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1 Introduction

Recently, mathematical techniques for non-perturbative way to analyze models in quantum electrodynam-
ics (QED) are developing gradually. In the development, we face some cases so that we cannot analyze
the ground state energy of models in QED by the regular perturbation theory [LL, Hi, HS]. Especially,
Lieb and Loss showed in [LL, Theorem 1.1] the curious results on the upper and lower estimates of the
ground state energy of so-called Pauli-Fierz model describing electrons interacting with the radiation field.
Their result means that the renormalized mass of the model cannot be calculated by the perturbation
theory not only in the case of large coupling length but also small one. They showed that the order in
the coupling length is less than the order of the square derived by the regular perturbation theory. Its
physical reason has not clarified yet to author’s best knowledge. Moreover, Griesemer, Lieb, and Loss
showed in [GLL] that the Pauli-Fierz model has a ground state for all values of the coupling length. Thus,
their results mean that the Pauli-Fierz model has a non-perturbative ground state for the all coupling
length. Considering the history of physics, we should have succeeded in the mass renormalization for
non-relativistic treatment by Pauli and Fierz. What on physics may have happened to the Pauli-Fierz
model? We are much interested in the physical reason for the existence of such a ground state refusing
the perturbation theory, and also we are interested in the influence on the renormalizable field theory.

On the other hand, for the Weisskopf-Wigner (WW) model (i.e., the Dicke model in the rotating
wave approximation), we know that a non-perturbative ground state appears in the case with the large
coupling length [Hi], and the ground state energy is so low that the regular perturbation theory cannot
give it. Here WW model describes a two level system coupled with a Bose field, and it was actively
argued as a simple version of the Lee model [Le], the Dicke model for superradiance [Di], a simple model
of spin-photon model of quantum optics and NMR, and the model describing the elementary process of
the decay from neutron to proton and π−-meson. And also it is to argue the spontaneous emission in
the Weisskopf-Wigner theory [WW]. For the emission and absorption of photons between the two-level
system, we face the difficulty of the resonance scattering in the regular perturbation theory. So, the
Weisskopf-Wigner theory is for the higher order revision for the regular perturbation theory, and WW
model has the effect of this revision. Then, the ground state energy with the order in the coupling length
is less than the order of square coming from the regular perturbation theory. For WW model this order
less than the order of square is available even for the sufficiently small coupling length i.e., in the region
of the perturbation theory. But in [Hi, Lemma 2.2] we knew that growing the coupling length restore the
same order as the regular perturbation theory.

As mentioned above the WW model is a simplification of the Lee model, and moreover the Lee
model can be decomposed into a direct sum of the Hamiltonian H1 equivalent to WW model and a free
Hamiltonian H2 (see (2.4) below), so we can expect that Lee model has the similar non-perturbative
ground state in the case with the large coupling length. Moreover, it is well known that, for the Lee
model, renormalizations with perturbative way and non-perturbative way imply the same result. Thus,
in this paper, we reconsider the Lee model in the light of the renormalizable field theory in the early
stage and quantum optics for the case including the large coupling length. More precisely, we return
to the early stage of the renormalizable field theory developed by Lee, Källén, and Pauli, and we show
the limit of the successful result of renormalizations with perturbative and non-perturbative ways. We
show also the existence of a non-perturbative ground state when we are beyond perturbation theory. As
for the ground state energy of the Lee model, as well as WW model, the ground state energy for the
small coupling length has the order less than that of square because of the higher order revision for the
regular perturbation theory following the Weisskopf-Wigner theory. But the non-perturbative ground
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state energy recovers the order of the square, which is the same order as that by regular perturbation
theory, in the coupling length when the Lee model is outside the region of the regular perturbation theory.
We investigate the behavior of the ground state energy with the Jaynes-Cummings model [Mi, §6.4] in
quantum optics.

As to such a low energy of the non-perturbative ground state beyond the regular perturbation theory,
a similar non-perturbative ground state is shown in physics by Preparata [Pr90, Pr95] and Enz [En].
It is called superradiant ground state from the point of view of superradiance of soft photons. The
superradiance was, of course, found by Dicke in [Di]. Its existence is proved with the path-integral
method by Preparata, and with another manner by Enz. But it has not yet been clarified whether
the ground state showed in [Hi] is superradiant or not. By the way, in [Hi] we had adhered to the
coupling length. But, following the recent result [Bi01] by Billionnet, we should consider the condition of
physical parameter Bg,µ which represents a relation of the coupling length and an infrared or ultraviolet
singularity condition. We apply the same method as [Hi] to a special Lee Model and prove there also
exists the similar non-perturbative ground state being still in the standard state space. Thus, we show
that the non-perturbative ground state is stable, and moreover the ground state energy is also lower than
the normal renormalized mass showed in [Le] by Lee.

In Lee’s renormalization argument, there is the possibility that such a ground state becomes a ghost.
Actually, Lee noted briefly in [Le, footnote 4] the existence of another state from the state with the
normal renormalized mass. And moreover, in the process of developing the renormalizable field theory,
Källén and Pauli investigated precisely in [KP] the existence of another state than the normal state,
and they showed concrete form of the state and it has lower energy than the normal renormalized mass.
But we cannot understand their extra ground state in the standard Hilbert space theory because it has
negative ‘norm’ coming from complex renormalization constant. We are interested in the relation among
the states which we show in this paper, Preparata found, and Lee, Källén and Pauli found.

For a while, let us review Lee’s renormalization argument [Le], Källén and Pauli’s [KP] renormalization
argument, and the Weisskopf-Wigner model [Hi].

1.1 Lee’s Renormalization Argument

The Lee model describes the interacting system between two neutral fermion fields V and N and a
neutral scalar boson field θ. In this paper, we use the natural units, � = c = 1. Let ψV , ψ

†
V

and
ψN , ψ

†
N

be annihilation and creation operators of V -particle and N -particle, respectively, and let α
θ
, α†

θ

be annihilation and creation operators of θ-particle, respectively. Then, the Hamiltonian of the Lee model
is given by

H := H0 + gHI , (1.1)

H0 := m
V

∫
Rd

ddp ψ†
V

(p)ψ
V

(p) + m
N

∫
Rd

ddp ψ†
N

(p)ψ
N

(p)

+
∫

Rd

ddk ω(k)α†
θ
(k)α

θ
(k) (1.2)

HI :=
∫

Rd×Rd

ddpddk
ρ (ω (k))√

2ω (k)

(
ψ†

V
(p)ψN (p− k)α

θ
(k)

+ψV (p)ψ†
N

(p− k)α†
θ

(k)
)
, (1.3)

where ω(k) gives the dispersion relation defined by ω(k) :=
√
k2 + µ2 (µ ≥ 0), and mV > 0, mN > 0, and

µ ≥ 0 are bare masses of V -particle, N -particle, and θ-particle, respectively. And g is the bare coupling
constant, ρ is introduced as a cutoff function of energy. We note that the following: although V -particle
and N -particle have momenta, they do not have kinetic energies. Thus, we here understand that the
masses mV and mN are so heavy that we can ignore the kinetic energies.

