[
{Sloc, Sloc}

]
4
easily and find

〈T µ
µ 〉 = − 2l3

2κ2
5

(
1

24
R2 − 1

8
RµνR

µν − 1

24
RGµν ∂µφ∂νφ

+
1

8
Rµν∂µφ∂νφ− 1

48
(Gµν∂µφ∂νφ)

2 − 1

16

(∇2φ
)2

)
. (3.22)

This is in exact agreement with the result of Ref. [6]. (See also [5].) If we assume φ(x) = φ

(const.) and take the background of AdS5 × S5, this also reproduces the correct large N

limit of the four-dimensional N = 4 SU(N) supersymmetric Yang-Mills theory.

3.4 Scaling dimension

We assume that the scalars are normalized as Lij(φ) = δij and that the bulk scalar

potential V (φ) has the expansion

V (φ) = 2Λ +
1

2

∑
i

m2
i φ

2
i +

∑
ijk

gijk φiφjφk + · · · , (3.23)

with Λ = −d(d− 1)/2l2. Then it follows from (3.8) that W takes the form

W = −2(d− 1)

l
+

1

2

∑
i

λi φ
2
i +

∑
ijk

λijk φiφjφk + · · · , (3.24)

with

lλi =
1

2

(
−d+

√
d2 + 4m2

i l
2

)
, (3.25)

gijk =

(
d

l
+ λi + λj + λk

)
λijk. (3.26)

The beta functions can be evaluated easily and are found to be

βi = −
∑

i

lλi φi − 3
∑
jk

λijk φjφk + · · · . (3.27)

Thus, equating the coefficient of the first term with d − ∆i, where ∆i is the scaling

dimension of the operator coupled to φi, we obtain

∆i = d+ lλi =
1

2

(
d+

√
d2 + 4m2

i l
2

)
. (3.28)

This exactly reproduces the result given in Ref. [1].
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4 Higher-derivative gravity and the holographic RG

In this section we consider (d + 1)-dimensional classical higher-derivative gravity and

discuss its RG interpretation [7]. We first review the general theory for classical mechanics

of higher-derivative system and then apply it to the gravity case.

4.1 General theory of higher-derivative system

We consider a system of point particle with the action

S[q(r)] =

∫ t

t′
dr L

(
q, q̇, · · · , q(N+1)

) (
q(n)(r) ≡ dnq(r)/drn

)
. (4.1)

The action (4.1) can be rewritten into the first-order form by introducing the Lagrange

multipliers p, P1, · · · , PN−1, so that q, Q1= q̇, · · · , QN = q(N ) can be regarded as indepen-

dent canonical variables:

S[q, Q1, · · · , QN ; p, P1, · · · , PN ] =

∫ t

t′
dr

[
p q̇ +

N∑
a=1

PaQ̇
a −H(q, Qa; p, Pa)

]
. (4.2)

Here we have carried out a Legendre transformation from (QN , Q̇N) to (QN , PN ) through

PN =
∂L

∂Q̇N

(
q, Q1, · · · , QN , Q̇N

)
. (4.3)

The Hamiltonian is given by

H(q, Qa; p, Pa) = pQ1 + P1Q
2 + · · · + PN−1Q

N + PN Q̇
N (q, Qa; PN )

−L
(
q, Q1, · · · , QN , Q̇N(q, Qa; PN )

)
. (4.4)

The equation of motion consists of the usual Hamilton equations,

q̇ =
∂H

∂p
, Q̇a =

∂H

∂Pa
, ṗ = −∂H

∂q
, Ṗa = − ∂H

∂Qa
, (4.5)

and of the following constraint which must hold at the boundary, r = t and r = t′:

p δq +
∑

a

Pa δQ
a = 0 (r = t, t′) . (4.6)

The latter requirement, (4.6), can be satisfied when we take either Dirichlet boundary

conditions or Neumann boundary conditions,

Dirichlet : δq = 0 , δQa = 0 (r = t, t′) , (4.7)

Neumann : p = 0 , Pa = 0 (r = t, t′) , (4.8)
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for each variable q and Qa (a=1, · · · , N).

Although there are various choices of boundary conditions when solving (4.5), we

adopt the following mixed boundary conditions:

δq = Pa = 0 (r = t, t′) . (4.9)

The reason why we choose this condition is explained in the next subsection.

