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Abstract

The Pauli-Fierz Hamiltonian describes an interaction between a low energy
electron and photons. Existence of ground states has been established. The
purpose of this talk is to show that its ground states is exactly two-fold in a weak
coupling region.

1 The Pauli-Fierz Hamiltonian

This is a joint work! with Herbert Spohn? . The Hamiltonian in question is the Pauli-
Fierz Hamiltonian in nonrelativisitic QED with spin, which will be denoted by H acting
on the Hilbert space

H=L*RC*)®F.
Here L?*(R3;C?) denotes the Hilbert space for the electron with spin o, where o =

(01,09, 03) denotes the Pauli spin 1/2 matrices,

(01 (0 —i (10
= 1 0) 27\ o0 ) T o0 -1 )

F is the symmetric Fock space for the photons given by F = @92, (L*(R* x {1,2})) . -

Here (---)2,, denotes the n-fold symmetric tensor product of (---) with (---)J,, = C.
The photons live in R* and have helicity £1. The Fock vacuum is denoted by €.

The photon field is represented in F by the two-component Bose field a(k, j),7 = 1,2,

with commutation relations

[a<k7j)7 a*(klaj/ﬂ = 5jj/5(k - k/):
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la(k, ), a(k, 5] =0, [a*(k,j),a" (K, j')] = 0.

The energy of the photons is given by

H; = Z/ Ya(k, §)dk,

7=1,2

i.e., Hy restricted to (L*(R® x {1,2}))"

symm

is the multiplication by >%_, w(k;), and the
momentum of the photons is

P = Z/ka (k, )a(k, §)dk.

7=1,2

Throughout units are such that i = 1, ¢ = 1. Physically w(k) = |k|. The case is
somewhat singular and we assume that w is continuous, rotation invariant, and that

(1) inkaRs W(k) 2 wo > 0, (2) W(lﬁ) +W(l€2) 2 W(lﬁ -+ kQ), (3) hm|1€|_>oo w(k) =o00. A

typical example is
w(k) = \/Ik[> +m2,, my > 0.

For a recent result of the massless case see [3]. The quantized transverse vector potential
is defined through

Here e and ey are polarization vectors which together with k = k/|k| form a standard
basis in R%. ¢ : R® — R is a form factor which ensures an ultraviolet cutoff. It is
assumed to be p(Rx) = ¢(x) for an arbitrary rotation R, continuous, bounded with
some decay at infinity, and normalized as [ ¢(x)dx = 1. We will work with the Fourier
transform @(k) = (27) 732 [ p(z)e~**dx. Tt satisfies (1) §(Rk) = @(k), (2) § = @ for
notational simplicity, (3) §(0) = (27)7%/2, and (4) the decay

/ (w(k)™2 +wlk)™ + 1 +wk)) |p(k)Pdk < co.

The quantized magnetic field is correspondingly

X A

7=1,2

k x e;(k)) (a*(k, )e ™ — a(k, )e™™) dk.
With these preparation the Pauli-Fierz Hamiltonian, including spin, is defined by
1
H= 5(—2'Vx®1—eAw(x))2+1®Hf—ga@)Bw(x). (1.1)
Since obvious from the context we will drop the tensor notation ®.
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2 Invariances

2.1 Total momentum
Let us define the total momentum by Pioa = —i1V, + F;. We see that
[Ptotala H] =0. (21)

(2.1) immediately implies that H has no ground state. Instead of H we consider the
Hamiltonian with a fixed total momentum as follows. By (2.1), we see that (1.1) is

decomposable with respect to the spectrum of Piyial,

@
H= / H,dp,
]R3

where .
Hy=5(p— P —eA,)’ - gan + Hi, (2.2)

acting on C* ® F. Here A, = A,(0) and B, = B,(0). The total momentum p € R? is
regarded as a parameter. Recently an adiabatic perturbation of the Hamiltonian (2.2)
has been studied in [16]. We define

1
Hyy = 5(19 — P)* + Hi,

and Hy, = H, — Hy. We have || Hyp|| < ci(e)||[(Hpo + 1)||, where

e(e) = e {!e\ {/ (@ +w(k)> ]@(k)]Qdk}l/Q —i—e2/ (Miﬁ)? + 1) 1@(@%}

with some constant c.. Then |e| < e, with a certain e, > 0 implies c,(e) < 1. In
particular H, is self-adjoint on D(H¢) N D(F?) for all p € R* and bounded from below,
for |e| < e,. The ground state energy of H, is

E(p)=info(H,) = inf s Hy).

