Two-fold ground states of the Pauli-Fierz Hamiltonian including spin

Fumio Hiroshima

November 7, 2001

Abstract

The Pauli-Fierz Hamiltonian describes an interaction between a low energy electron and photons. Existence of ground states has been established. The purpose of this talk is to show that its ground states is exactly two-fold in a weak coupling region.

1 The Pauli-Fierz Hamiltonian

This is a joint work ${ }^{1}$ with Herbert Spohn ${ }^{2}$. The Hamiltonian in question is the PauliFierz Hamiltonian in nonrelativisitic QED with spin, which will be denoted by H acting on the Hilbert space

$$
\mathcal{H}=L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right) \otimes \mathcal{F}
$$

Here $L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{2}\right)$ denotes the Hilbert space for the electron with spin σ, where $\sigma=$ $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ denotes the Pauli spin $1 / 2$ matrices,

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

\mathcal{F} is the symmetric Fock space for the photons given by $\mathcal{F}=\oplus_{n=0}^{\infty}\left(L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right)\right)_{\text {sym }}^{n}$. Here $(\cdots)_{\text {sym }}^{n}$ denotes the n-fold symmetric tensor product of (\cdots) with $(\cdots)_{\text {sym }}^{0}=\mathbb{C}$.

The photons live in \mathbb{R}^{3} and have helicity ± 1. The Fock vacuum is denoted by Ω. The photon field is represented in \mathcal{F} by the two-component Bose field $a(k, j), j=1,2$, with commutation relations

$$
\left[a(k, j), a^{*}\left(k^{\prime}, j^{\prime}\right)\right]=\delta_{j j^{\prime}} \delta\left(k-k^{\prime}\right)
$$

[^0]$$
\left[a(k, j), a\left(k^{\prime}, j^{\prime}\right)\right]=0, \quad\left[a^{*}(k, j), a^{*}\left(k^{\prime}, j^{\prime}\right)\right]=0
$$

The energy of the photons is given by

$$
H_{\mathrm{f}}=\sum_{j=1,2} \int \omega(k) a^{*}(k, j) a(k, j) d k
$$

i.e., H_{f} restricted to $\left(L^{2}\left(\mathbb{R}^{3} \times\{1,2\}\right)\right)_{\text {symm }}^{n}$ is the multiplication by $\sum_{j=1}^{n} \omega\left(k_{j}\right)$, and the momentum of the photons is

$$
P_{\mathrm{f}}=\sum_{j=1,2} \int k a^{*}(k, j) a(k, j) d k
$$

Throughout units are such that $\hbar=1, c=1$. Physically $\omega(k)=|k|$. The case is somewhat singular and we assume that ω is continuous, rotation invariant, and that (1) $\inf _{k \in \mathbb{R}^{3}} \omega(k) \geq \omega_{0}>0$, (2) $\omega\left(k_{1}\right)+\omega\left(k_{2}\right) \geq \omega\left(k_{1}+k_{2}\right)$, (3) $\lim _{|k| \rightarrow \infty} \omega(k)=\infty$. A typical example is

$$
\omega(k)=\sqrt{|k|^{2}+m_{\mathrm{ph}}^{2}}, \quad m_{\mathrm{ph}}>0
$$

For a recent result of the massless case see [3]. The quantized transverse vector potential is defined through

$$
A_{\varphi}(x)=\sum_{j=1,2} \int \frac{\widehat{\varphi}(k)}{\sqrt{2 \omega(k)}} e_{j}(k)\left(a^{*}(k, j) e^{-i k x}+a(k, j) e^{i k x}\right) d k
$$