The interaction Hamiltonian HI represents the reaction

V � N + θ. (1.4)

Namely, a V -particle emits a θ-particle, and changes into an N -particle. On the other side, an N -particle
absorbs a θ-particle, and changes into a V -particle. Moreover, m

V
has a renormalization because of the

process of V → N + θ → V , and the process of N + θ → V → N + θ means the scattering of θ-particle
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by N -particle. Thus, the physical system described by H possesses two conservation laws:

NV +NN = constant, (1.5)
NV +Nθ = constant, (1.6)

where N
V

, N
N

, and N
θ

are the total number of V -particles, N -particles, and θ-particles, respectively.
Because of these conservation laws (1.5) and (1.6), the eigenstate of H contains only a finite number of
particles. So, the eigenstate can be solved directly, and Lee performed that in [Le].

Let |V (p)〉 and |N (p)〉 be the state of the bare V -particle and N -particle, respectively. We denote the
state of the corresponding physical particles by |V(p)〉 and |N(p)〉. Then, by (1.4), (1.5), and (1.6), we
have

|N(p)〉 = |N (p)〉, (1.7)

|V(p)〉 := Z1/2
V

{
|V (p)〉+ g

∫
Rd

ddk f (k)α†
θ
(k)|N (p− k)〉

}
, (1.8)

where Z1/2
V

is a normalization constant, and the function, f(k), is determined latter for an ultraviolet
cutoff.

We now follow the theory of renormalization by the power series method [Dy, Sa, Wa] in the pertur-
bative way. We denote the renormalized mass of V -particle, renormalized constant of wave function, and
renormalized coupling constant by mc, Z2, and gc. Then, as Lee proved in [Le], the self-energy is given
by

Σ(p0) = g2

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

(p0 −m
N
− ω (k))

, (1.9)

where p0 is −i times the fourth component p4 of the momentum vector p, i.e., p0 = −ip4 . So, the
renormalized constant Z2 is given by Z−1

2 ≡ Z−1
2 (mc) = dΣ(p0)/dp0 at p0 = mc on the mass shell

p2 +m2
c = 0. Namely,

Z−1
2 ≡ Z−1

2 (mc) = 1 + g2

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

(mc −mN − ω (k))2
. (1.10)

Following the way by [Sa], we put

g2
c := Z2g

2. (1.11)

Then, by (1.10) we have

g2 = g2
c

{
1− g2

c

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

(mc −m
N
− ω (k))2

}−1

, (1.12)

Z2 = 1− g2
c

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

(mc −m
N
− ω (k))2

(1.13)

as shown in [Le, (26), (27)]. Thus, g and Z2 are dependent of mc, gc, and ρ, i.e., g = g(mc, gc, ρ),
Z2 = Z2(mc, gc, ρ). Then, following the primal policy of renormalization, we insert observed values into
mc and gc respectively, and Z2 has to be finite as ρ→ 1 for the fixed mc and gc. Then, when we regard
mc and gc as independent variables, we can define a function, Zren

2 (mc, gc, ρ), from Z2, i.e.,

Zren
2 (mc, gc, ρ) is defined by (1.13) for independent variables, mc, gc ∈ R (1.14)

Since the physical meaning of Zren
2 is the probability of existence of a state, we have to avoid a ghost

(Zren
2 < 0). Thus, we cannot take such a limit freely, and we have to keep (mc, gc, ρ) really so that Zren

2

can be between 0 and 1 (see the conclusion of [KP]). This is one of Lee’s statements in [Le, KP] as to
the non-unitary-equivalence between the bare particle states and physical particle states. Set

gcrit :=

{∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k(m

c∼m,



Then,

Zren
2 = 1− g2

c

g2
crit

. (1.16)

And the renormalized coupling constant, gc, has to satisfy |gc| ≤ gcrit to Zren
2 lies between zero and one.

On the other hand, we have

gc = g

{
1 + g2

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

(mc −m
N
− ω (k))2

}−1

. (1.17)

So, when we regard g and mc as independent variables, we can define a function, grenc , from gc, i.e.,

grenc (mc, g, ρ) is defined by (1.17) for independent variables mc, g ∈ R. (1.18)

So, it is important to check the normal zone, Gmc,ρ, which is given by the range of the function, gc(g) =
gc(mc, g, ρ), of g ∈ R for fixed mc and ρ arbitrarily, i.e., Gmc,ρ := {gc(mc, g, ρ) | −∞ < g <∞}. Because,
if the observed coupling constant, gobs, is more than g↑(g, ρ) := supg gc(mc, g, ρ) (i.e., gobs > g↑(g, ρ)),
we cannot take gc as gc = gobs. For the fixed mc, by (1.17)

|gc| ≤
{

4
∫

Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

(mc −m
N
− ω (k))2

}−1/2

, (1.19)

gc → 0 as |g| → ∞. (1.20)

Thus, |gc| < gcrit now.
On the other hand, for the Lee model we can determine mc independently of the perturbative way.