) U) = et o Ho¥)
If E(p) is an eigenvalue, the corresponding spectral projection is denoted by B,. TrP, is
identical with the multiplicity of ground states. The bottom of the continuous spectrum

is denoted by E.(p). Under our assumptions one knows that



2.2 Total angular momentum

Let 77 € R? be a unit vector. It follows that, for § € R,
ei(9/2)ﬁ~90_lie—i(0/2)ﬁ-0 — (RO,>H’ ,U/ — 1’ 2’ 3’

where R = (R, )1<uv<3 = R(71,6) € SO(3) presents the rotation around 7 through an
angle ¢, and (Ro), = >,-123 Ru0,. We define the field angular momentum relative

to the origin by

Jr= > /(k X (=1Vy))a™(k, j)a(k, j)dk

j=1,2
and the helicity by

S = i/%{a*(k, a(k, 1) — a*(k, Da(k,2)} dk.
Let a*(f,7) = [ a*(k,j)f(k)dk. Tt holds that
[a<f> 1)7 Sf] = _ia(%fa 2)7 [a<f> 2)7 Sf] = ZCL(%fa 1)7

[a*(fa 1)7 Sf] = _ia*(%fa 2)7 [a*(fa 2)7 Sf] = Za*(%fa 1)

One sees that
e’i@ﬁ'(Jf-f—Sf)er_ZHﬁ'(Jf‘f'Sf) = Hj,

€i9ﬁ~(Jf+Sf)pfe—i9ﬁ~(Jf+Sf) — RPf,
e’ieﬁ'(Jf‘f'Sf)Alpe—’iGE'(Jf‘f'Sf) — RALp
Define the total angular momentum by
1
Jtotal - Jf + Sf + 50’.
It follows that

ezen't]totalHRpe_Zgn'Jtotal =

1
5 {(Ro) - (Bp — RP; — eRA)Y + Hy = H,,.
In particular E(p) = E(Rp). Moreover taking 7 = p = p/|p| we have

eieﬁ't]totalHpe_igﬁ"]total — Hp'

Formally wa may say that H, has a “field angular momentum+helicity+SU(2)” sym-
metry. It is easily seen that o(p- (Jr+ S)) =Z and o(p- o) = {—1,1}. Thus

R 1
U(p : Jtotal) =7+ 57



which is independent of p. Thus C* ® L*(R?) and H, are decomposable as

CCoF= P H:),

z€Z+%

and

H), = @ Hpy(2).

z€Z+%

As our main result we state

Theorem 2.1 Suppose |e| < ey with some constant eq given in (3.3), and A(p) > 0.
Then H, has two orthogonal ground states, ¥, with ¥y € H(£1/2).

We emphasize that all our estimates on the allowed ranges for p and e do not depend

on myy if we take w(k) = |/|k[2 +m?2,.
3 A proof of Theorem 2.1

In what follows v, = ( zp + ) denotes an arbitrary ground state of H,. The number
—

operator is defined by

Ne=Y /a*(k,j)a(k,j)dk.

j=1,2

The following lemma is shown in [15]

Lemma 3.1 Suppose A(p) > 0. Then

2 kE/A+6ED) ek
(s Net) < 26" [ e s b I
We se
t o) =2 [ —BLALOEG)___ o2,
(Blp— k) +wk) = Ep)P wk)

Let Py be the projection onto {C$2}.
Lemma 3.2 Suppose that A(p) > 0 and €* < 1/6(p). Then (v, Patby) > 0.
Proof: Since Py + Ny > 1, we have

(U Patiy) > [0l = N2, 2 > (1 = €20(0)) [0

Thus the lemma follows. O



Let ¢y = and p_ = ( g ), which are the ground states of H,, with

Q
0
p = (0,0,1) and ¢4 € H(£1/2). Let us denote by P the projection onto {ci1¢1 +
Catpa, €1, Co € C}.

Let {¢;} be a base of the space spanned by ground states of H, and {¢,} that of

the complement.

Lemma 3.3 Suppose e* < 1/(30(p)). Then TrP, < 2.