Under the condition (4.9), the classical solution is a function of the boundary value of

q:

q̄ = q̄(r, x; q, t; q′, t′)
(
q = q̄(r= t, x), q′ = q̄(r= t′, x)

)
, (4.10)

and thus the classical action becomes a function only of the boundary value of q;

S(t, q; t′, q′) ≡ S[q̄(r, x; q, t; q′, t′)]. (4.11)

We will call S(t, q; t′, q′) the “reduced classical action.”

Since we took the mixed boundary conditions, the reduced classical action does not

obey the Hamilton-Jacobi equation in the usual form. However, one can prove the fol-

lowing theorem for any Lagrangian of the form

L(qi, q̇i, q̈i) = L0(q
i, q̇i) + cL1(q

i, q̇i, q̈i). (4.12)

Theorem [7]

Let H0(q, p) be the Hamiltonian corresponding to L0(q, q̇). Then the reduced classical

action S(t, q; t′, q′)=S0(t, q; t
′, q′)+ c S1(t, q; t

′, q′)+O(c2) satisfies the following equation

up to O(c2):

−∂S
∂t

= H̃(q, p), pi =
∂S

∂qi
, and +

∂S

∂t′
= H̃(q′, p′), p′i = − ∂S

∂q′ i
, (4.13)

where

H̃(q, p) ≡ H0(q, p)− cL1(q, f1(q, p), f2(q, p)),

f i
1(q, p) ≡ {

H0, q
i
}

=
∂H0

∂pi
,

f i
2(q, p) ≡ {

H0,
{
H0, q

i
}}

=
∂2H0

∂pi∂qj
∂H0

∂pj
− ∂2H0

∂pi∂pj

∂H0

∂qj
.(

{F (q, p), G(q, p)} ≡ ∂F
∂pi

∂G

∂qi
− ∂G
∂pi

∂F

∂qi

)
(4.14)
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4.2 RG interpretation of the mixed boundary conditions

The mixed boundary conditions we took in the preceding subsection, can be understood

in terms of the holographic renormalization group. To explain this, we consider a toy

model that has the Lagrangian of the form (4.12):

L =
1

2
q̇2 +

1

2
µ2q2 +

c

2
q̈2 . (4.15)

Its first-order form reads

L = p q̇ + PQ̇−H(q, Q; p, P ), (4.16)

with

H(q, Q; p, P ) = −1

2
µ2q2 − 1

2
Q2 +Qp+

1

2c
P 2. (4.17)

By performing an almost diagonal canonical transformation, the Lagrangian can be rewrit-

ten into the following form with a normalized kinetic term:

L = p′q̇′ + P ′Q̇′ −H ′(q′, p′; Q′, P ′), (4.18)

where

H ′(q′, Q′; p′, P ′) =
1

2
p′2 +

1

2
P ′2 − 1

2
m2q′2 − 1

2
M2Q′2, (4.19)

with

m2 =
1 − √

1 − 4c µ2

2c
= µ2(1 + O(c)) ,

M2 =
1 +

√
1− 4c µ2

2c
=

1

c
(1 + O(c)). (4.20)

Since a bulk scalar mode with mass M is coupled to a scaling operator with scaling

dimension ∆ = 1
2

(
d +

√
d + 4M2

)
, the relation (4.20) shows that the mode Q′ ∼ Q is

coupled to a highly irrelevant operator with large scaling dimension when c� 1. Thus,

even if we take the boundary value of Q arbitrarily, the flow of (q, Q) converges rapidly to

the renormalized trajectory. This implies that in order to take a continuum limit, we only

need to consider the flow on the renormalized trajectory. This can be achieved by taking

the boundary value which realizes the condition that the β function for the very massive

mode vanishes, but this is nothing but our mixed boundary condition since P ∼ Q̇.
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4.3 Application to higher-derivative gravity

We apply the formalism developed in the preceding subsections, to higher-derivative grav-

ity that has the Lagrangian of the form (4.12). Since higher-derivative terms stem from

integrating over string excitation mode with mass of order α′, eq. (4.12) implies that we

are taking account of stringy corrections up to c ∼ α′.
We consider classical pure gravity on Md+1 whose action takes generically the form

S = SB + Sb . (4.21)

Here SB is the bulk action and Sb is the boundary action:5

SB =

∫
Md+1

dd+1X
√
Ĝ

[
2Λ − R̂ − aR̂2 − bR̂2

MN − cR̂2
MNPQ

]
, (4.22)

Sb =

∫
Σd

ddx
√
G

[
2K + x1RK + x2RµνK

µν + x3K
3 + x4KK

2
µν + x5K

3
µν

]
. (4.23)

Using the ADM parametrization, we can express the action in the form:

S =

∫
Md+1

dd+1X
√
G

[
L(0)

d+1(g, ġ;N, λ
µ) + L(1)

d+1(g, ġ, g̈;N, λ
µ)

]
. (4.24)

Applying Theorem to this system, we obtain the flow equation of the form

{S, S}+ {S, S, S, S} = Ld, (4.25)

where {S, S} ∼ (δS/δg)2 and {S, S, S, S} ∼ (δS/δg)4, and their explicit form can be

found in [7].