As we did in [AH00, §6.2] and [Hi, (2.11)] we introduce a function, D(z;α), of z by

D(z;α) := −z +m
V
− α2

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

ω(k) + mN − z
(1.21)

defined for all z ∈ C and every α ∈ R such that |ρ (ω (k)) |2/ω (k) |z −mN − ω(k)| is Lebesgue integrable
on Rd. In the same way as [AH00, §6.2], D(z;α) is defined in the cut plane Cm

N
,µ := C \ [m

N
+ µ , ∞),

µ ≥ 0, and analytic there. It is easy to see that D(x;α) is monotone decreasing in x < m
N

+ µ. Hence,
the limit dµ(α) := limx↑m

N
+µD(x;α) exists, and

dµ(α) = −µ−m
N

+ m
V
− α2 lim

t↓0

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

ω(k)−mN − µ + t
. (1.22)

In the case of dµ(g) < 0, D(z; g) = 0 has a solution, z = mVc
. Thus, by this solution, mVc

, and (1.8),
we know that

|V(p)〉 = Z1/2
Vc

{
|V (p)〉+ g

∫
Rd

ddk
ρ (ω (k))√

2ω (k)
1

mVc
−mN − ω (k)

θ†(k)|N (p− k)〉
}

(1.23)

is an eigenstate of H with H |V(p)〉 = mVc
|V(p)〉, where we took ZV as ZV = ZVc

≡ Z2(mVc
). Therefore,

a candidate for mc is mVc
, i.e., mc = mVc

. Moreover,

m
Vc
< m

N
+ µ (1.24)

for every |g| satisfying D(0; g) < 0.
By the way, using the fact that scattering state satisfies the Lippmann-Schwinger equation, it is known

that the scattering amplitude is given by

g2
Vc

ρ (ω (k))√
2ω (k)

ρ (ω (k′))√
2ω (k′)

δ(p + k − p′ − k′)
1

mN + ω (k)−mVc

×
{

1− g2
Vc

∫
Rd

ddk′
|ρ (ω (k′)) |2

2ω (k′)
m

N
+ ω (k)−m

Vc

(ω (k)− ω (k′) + iε)
(
m

Vc
−m

N
− ω (k′)

)2

}−1

(1.25)

4



(e.g., see [Ta, (53)]), where p and k denote the momenta of scattering state of N -particle and θ-particle
respectively, p′ and k′ are those of N -particle and θ-particle coming into a detector respectively, and
moreover g2

Vc
:= ZVc

g2, iε (ε > 0) comes from the adiabatic factor in the Lippmann-Schwinger equation,
and iε means the outgoing plane wave. Thus, since differential cross-section is given by the square of the
absolute value of the scattering amplitude, (1.24) means that

V -particle is stable for every g with D(0; g) < 0, i.e., (1.26)

V -particles do not decay into N -particles and θ-particles spontaneously beyond (1.24) because (1.5) holds
and the resonance scattering hardly occurs since ω (k′) ≥ µ > mVc

−mN , which comes from all higher
order revisions

N + θ → V → N + θ → V → N + θ → · · ·
for the regular perturbation theory following the Weisskopf-Wigner theory. On the other hand, even if
mN < mV first, we have (1.24) as long as the coupling constant g satisfies D(0; g) < 0. Thus, in the
process from mN < mV to (1.24),

N -particle is unstable for every g satisfying D(0; g) < 0, i.e., (1.27)

N -particles decay into V -particles by absorbing θ-particles.

1.2 Källén and Pauli’s Renormalization Argument

In this subsection, we review Källén and Pauli’s renormalization argument in [KP] in terms of our
situation.

We set

m
V

= m
N

= m > 0, (1.28)
δm := m

Vc
−m. (1.29)

Then, by (1.11), (1.13), and (1.22) we know that z = mVc
is a solution of

D(z; g) = −z +m− δm− g2
c

2Z2

∫
Rd

ddk
|ρ (ω (k)) |2

ω (k)
1

ω (k)− (
z −mVc

+ δm
) = 0.

(1.30)

Källén and Pauli derived

h(z −mVc
)

:=
(
z −m

Vc

) [
1 +

g2
c

2

∫
Rd

ddk
|ρ (ω (k)) |2

ω (k)
z −mVc

(ω (k)− δm)2
(
ω (k) − δm− (

z −m
Vc

))
]

= 0. (1.31)

from (1.30) by using (1.29) and (1.16) in [KP]. Of course, z = m
Vc

is a solution of (1.31), but Källén and
Pauli found that there exists another solution z = λKP , living on the real axis with λKP < m

Vc
[KP, §II

and Appendix I]. And, they gave the concrete form of the state with energy λKP as

|VKP (p)〉 =
1√|h′(λKP )|

{
Zren 1/2

Vc
|V (p)〉+ gc

∫
Rd

ddk
ρ (ω (k))√

2ω (k)

× 1
ω (k)− λKP − δm

θ†(k)|N (p− k)〉
}
,

where |VKP (p)〉 has not yet been normalized. Then, the normalization becomes negative because Zren
Vc

makes a ghost (i.e., Zren 2
Vc

< 0) for so large coupling as to exist the solution. Here we regarded ZVc
as the

function Zren
Vc

of independent variables mVc
, gc running over R respectively, and ρ in the sense of (1.14).

So, such a mathematically strange situation occurs. In order to cope with this trouble, they introduced
an indefinite metric in the Hilbert space [KP, §III].
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1.3 Wigner-Weisskopf Model

In this subsection, we review and modify the results on the Weisskopf-Wigner model in [Hi] to apply
them to physics of π-meson.

Nuclear force is the first example with the strong interaction between elementary particles. The
coupling length of the interaction between baryon and meson is in the region from 0.1 to 10, and it
is very large as compared with 1/137, that of quantum electrodynamics. As is well known, nuclear
force connects nucleus and nucleon. Nucleon is a generic name of proton (p) and neutron (n), and is
constructed by u-quark and d-quark. The particle taking a job of nuclear force is π-meson. Physics
for π-meson was investigated actively in 1940s and 1950s (see [HT]). On the other hand, as mentioned
in introduction, mathematics for the non-perturbative treatment of models with large coupling length
which physicists once argued such as π-meson is recently and gradually established. In this subsection,
by applying mathematical techniques developed recently to the theory of π-meson, we argue rigorously
existence and nonexistence of state in the elementary process of n � p+ π− for each total charge Q and
all coupling length g. Here ‘state’ means that eigenvector of the Hamiltonian for our model is still alive
in the Hilbert space representing the statespace.

The model with the interaction between π-meson and nucleon considering all elementary processes,
p � p + π0, p � n + π†, and n � p + π−, is described by the following Hamiltonian (see [HT]):

H = H0 + H ′, (1.32)

H0 =
∑
�,m,α

∫ ∞

0

d3k ω(k)a† αm� (k)aαm� (k), (1.33)

H ′ =
f

µ

∑
mα

∫ ∞

0

d3k k2

(12π2ω(k))1/2
λ(k)τασm

{
aαm1 (k) + a†αm� (k)

}
, (1.34)

where τα and σm are the standard τ -matrices and Pauli’s σ-matrices.
We now assume ω(k) =

√
k2 +m2, where m is the mass of π-meson. We set

Hαm =
∫ ∞

0

d3k ω(k)a†αm� (k)aαm� (k) +
f

µ

∫ ∞

0

d3k k2

(12π2ω(k))1/2
λ(k)τασm

{
aαm1 (k) + a†αm� (k)

}
.