P?”OOf.' For ¢ = ( zi— )7 since W,Pw = ’(Qaw-f—)P + ’(Qaw—>’2 = (wa (1 ® PQW): we

have (¢, (P +1® Ni)v) = (¢,1 ® (Po + Ni)Y) > ||¢]]?. Hence P + Ng > 1. Then

T(P(1-P)= > (6P1-P)¢)= > (¢,(1-P)9)

pe{piyD{v;} pe{di}
< > (0.Nep) = D> (9, PNep) = > (¢, ByNep) = Tr(P,Ny).
pe{ei} pe{di} de{gito{v;}

Thus Tr(P,(1 — P)) < Tr(P,N¢). It follows that

Tr<PpP>: Z (¢7Ppp¢>: Z (¢7Pp¢>§2-
de{gito{v;} pe{di}

Thus Tr(P,P) < 2. Moreover we have Tr(P,N;) < e20(p)TrF,, since

Tr(Ppr) = Z (¢, Ppr¢> = Z (¢, Nt@)

pe{piyd{v;} pe{o:i}
< 629(p) Z (9, 0) = eQO(p)Ter.
pe{di}

Then TrP, — Tr(P,P) = TrP,(1 — P) < Tr(B,Nt) < €*0(p)TrF,. Hence it follows that
(1—¢€%0(p))TrP, < Tr(P,P) < 2. We have

2
e < — < 3.
YT ST ()

Thus the lemma follows. O

We say that ¢ € F is real, if ™ (ky, 51, -+, kn,jn) is a real-valued function on
L*(R3™ x {1,2}") for all n > 0. The set of real ¢ is denoted by Frea. We define the set

of reality-preserving operators O,ea(F) as follows:
Oreal(f) = {A‘A t Freal N D(A) B real} .
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It is seen that Hy and P are in Ope(F). Since, for all k € R and z € R3,

((HPO + Z>kw>(m(k17j17 Ty kna]n)

n 2 n b
B (% (p—Zkz) +Zw(/’fz‘)+z> G (R, g, s ),

i=1 =1

(Hyo + 2)* is also in Opear(F). Moreover A, and iB,, are in Oea(F).

Lemma 3.4 Suppose |e| < e,. Let x € C% Then there exists a(t) € R independent of
x such that fort >0

(2 @ Q, e Hr=EP)y @ Oy = a(t)(z, 2)ce (3.1)

Proof: Note that ||Hy,(1 4+ Hp) ' < 1 for |e| < e.. Then, by spectral theory, one has
t —n
e~ t(Hp—E(p)) _ nh—{EO (1 + 5(Hp _ E(p))>
t —-1/2 m t — k t -1/2\ "
— lim lim { (14 2H, ——H'> (1 'h > .
nl—{gokl_{go{< +n 0p> (g:()( n Ip ) +n Op }
Here
H\I; :H/Hp—i—i(f'é,
~ t -1/2 ¢ -1/2
B = (1 + 5H0p> (ZBL,0> (1 + 5H0p> y
_ t —-1/2 t —-1/2
Hyyp = (1 + —H0p> (Hnp — E(p)) (1 + 5H0p> :

e2

HHp = —e(p — pf) . A[p -+ EA?D
It is seen that
—9 — ~ ~ o~ — ~ ~— ~ ~
Hlp = HHpHHp —B-B + 10 - (HHpB -+ BHHp — BA B) =M + 10 - L.

Here both of M = ﬁllpﬁllp — é . é and L = Hjﬂpé -+ éﬁllp — é N é are in Oreal(f)-
Moreover

Hy, = Hu,M — BL +io - (BM + Hy,L — B A L),
where both of ﬁHpM — BL and BM + ﬁHpL — B AL are also in Oreal(F). Thus,

repeating above procedure, one obtains

m

t — k
Z <__Hlp> =y +10 - bma
n

k=0



where a,, and b,, are in Oyea(F). Hence there exist apm € Oreal(F) and by, € Orear(F)
such that

t —-1/2 / m t — k t —-1/2 " '
{(1 + 5Hop> (;0 (—5H1p> ) (1 4 5Hop> } — o + 90 - b,

Finally

(z® Qe = E®)y @ Q) = lim lim (2, 2)(Q, apmQ) +i lim lim (2, 02)(Q, bum).

n—oo k—oo n—oo k—oo

Since the left-hand side is real, the second term of the right-hand side vanishes and

a(t) = limy,— o0 limg 00 (2, anm ?) exists, which establishes the desired result. O