This equation can be solved in a way similar to that in section 3. The local part of

the reduced classical action is

Sloc =

∫
ddx

√
G

[
W − ΦR + · · ·

]
, (4.26)

with

W = −2(d− 1)

l
− 4(d+ 3)

3l3

[
d(d+ 1)a+ db+ 2c

]
,

Φ =
l

d− 2
+

2

(d− 2) l

[
d(d− 5)a− 2b− 2c

]
, (4.27)

5We require the geometry to be asymptotically AdS near the boundary. To satisfy this condition,

x1, · · · .x5 must satisfy the condition x1 = 4a, x2 = 2b, d2 x3 + d x4 + x5 = −(4/3)
(
d(d + 1)a + d b+ 2c

)
and also Λ = −d(d − 1)/2l2 + d(d − 3)

(
d(d + 1)a + db + 2c

)
/2l4 [7].
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and the Weyl anomaly is

〈T i
i 〉G =

2l3

2κ2
5

[(−1

24
+

5a

3l2
+
b

3l2
+
c

3l2

)
R2 +

(
1

8
− 5a

l2
− b

l2
− 3c

2l2

)
R2

ij +
c

2l2
R2

ijkl

]
.

(4.28)

As a check, we consider N =2 superconformal USp(N) gauge theory in four dimensions

which is thought of as the AdS/CFT dual of type IIB string theory on AdS5 ×S5/Z2 [8].

In this case, we set the values a = b = 0 and c/2l2 = 1/32N +O(1/N2), as determined in

[9]. l and 1/2κ2
5 are

l = (8πgsN)1/4

(
1 +

ξ

N

)
,

1

2κ2
5

=
Vol(S5/Z2) (8πgsN)5/4

2κ2

(
1 +

η

N

)
, (4.29)

where ξ and η represent possible but unknown corrections due to D7-O7 background [9].

Thus the Weyl anomaly (4.28) becomes

〈T i
i 〉g =

N2

2π2

(
1 +

3ξ + η

N

) [(−1

24
+

1

48N

)
R2 +

(
1

8
− 3

32N

)
R2

ij +
1

32N
R2

ijkl

]
+ O(N0) . (4.30)

If 3ξ + η = 5/4, our calculation reproduces the field theoretical result [10],

〈T i
i 〉g =

N2

2π2

[(−1

24
− 1

32N

)
R2 +

(
1

8
+

1

16N

)
R2

ij +
1

32N
R2

ijkl

]
+ O(N0) . (4.31)

5 Conclusion

In this article, we discussed several aspects of the holographic RG. We found that the

Hamilton-Jacobi equation for a gravity system is quite useful for exploring the structure

of the holographic RG. From the flow equation, we derived the Weyl anomaly of the

boundary field theory and also the scaling dimension of a scaling operator which is dual

to a bulk scalar field. We also showed that the classical trajectory of a bulk field can

actually be interpreted as the RG flow of the corresponding scaling operator.

We further discussed how higher-derivative gravity systems can be interpreted in the

context of the AdS/CFT correspondence. Although higher-derivative gravity requires

more boundary conditions for each bulk field than those in Einstein gravity, we pointed

out that by choosing the Neumann boundary conditions for higher-derivative modes, the

14



classical trajectory is interpreted as the renormalized trajectory in the presence of highly

irrelevant operators. We further derived a Hamilton-Jacobi-like equation that determines

the fixed-point action. Using this equation, we computed the 1/N correction to the Weyl

anomaly of N =2 USp(N) superconformal field theory in four dimensions, on the basis

of the holographic description in terms of type IIB string theory on AdS5 × S5/Z2 [8].

In spite of the developments described here, deep understanding is still lacking about

what kind of continuum field theories can be described in the scheme of the holographic

RG, although it is widely believed that such field theories should have some kind of

supersymmetry and also should include variables that have redundancy in their degrees

of freedom (like gauge variables). Some developments in this direction are expected to be

made in the near future.
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