Then, regarding H⊗ Fπ, A and Bj in [AH97, (1.6)] as C2 ⊗ C2 ⊗ Fπ, 0 and τασm, respectively, where
Fπ is the boson Fock space representing the state space for π-meson, we know that Hαm is an example
of the generalized spin-boson model we called in [AH97]. By [AH97, Theorem 1.2 and Remark 1.2], Hαm

has a ground state, which implied that if λ(k) is continuous, and
∫

R3 d
3k k4λ(k)2 < ∞, then there is a

ground state for H .

Unfortunately, the only thing we can say for H now is the above assertion with the estimates of the
ground state energy in [AH97, Proposition 1.4], and we do not have physical properties for H . In order
to argue physical properties for π-meson more precisely in this paper, we treat the elementary process
n � p + π− without p � p + π0 and p � n + π+ from now on.

We express nucleon coupling π-meson by |p) and |n) as |p) =
(

1
0

)
Ωπ and |n) =

(
0
1

)
Ωπ be the

bare state of proton and neutron respectively, where Ωπ is the vacuum of π-meson. Set

τ+ =
(

0 1
0 0

)
, τ− =

(
0 0
1 0

)
, τ3 =

(
1 0
0 −1

)
. (1.35)

Thus, the operation of τ± and τ3 acting on nucleon are

τ−|p) = |n) τ−|n) = 0,
τ+|n) = |p) τ−|p) = 0, (1.36)
τ3|p) = |p) τ3|n) = −|n).

Then, following [HT], we employ the interaction which occurs n � p + π− with the form,

(τ+) · (creation operator of π−-meson) + (τ−) · (annihilation operator of π−-meson).

6



So, the Hamiltonian describing the process, n � p + π−, is given by

Hπ− = Hπ−,0 + H ′
π− , (1.37)

Hπ−,0 =
1− τ3

2
E0 +

∫
R3
d3k ω(k)a†(k)a(k) (1.38)

H ′
π− = g

∫
R3
d3k λ(k)

{
τ−a(k) + τ+a

†(k)
}
, (1.39)

where a(k) and a†(k) are the annihilation and creation operators respectively with[
a(k) , a†(k′)

]
= δ(k − k′), (1.40)

[a(k) , a(k′)] =
[
a†(k) , a†(k′)

]
= 0, (1.41)

and E0 denotes the difference of masses between proton and neutron. The dispersion relation between
the energy and momentum is denoted by ω(k). In the case of non-relativistic energy, ω(k) is given
as ω(k) = m + k2

m
as in [HT]. But this dispersion relation does not make a sense for so high energy.

To consider the case of higher energy, we set ω(k) =
√
k2 + m2 in the case of relativistic energy as in

[Le]. For a ultraviolet cutoff function ρ(k), Henley and Thirring set λ(k) = ρ(k) in [HT] because they
treated boson as non-relativistic. On the other hand, Lee set λ(k) = ρ (ω (k)) /

√
2ω(k) in [Le] because

he treated boson as relativistic. We assume that λ(k) is positive, continuous, spherically symmetric and∫
R3 d

3k λ(k)2 <∞. Then, the state space for Hπ− as a Hilbert space F is given by F = C2 ⊗ Fπ. And,
we get

Hπ−,0 |p) = 0 and Hπ−,0 |n) = E0|n). (1.42)

Moreover, the physical state |p〉 of proton is same as its bare state, i.e., |p〉 = |p), so we have

Hπ− |p〉 = 0. (1.43)

The point eigenvalues σp(Hπ−,0) of Hπ−,0 are 0 and E0, i.e., σp(Hπ−,0) = {0, E0}.
We note here that Hπ− is the same Hamiltonian as in [Hi, (2.10)]. Thus, for the Pauli matrix

σ1 =
(

0 1
1 0

)
, we have that σ1Hπ−σ1 is the Wigner-Weisskopf Hamiltonian called in [Hi, (2.4)] or the

spin-boson Hamiltonian with the rotating wave approximation called in [HS, §6].
The total charge Q is given by

Q =
1
2
τ3 −

∫
R3
d3k a†(k)a(k). (1.44)

Then, Hπ− conserves the total charge, [Hπ− , Q] = 0. Therefore, Hπ− can be written as the direct sum
of HQ=−(2ν−1)/2’s (ν = 0, 1, 2, · · ·), where HQ=−(2ν−1)/2 is the restricted Hπ− on the space of all states
with Q = −(2ν − 1)/2. We note here that 1

2 − U∗
1QU1 is written by NP in [HS, (6.2)] and [Hi, (2.17)] as

the total number operator.
It is easy to check the states with Q = ±1

2
, but it is well-known that it is difficult to show that

existence of states with Q = −N
2 for large odd number N as Henley and Thirring wrote in their text

book [HT]. In this subsection, we prove that the existence of a state with Q = −2(ν−1)
2

for N � ν ≥ 2,
and argue when the state appears. We know that the appearance is not standard one.

Here we introduce a physical parameter Bg,m consisting of the coupling length and the self-energy of
boson part as follows:

Bg,m :=
∫

R3
d3k Bg,m(k), Bg,m(k) := g2 λ2 (k)

ω (k)
, (1.45)

which is a modification of the parameter introduced in [Bi01] by Billionnet. The importance of λ2(k)/ω(k)
was also pointed out in [AE, IV.A]. And, in the same way as (1.21), we introduce a function D(z; g) of z
by

D(z; g) := −z + µ0 − g2

∫
R3
d3k

|λ (k) |2
ω(k) − z

. (1.46)
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And also, we obtain a parameter as the limit dm(g) := limx↑mD(x; g) because it exists. For fixed mass
m, the parameter dm(g) becomes negative, dm(g) < 0, when |g| grows.