Lemma 3.5 Suppose |e| < e, and |e| < 1/\/0(19). Then there exists a > 0 such that
PP,P = aP.
Proof: Note that P, = s — limy_.« e~ tHy=E®)  Thus by Lemma 3.4,

(x®Q,Px ®Q) = tlim (2@ Q,e ' H=EP)y @ Q) = lim a(t)(z, z)

t—o00

for all z € C%. Since by Lemma 3.2, (z ® Q, P,z ® Q) # 0 for some x € C, lim;_ a(t)
exists and it does not vanish. For arbitrary ¢1, oo € H, the polarization identity leads
to (¢1, PP,P¢ps) = a(p1, Pp2). The lemma follows. O

Lemma 3.6 Suppose |e| < e, and |e| < 1/\/0(19). Then TrP, > 2.

Proof: Suppose TrP, = 1. Let P = |p4)(p+| + |¢-){p_| and P, = |¢,)(¢,|. Lemma
3.5 yields that

PP,P = (lo+) (04| + [0-) o= DIp) (Upl (o) (4] + o) (p-])

= (01, ¥p) Ploos) (0] + 1=, ¥p) [Pl o= ) (o]
(4, ¥p) (Up, 0= )|o+) (o= | + (0=, 1) (U, 04) [0 =) (P4 ]

= a(le)(p+] + le-){e-])- (3.2)
It follows that (¢4, 1) (1, ¢—) = 0. Let us assume (1), ¢—) = 0. It implies in terms of

(3.2) that [(¢, ¥p) Plo) (x| = allpr) (@r]+[w-){¢-|). This contradicts (¢4, 1) # 0
and a # 0. Thus the lemma follows. O



We define
co = inf{]e\ e < 1/y/30(p), |e] < e*}. (3.3)
A proof of Theorem 2.1
By Lemma 3.6, TrP, > 2, and by Lemma 3.3, TrP, < 2. Hence TrP, = 2 follows.
Without loss of generalization we may assume that p = (0,0,1). Then ¢ € H(£1/2).
Let ¢4 be ground states of H, such that ¢, € H(z) and ¢_ € H(z') with some
2,72 € Z+1/2. Since PP,P = aP we have (¢4, Pyps) = a > 0. Let Q4+ be the
projections to H(£1/2). Then Q+P,p+ # 0 and Q_FP,p_ # 0. The alternative

Qi+ # 0 or Qi1_ # 0 holds, or the altenative QQ_1, # 0 or Q_1_ # 0 holds. We
may set Q1+ # 0. Then ¢4 € H(+1/2) and ¢y € H(—1/2). The theorem follows. O

4 Confining potentials

In this section we set w(k) = |k| and

1
H = 5(—2’Vx —eAy(r))? + Hy — g

oB,(x) + V.

Let V be relatively bounded with respect to —A /2 with a relative bound strictly smaller
than one. It has been established in [10, 11] that H is self-adjoint on D(—A) N D(Hy)
and bounded from below, for arbitrary e. A confining potential V' breaks the total

momentum invariance,

[Piotal, H] # 0. (4.1)

Existence of ground states of H is expected by (4.1). Actually by many authors it has
been established that H has ground states, e.g., [1, 6, 7, 8, 14, 13], and in a spinless
case, the ground state is unique [9].

Let Hy = Hy + Hf and H, = %pQ + V. We set E =info(H), Eq = inf 0(Hy) and
Yo = inf oess(He).

We define a class of external potentials.

Definition 4.1 (1) We say V = Z 4+ W € Vi, if the following (i)-(iv) hold, (i)
Z € L (R3), (ii) Z > —o0, (1) W <0, (iv) W € LP(R®) for some p > 3/2.

(2) WesayV eV(m), m>1, if (i) V € Ve, (it) Z(z) > v|z[*™, outside a compact

set for some positive constant .
(3) WesayV eV(0), m>1,if (i) V € Vexp, (%) liminfj, oo Z(z) > inf o (H).
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We assume that V satisfies that (1) ||V f|| < al|(p*/2)f| + b||f|| with some a < 1 and
some b >0, (2) V € V(m) with some m > 0, (3) V(x) = V(—x), (4) Xa — Ea > 0 and
the ground state ¢y of Hy is unique and real.