We treat now the case of m > 0, then the existence of the ground state comes from [AH97, Theorem
1.2]. In the case of m = 0, the existence is due to Gérard’s work [Gé], which is explained in Section 2.
We denote the ground state and ground state energy by |Ψgrd〉 and Egrd, respectively:

Hπ− |Ψgrd〉 = Egrd|Ψgrd〉. (1.47)

To restrain a state from appearing for NP ≥ 2, we define a differential operator DHS by

DHS :=
1
2

(
1

|∇kω|2∇kω · ∇k +∇k · ∇kω
1

|∇kω|2
)
. (1.48)

The operator DHS was introduced by Hübner and Spohn in [HS, (2.9)] to apply the Mourre estimate,
and it is called conjugate operator by mathematicians.

Our ω(k) and λ(k) satisfy the assumptions [HS, (A.1) & (A.2)]. If D(z; g) = 0 has a solution, then
we can make a state with Q = −1

2 . But, under dm(g) ≥ 0, since it menas [HS, (6.3)], we cannot make
any state with Q = −1

2
as Hübner and Spohn mentioned after [HS, (6.3)]. Thus, with the result in [HS,

Proposition 15], we obtain the following:
[Q = −1

2 ] Suppose that

g2

∫
R3
d3k |DHSλ(k)|2 < 1 and

∫
R3
d3k |D2

HSλ(k)|2 <∞. (1.49)

Then, state with Q = 1
2
exists for all g with dm(g) ≥ 0, and it is |p) of which energy is 0. There is no state

with Q = −2ν−1
2

for ν ∈ N. Moreover, the essential spectra of Hπ− is given as σess(Hπ−) = [m, ∞).
Here ‘essential spectra’ means all continuous energy levels and point energies of infinitely degenerated
eigenstates. All the results about essential spectra in this paper are due to [Ar00]. In the case of m = 0,
we can use Skibsted’s results instead of Hübner and Spohn’s, which is explained in Section 2.

But, if dm(g) < 0, then the condition [HS, (6.3)] breaks. Namely, D(z; g) = 0 has a real solution,
z = Ec. So we can make an eigenvector with Ec as its eigenvalue. Namely, the physical state of neutron
|n〉 is given by

|n〉 = Z1/2
c

{
τ− + g

∫
R3
d3k

λ (k)
Ec − ω (k)

a†(k)
}
|p) (1.50)

with Hπ− |n〉 = Ec|n〉, where Zc is the normalization. Then,

Ec < m for every |g| satisfying D(0; g) < 0, (1.51)

which means that as to Ec the decay from neutron to proton and π−-meson is stable. Ec does not have
the same order in the coupling length as g2 following from the regular perturbation theory. We have that

Ec ∼ g

√∫
d3k |λ (k) |2 as g →∞, (1.52)

where we note that the term with the order g vanishes in the regular perturbation theory.
Since HQ=−1/2 has a state, this is the different result from the result which Hübner and Spohn

mentioned after [HS, (6.3)] and before [HS, Proposition 15]. But, if we assume the hypotheses in [HS,
Prosoition 15], then all HQ=−(2ν−1)/2 (N � ν ≥ 2) have no state by [HS, Prosoition 15].

The following condition is to avoid the α decay in the meaning of the remark mentioned by Henley
and Thirring for n � p + π− in [HT]:

(Anti α) The function |λ(k)|2
|x− ω(k)| is not Lebesgue integrable for all x ∈ (m, ∞).

And set

Mg :=
∫

R3
d3k λ(k)2 {ω(k) − µ0 + Bg,m}−1 . (1.53)

Then, we obtain the following (see [Hi, Theorem 2.1]):
[Q = ±1

2 ] Assume (Anti α) and (1.49). Then, for all g with dm(g) < 0
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(i) State with Q = −1
2 exists, and it is |n〉 of which energy is Ec.

(ii) State with Q = 1
2 exists, and it is |p) of which energy is 0.

(iii) There is no state with Q = −2ν−1
2 for N � ν ≥ 2.

(iv)
· If Bg,m < E0, then |p) is a unique ground state and |n〉 a unique excited state.
· If Bg,m = E0, then |p) and |n〉 are 2-fold degenerate ground states.
· If Bg,m > E0 and

2m− E0 > Bg,m − g2Mg + M−1
g

∫
R3
d3k λ(k)2,

then |n〉 is a unique ground state and |p) a unique excited state. Moreover, the essential spectra of
Hπ− is given as σess(Hπ−) = [min {0 , Ec}+ m, ∞ )

The hypotheses in the above statement requires that Bg,m is not so large.
Avron and Elgart argued the complex solution in the lower half plane of the analytic continuation of

D(z; g) = 0, which is called ‘resonance pole’ by mathematicians, associated with the state with Q = −1
2

[AE, APPENDIX]. On the other hand, without (Anti α) there is also a possibility of the α decay in the
meaning of the remark mentioned by Henley and Thirring [HT] for n � p + π−. Consider the following
λα(k) instead of λ(k) so that λα(k) breaks (Anti α):

λ(k) = 0 for |k| ≥ κ with a constant κ > 0. (1.54)

Let µ(κ) := sup|k|≤κ ω(k). Suppose that

lim
x↓µ(κ)

∫
|k|≤κ

d3k
|λ(k)|2
|x− ω(k)| = +∞. (1.55)

Then, D(x; g) restricted in x ∈ (µ(κ) , ∞) has a unique simple zero E′
c in (µ(κ) , ∞), which means that

the neutron becomes unstable for the decay into proton and π-meson. Thus, we have another physical
state |n′〉 given by

|n′〉 = Z′
c
1/2

{
τ− + g

∫
d3k

λ (k)
E′
c − ω (k)

a†(k)
}
|p), (1.56)

and it is the resonance state caused by the scattering between proton and π-meson. The state |n′〉 is
also an eigenstate of Hπ− with Hπ− |n′〉 = E′

c|n′〉, where Z′
c is the normalization (see [AH00, Remark6.4]

and [Bi98]). Therefore, in the same way as the previous result we have the following result, which is a
rigorous proof of the statement in [HT] on the α decay for Q = −1

2
:

[α Decay for Q = −1
2 ] If (1.54), (1.55), and (1.49) hold, then, concerning the state with Q = −1

2 ,
the two physical states of neutron always exist, and they are |n〉 and |n′〉. There is no state besides
|p), |n〉, and |n′〉. The situation about the switch between the ground state and excited state is same as
previous result about Q = −1

2 .
We can prove that, for sufficiently large Bg,m (i.e., Bg,m � 1), there is a state with Q = −2ν−1

2
for

N � ν ≥ 2, and it becomes the ground state |Ψgrd〉. So, it is different from any state in the above two
results.

As to Bg,m → ∞, when we fix m ≥ 0, we have, of course, Bg,m → ∞ for |g| → ∞. Moreover, we
consider the low energy limit (infrared catastrophe) or high energy limit (ultraviolet catastrophe) in the
following sense: set

Im :=
∫

R3
d3k

|λ (k) |2
ω (k)

↗∞ (1.57)

as m ↓ 0 for fixed λ(k) or as λ(k) → 1 for fixed m. Then, we have Bg,m →∞ when m ↓ 0 as long as g is
fixed even if |g| is small or when λ(k) → 1 for fixed g and m.

By using the manner to get [Hi, (2.73)] with a little modification, we get

lim sup
Bg,m→∞

Ec

Bg,m = lim sup
Bg,m→∞

I−1
m

∫
R3
d3k

|λ (k) |2
Ec − ω(k)

.
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And, we can prove that the right hand side of the above equality is zero in the same way as [Hi, (2.74)]
with divergent Im by (1.57) or finite Im because Ec → ∞ as Bg,m → ∞, but the left hand side of the
above equality is not zero in the same argument as that about the inequality after[Hi, (2.74)]. This is a
contradiction. Therefore,

Ec > Egrd for Bg,m � 1. (1.58)

Since Egrd �= 0 by (1.58), |Ψgrd〉 is not a state with Q = 1
2
. Suppose that |Ψgrd〉 is a state with

Q = −1
2 . Then, by [Hi, Lemma 2.1(b)] or by solving |Ψgrd〉 with Q = −1

2 directly, we know that |Ψgrd〉
has the same form of (1.50) and (1.56). So, Egrd must be a solution of D(z; g) = 0, since there is no
solution but Ec and E′

c, we have Ec = Egrd, which contradicts (1.58). Therefore, |Ψgrd〉 is a state with
Q = −2ν−1

2
for some N � ν ≥ 2.

It is easy check that |p) and |n〉 (also |n〉 if it exists) are still state of Hπ− .
Namely, we obtain
[Q = −2ν−1

2 with N � ν ≥ 2] If Bg,µ � 1, then there always exists a ground state |Ψgrd〉 with
Q = −2ν−1

2 for some N � ν ≥ 2 different from both |p) and |n〉. Moreover, |p) and |n〉 (also |n′〉 if it exists)
become excited states of Hπ, and the essential spectra of Hπ− is given as σess(Hπ−) = [Egrd +m, ∞).
We note here that if the hypotheses in the above statement satisfies, then the ground state, Ψgrd, always
appears with Q = −2ν−1

2 for some N � ν ≥ 2. In this sense, the appearance of Ψgrd is stable. We
conjecture that the ν in Q gets large as Bg,µ � 1 grows. Although we cannot prove that yet, we can see
the tendency in the Jaynes-Cummings model [Mi, §6.4] for our model as we show in the next section.

2 Transition of Ground State of Lee Model

In this section, we use ω(k) =
√
k2 + µ2 defined in $ 1.1 for the sake of simplicity though we can

treat more general ω(k) with certain mathematical conditions. For each µ ≥ 0 we take ρ (k) so that
ρ (ω (k)) /

√
ω (k) gets independent of µ ≥ 0. So, we set λ (k) := ρ (ω (k)) /

√
2ω (k) independent of µ ≥ 0,

and we assume that λ ∈ L2(Rd), real-valued and continuous.
We here employ special annihilation and creation operators for ψ

V
, ψ†

V
, and ψ

N
, ψ†

N
, namely we define

them by Pauli’s spin-flip matrices. Let state spaceF for H be the Hilbert space given by F := C2⊗C2⊗Fb,
where Fb is a boson Fock space over L2(Rd). For operators A,B on C2 and C acting on Fb, we denote
A⊗ B ⊗C acting on F by just ABC with abbreviation. Then, we set

ψV = ψ†
N

= σ− ≡
(

0 0
1 0

)
and ψ†

V
= ψN = σ+ ≡

(
0 1
0 0

)
, (2.1)

where σ± are Pauli’s spin-flip matrices. So, the Hamiltonian H in this section has the following form:

H = H0 + gHI ,

where

H0 = m
V
ψ†

V
ψ

V
+ m

N
ψ†

N
ψ

N
+

∫
Rd

ddk ω (k)α†
θ

(k)α
θ

(k) (2.2)

HI =
∫

Rd

ddk λ(k)
(
ψ†

V
ψ

N
α

θ
(k) + ψ

V
ψ†

N
α†

θ
(k)

)
. (2.3)

So, λ(k) is a real-valued ultraviolet cutoff function independent of µ. We note here the following: we
set H = C2 ⊗ C2, A = mV ψ

†
V
ψV +mNψ

†
N
ψV , B1 =

(
ψ†

V
ψN + ψV ψ

†
N

)
/
√

2, B2 = i
(
ψ†

V
ψN − ψV ψ

†
N

)
/
√

2;
λ1 = λ, and λ2 = iλ. Then, we know that the special Lee model is one example of the generalized
spin-boson (GSB) model which we defined in [AH97].

The point eigenvalues σp(H0) of H0 are 0, m
V

, m
N

, m
V

+m
N

, i.e., σp(H0) = {0, m
V
, m

N
, m

V
+m

N
}.

The essential spectrum σess(H0) is [ 0 , ∞), i.e., σess(H0) = [0 , ∞), where σess(T ) for a Hamiltonian T
is the set of spectrum (energies) of T except simple or finitely degenerate discrete eigenvalues.