(1) guarantees self-adjointness of H, (2) derives a boundedness of |||z|o]| for ground
states ¢y of H, and (3) will be needed to estimate a lower bound of the multiplicity

of ground states of H. (4) ensures that H has ground states and Hy has twofold

ground states. Actually Hy has the two ground states, ¢, = ( %o %) &, ) and ¢_ =

0,
Po®Q )
Let P,, denote the projection onto {C¢y}. Define
P =Py ®Py, Q=P;® Py,

Furthermore P, denotes the projection onto the space spanned by ground states of H.

Let ¢ be arbitrary ground state of H. It is proven in [1] that
INe 2012 < 01 ()|l 2, (4.2)

and in [2, 12] that
"1 < Oa(e) )1 (4.3)
Then together with (4.2) and (4.3), we have

INE29]* < 61(e)a(e) 0] (4.4)
Suppose g — E > 0. Then there exists 05(e) such that
1QuI1* < O3(e)l||*. (4.5)
Note that limj¢—o 6;(e) = 0.
Lemma 4.2 Suppose 01(e)0z(e) + 03(e) < 1. Then (g, Pip) > 0.
Proof: 1t follows from (4.4), (4.5) and P > 1 — N; — Q. O
Lemma 4.3 Suppose 01(e)0z(e) + 03(e) < 1/3. Then TrP, < 2.

Proof: It can be proven in the similar way as Lemma 3.3. O
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Next we estimate Tr P, from below using the realness argument used in the previous
section. Let F denote the Fourier transformation on L?(R*). We define the unitary
operator O on H by O = (F ® 1)e®®. Then O maps D(—A) N D(H;) onto D(|z[*)N
D(Hy) with

. 1 .
H=OHO™ = S(z— B = eA(0)) + V + Hi - ga - B(0).
Here V is defined by
Vi=FVF 'f=Vxf
where * denotes the convolution. By the assumption V(z) = V(—z) we see that V is
a reality preserving operator. Let

— 1 ~
Hy = 5(gg—Pf)%rlﬂlerv.

Lemma 4.4 We have (Hy — z)™" € Oweat( L2(R?; F)) for all z € R with z & o(Hy) and
n € R.

Proof: We have
— 1 8] ~
H . -n _ / t_1+n —tHyp tZdt
(Ho = 2) I'(n) Jo coed

where I'(+) denotes the Gamma function. It is enough to prove e~tHo ¢ Oreat (L2 (R3; F)).
Since by the Trotter product formula,

e~tHo — ¢ {im (e—(t/nfo—xP/z Flp=(t/mV F)”

F_le_SVF € Oreal(L2(R3;f))a

and
e—s(Pf—:v)2 c Oreal(L2(R3; f)),

it follows that e~tHo € Oreal(L2(R3; F)). The lemma follows. 0

From this lemma it follows that (Hy — 2)~%, (Hy — 2)"/2 € O (L2(R3; F)). We

decompose H = H-FasH= ﬁo + ﬁl, where
—~ e e e?

By =~ £ = P)AL(0) ~ SA4,0)(0 — ) + S A2(0) — SoB,(0) — B

Lemma 4.5 There ezists e. > 0 such that for all |e| < e., TrP, > 2.
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Proof: First we prove PP.P = aP with some a > 0 in the similar way as Lemma 3.4
with H, and Hy, replaced by H and ﬁl, respectively. Then the lemma follows from
the proof of Lemma 3.6. O

Theorem 4.6 Suppose X — E > 0, |e| < e. and 61(e)ba(e) + 03(e) < 1/3. Then
TrP, = 2.

Proof: It follows from Lemmas 4.3 and 4.5. O

Suppose that V is rotation invariant. Let

1
xjcotal =x X (—va) -+ Jf + Sf + 50’.

Then we have for § € R, 7i € R® with |7i] = 1,

eieﬁ'tﬂotalHe_iGﬁ'\ytotal — H

Since o (77 Jrotal) = Z+1/2 for each 7i, H and H are decomposable as H = @ZGZJF% H(z),
and H = @.cz11 H(z). In the same way as the proof of Theorem 2.1 one can prove

the following corollary.

Corollary 4.7 Suppose that V is translation invariant, and o — E > 0, |e| < e
and 01(e)f2(e) + Os3(e) < 1/3. Then H has two orthogonal ground states, V., with
Yy € H(E1/2).
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