By the way, we can decompose H into the direct sum of H1 and H2,

H = H1 ⊕H2, (2.4)
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where

H1 := m
V
ψ†

V
ψ

V
ψ

N
ψ†

N
+ m

N
ψ

V
ψ†

V
ψ†

N
ψ

N
+

(
ψ†

V
ψ

V
ψ

N
ψ†

N
+ ψ

V
ψ†

V
ψ†

N
ψ

N

)
Hθ + HI

(2.5)
H2 := mV ψ

†
V
ψV ψ

†
N
ψN + mNψ

†
V
ψV ψ

†
N
ψN +

(
ψ†

V
ψV ψ

†
N
ψN + ψV ψ

†
V
ψNψ

†
N

)
Hθ, (2.6)

Hθ :=
∫

Rd

ddk ω(k)α†
θ
(k)αθ(k). (2.7)

Then, since the infimum of the energy of H2 is zero, the ground state of H1 becomes that of H . Namely,
to investigate the ground state of H we have only to study the ground state of H1. We denote the state
space which Hj acts on by Fj for j = 1, 2. Then, F = F1 ⊕ F2. Then, H1 on F1 is unitary equivalent
to the Weisskopf-Wigner model argued in §1.3 and given by [Hi, (3.11)] (α, ε+0 , ε

+
1 in [Hi, (3.11)] are

our g/2, m
V
, m

N
respectively). Therefore, we can understand that the regular renormalized mass m

Vc

satisfying

mVc
= mV + g2

∫
Rd

ddk
|ρ (ω (k)) |2

2ω (k)
1

mVc
− (mN + ω (k))

(2.8)

represents the higher order revision for H1 in Weisskopf-Wigner theory. Thus, mVc
does not have the

same order in the coupling length as g2 following from the regular perturbation theory. We note here
that m

Vc
∼ g

√∫
R3 d3k |ρ (ω (k)) |2/(2ω (k)) as g → ∞, and the term with the order g vanishes in the

regular perturbation theory as remarked in (1.52).
By applying the argument in §1.3 for the case of µ > 0, and by applying [Sk, Theorem 3.1] for the cases

of µ = 0, in the same way as [Hi, Proposition 2.1], we know that if λ(k) has some proper mathematical
conditions, then the normal renormalized mass m

Vc
is the ground state energy of H for such small |g|

with fixed µ ≥ 0 as dµ(g) < 0, and moreover, other excited state energies are 0, mN , mV +mN only. More
precisely, in the case of µ = 0, let

gnor :=
{

2
∫

Rd

ddk |Λ(k)|2
}−1

, Λ(k) :=
∂λ(k)
∂|k| + (d− 1)

λ(k)
2|k| . (2.9)

If dµ(g) < 0 and ω−1λ ∈ L2(Rd), then the total number of bound states of H1 defined by (2.5) is just 2
for |g| < gnor. Thus, the ground state energy of H is the normal renormalized mass m

Vc
for |g| < gnor

with µ = 0.
By applying the argument §1.3 to the direct sum decomposition (2.4) to our special Lee model, for

sufficiently large Bg,µ � 1, we can prove mathematically the existence of the ground state different from
|V〉 so that the ground state energy is less than the energy of |V〉. Of course, it is not strange state such
as Källén and Pauli showed in [KP], namely our ground state lies in the standard Hilbert space F .

Namely, if Bg,µ � 1, then there exists a ground state different from |V〉, and |V〉 becomes an excited
state of H .

We have

σp(H) ⊃ {
Egrd, mVc

, 0, m
N
, m

V
+ mN

}
with Egrd < m

Vc
< 0 < m

N
< m

V
+ mN , (2.10)

min {m
V
, m

N
} − Bg,µ ≤ Egrd ≤ m

V
+m

N

2
− 1

4
Bg,µ (2.11)

for Bg,µ � 1. Moreover, by [Ar00], we have

σess(H) = [Egrd + µ , ∞ ) (2.12)

for Bg,µ � 1.
Therefore, H for Bg,µ " 1 and H for Bg,µ � 1 are different physics respectively, which gives a

transition of ground state in the same way as H in §1.3. Moreover, by (2.11) the non-perturbative
ground state energy recovers the order of the square in the coupling length when the Lee model is outside
the region of the regular perturbation theory. In order to get such a ground state |Ψgrd〉, it is important
that we balance the coupling length with the infrared singularity Iµ such that (1.57) holds. Namely, even
if |g| (resp. Iµ) is large, the very small Iµ (resp. |g|) breaks (1.57), which is not enough to get |Ψgrd〉. For
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the appearance of |Ψgrd〉, we have to add not only the coupling length but also the infrared singularity
IRµ into sufficient condition.

In the case of µ = 0 with (1.57), we cannot prove the self-adjointness for µ = 0 by the Kato-Rellich
theorem [RS2, Theorem X.12], so we cannot apply the regular perturbation theory to this case. Of course,
we cannot employ the regular perturbation theory in the case |g| � 1 with the fixed µ ≥ 0. Therefore,
|Ψgrd〉 appears in the case beyond the perturbation theory.

As to the extra bound states with non-standard resonance, the recent Billionnet’s works [Bi98, Bi01]
are interesting and worth noting. As remarked in [AH00, Remark 6.4] and [Hi, Remark 2.6], if we add
an extra condition to λ(k) in the same way as the case of the α decay, then an extra eigenvalues appears
in [m

N
+ µ , ∞), and it is different from Egrd, m

Vc
, 0, and m

V
+mN . Billionnet showed in [Bi98, Bi01]

that the reason why such eigenvalues appear is not for the result of the preceding complex eigenvalue
of resonance turning into real eigenvalues when the coupling is continuously increased. We indeed knew
that Egrd, mVc

, 0, and mV +mN are stable for Bg,µ � 1 in our Lee model. Moreover, Billionnet clarified
in [Bi01] the way of appearance through the non-standard resonance.

Once we have the ground state |Ψgrd〉 different from |V〉, by applying [AH01, Theorem 3.1] in the
same way as [AH01, Theorem 4.5], we obtain that there exist (g0 , µ0) in A := {(g , µ) | g ∈ R and µ with
−∞ ≤ dµ(g) < 0 } such that H$g=g0 ,µ=µ0

which is H with g = g0 and µ = µ0 has a degenerate ground
states. And, there exist (g1 , µ1 ) in A such that inf

{
σ(H$g=g1 ,µ=µ1

) \ {Egrd}
}
< inf σess(H$g=g1 ,µ=µ1

).
The conservation law (1.6) on the total number of V -particles and θ-particles decomposes the state

space F into the direct sum of some sectors as follows:
For (1.6), we define the number operator NV θ by

N
V θ

:= ψ†
V
ψV + Nθ (2.13)

where Nθ denotes the number operator of θ-particle, i.e.,

Nθ :=
∫

Rd

ddk α†
θ
(k)αθ (k). (2.14)

Then, the conservation law (1.6) is reflected in the relation,

[H , N
V θ

] = 0. (2.15)

We denote the orthogonal projection onto the 4-θ-particle space in Fb by P (�)
θ

for each 4 ∈ N. Then, we
get N

θ
=

∑
�=0 4P

(�)
θ

. Then, the spectral resolution of N
V θ

is given by

N
V θ

=
∑
�=0

4P�. (2.16)

Here we set P (−1)
θ

≡ 0.
We set Fj(4) := P�Fj for j = 1, 2 and 4 = 0, 1, 2, · · · . Then,

F1 =
∞⊕
�=0

F1(4). (2.17)

We denote the vacuum by |0〉. Since |V 〉 = ψ†
V
|0〉 and |N 〉 = ψ†

N
|0〉, we have

|V〉 = Z
1/2
2

{
ψ†

V
|0〉+ g0

∫
Rd

ddk
λ2 (k)

mc −m
N
− ω (k)

ψ†
Nα

†
θ
(k)|0〉

}
(2.18)

by (1.8). Therefore, it is clear that |V〉 is an eigenstate of H1 with

|V〉 ∈ F1(1). (2.19)

Since our ground state Ψgrd still lives in the standard state space F , Ψgrd has to belong to one of
the sectors F1(4)’s (4 ∈ {0} ∪ N). Of course, Ψg has the positive norm because it is in the standard
state space, which is a difference from the Källén and Pauli’s state |VKP 〉. Moreover, their state |VKP 〉
belongs to the sector F1(1), but our Ψgrd does not belong to F1(1). Because, we can prove in the same
way as [Hi, Lemma 2.1(c)] that |Ψgrd〉 = c|V〉 for some complex constant c contradicts the fact that the
the ground state energy is less than mVc

. Therefore, |Ψgrd〉 is different from |VKP 〉.
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3 Superradiant Ground State(?)

In the previous section, we proved mathematically that the ground state |Ψgrd〉 another from |V〉 appears,
and |V〉 becomes an excited state of H . We are interested in the physical reason of the appearance of
such a ground state |Ψgrd〉.

We have to note that the ground state of H does not have the form of (1.23) in spite of (1.5), (1.6),
and (1.26). Moreover, since Egrd is much lower than mVc

, V -particle has to emit so many θ-particles. But
considering (1.5), (1.6), and (1.26), such a emission is not observable in the reaction (1.4), namely, the
emission is prohibited from breaking the conservation laws (1.5) and (1.6). Moreover, remember that the
infrared singularity (1.57) plays an important role for the existence of Ψgrd with fixed the coupling length
g, and that for each concrete model the individual coupling constant is fixed. Thus, such θ-particles may
be like soft photons. Although we cannot give concretely a form of the ground state, we can consider
the Jaynes-Cummings model [Mi, §6.4] in the light of quantum optics, the case of θ-particle for the mode
with k (i.e., one mode), at very low energy (or mass).

We consider the following Hamiltonian H(k) for the system of V -particle, N -particle, and θ-particle
for the mode with k:

H(k) := m
V
ψ†

V
ψ

V
+ m

N
ψ†

N
ψ

N

+ω(k)α†
θ
(k)αθ(k) + gλ(k)

(
ψ†

V
ψNαθ(k) + ψV ψ

†
N
α†

θ
(k)

)
, (3.1)

where we employed (2.1) again. F1
b (k) is the state space of one-mode θ-particle with k. Then, all

eigenvalues E±
n

k
(n

k
= 0, 1, 2, · · ·) of H(k) are given as

E±
n

k
=

(
nk +

1
2

)
ω (k) +

m
V

+m
N

2
±

√
(mN + ω (k)−mV )2 + 4g2λ2(k) (nk + 1) ,

n = 0, 1, 2, · · · ,
where nk is the number of θ-particles for the mode with k. So, Fb(k) is spanned by {|nk〉}∞n

k
=0. As we

saw in (1.25), m
N

+ ω (k)−m
V

becomes a shift of a frequency from the resonance, so√
(m

N
+ ω (k)−m

V
)2 + 4g2λ2(k) (n

k
+ 1) in (3.2) is equal to a general quantized Rabi flopping fre-

quency [MS, WM], which leads us to the spontaneous emission of the photon with a single mode. The
eigenstate |Ψ±

n
k
〉 for E±

n
k

is in F1(n
k

+ 1). Therefore, for instance, we set λ(k) ≡ 1 now for the sake of
simplicity, and

g = 10L, ω(k) = 10−L, n
k

= 104L−2 or g = 1, ω(k) = 10−3L, n
k

= 104L−2

for sufficiently large L ∈ N. Then, we obtain

E−
104L−2 ≥ −Bg,µ(k) = − g2

ω(k)

with

E−
104L−2 ∼ −0.09× 103L, − g2

ω(k)
∼ −103L (3.2)

as L → ∞. This means that the eigenvalue with the same order as −g2/ω(k) is obtained as n
k
, |g| �

1 � ω(k) or nk � 1 � ω(k) for fixed g. Moreover, the eigenstate with such an eigenvalue belongs to the
sector, F1(104L−2 + 1), and switches to another sector with larger number of θ-particle as L→∞.

4 Conclusion

Following the renormalizable field theory by Lee, Källén and Pauli, in order to avoid a ghost, mc, gc, and
ρ are restricted as we know from (1.14). On the other hand, mc g, and ρ are chosen so that gc can catch
gobs. For the large coupling, we cannot employ the perturbative way to get the renormalized constant
and renormalized coupling constant any longer. Even in the case |g| is not so large, if we have the case
with the infrared singularity condition (1.57), then the effective mass is different from mVc

. Moreover, in
the case of Bg,µ � 1, we have to consider not only Zren

Vc
but also the renormalized constant for |Ψgrd〉 to

argue whether |Ψgrd〉 is a ghost or not.
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The interaction Hamiltonian HI of the Lee model is given through the rotating wave approximation
(RWA) or the Weisskopf-Wigner approximation. If we can check that the mathematical results of (2.10)-
(2.12) are not realistic in physics, then we know the limit of the domain of Bg,µ and dµ(g), i.e., the
coupling constants g and the condition of the ultraviolet cutoff function λ(k) of the Lee model, so the
limit of RWA in a sense. But if we hope the results of (2.10)-(2.12) are realistic in physics, we have to
prove the same results independent of RWA, and to develop the renormalizable field theory so that it can
include the case such as Bg,µ � 1.

Is the existence of |Ψgrd〉 caused by the Rabi flopping? If it is correct, the phases may get harmonious
by revival with very small |k| after they are disordered by the Cummings collapse in the Rabi flopping.
Namely, are there any relation between superradiant ground state by Preparata and the Rabi flopping?
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