Here e_{1} and e_{2} are polarization vectors which together with $\widehat{k}=k /|k|$ form a standard basis in $\mathbb{R}^{3} . \varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a form factor which ensures an ultraviolet cutoff. It is assumed to be $\varphi(R x)=\varphi(x)$ for an arbitrary rotation R, continuous, bounded with some decay at infinity, and normalized as $\int \varphi(x) d x=1$. We will work with the Fourier transform $\hat{\varphi}(k)=(2 \pi)^{-3 / 2} \int \varphi(x) e^{-i k x} d x$. It satisfies (1) $\widehat{\varphi}(R k)=\widehat{\varphi}(k),(2) \overline{\hat{\varphi}}=\widehat{\varphi}$ for notational simplicity, (3) $\widehat{\varphi}(0)=(2 \pi)^{-3 / 2}$, and (4) the decay

$$
\int\left(\omega(k)^{-2}+\omega(k)^{-1}+1+\omega(k)\right)|\widehat{\varphi}(k)|^{2} d k<\infty
$$

The quantized magnetic field is correspondingly

$$
B_{\varphi}(x)=i \sum_{j=1,2} \int \frac{\widehat{\varphi}(k)}{\sqrt{2 \omega(k)}}\left(k \times e_{j}(k)\right)\left(a^{*}(k, j) e^{-i k x}-a(k, j) e^{i k x}\right) d k
$$

With these preparation the Pauli-Fierz Hamiltonian, including spin, is defined by

$$
\begin{equation*}
H=\frac{1}{2}\left(-i \nabla_{x} \otimes 1-e A_{\varphi}(x)\right)^{2}+1 \otimes H_{\mathrm{f}}-\frac{e}{2} \sigma \otimes B_{\varphi}(x) \tag{1.1}
\end{equation*}
$$

Since obvious from the context we will drop the tensor notation \otimes.

2 Invariances

2.1 Total momentum

Let us define the total momentum by $P_{\text {total }}=-i \nabla_{x}+P_{\mathrm{f}}$. We see that

$$
\begin{equation*}
\left[P_{\text {total }}, H\right]=0 \tag{2.1}
\end{equation*}
$$

(2.1) immediately implies that H has no ground state. Instead of H we consider the Hamiltonian with a fixed total momentum as follows. By (2.1), we see that (1.1) is decomposable with respect to the spectrum of $P_{\text {total }}$,

$$
H=\int_{\mathbb{R}^{3}}^{\oplus} H_{p} d p
$$

where

$$
\begin{equation*}
H_{p}=\frac{1}{2}\left(p-P_{\mathrm{f}}-e A_{\varphi}\right)^{2}-\frac{e}{2} \sigma B_{\varphi}+H_{\mathrm{f}} \tag{2.2}
\end{equation*}
$$

acting on $\mathbb{C}^{2} \otimes \mathcal{F}$. Here $A_{\varphi}=A_{\varphi}(0)$ and $B_{\varphi}=B_{\varphi}(0)$. The total momentum $p \in \mathbb{R}^{3}$ is regarded as a parameter. Recently an adiabatic perturbation of the Hamiltonian (2.2) has been studied in [16]. We define

$$
H_{p 0}=\frac{1}{2}\left(p-P_{\mathrm{f}}\right)^{2}+H_{\mathrm{f}},
$$

and $H_{\mathrm{I} p}=H_{p}-H_{p 0}$. We have $\left\|H_{\mathrm{I} p} \psi\right\| \leq c_{*}(e)\left\|\left(H_{p 0}+1\right) \psi\right\|$, where

$$
c_{*}(e)=c_{*}\left\{|e|\left\{\int\left(\frac{1}{\omega(k)^{2}}+\omega(k)\right)|\widehat{\varphi}(k)|^{2} d k\right\}^{1 / 2}+e^{2} \int\left(\frac{1}{\omega(k)^{2}}+1\right)|\widehat{\varphi}(k)|^{2} d k\right\}
$$

with some constant c_{*}. Then $|e|<e_{*}$ with a certain $e_{*}>0$ implies $c_{*}(e)<1$. In particular H_{p} is self-adjoint on $D\left(H_{\mathrm{f}}\right) \cap D\left(P_{\mathrm{f}}^{2}\right)$ for all $p \in \mathbb{R}^{3}$ and bounded from below, for $|e|<e_{*}$. The ground state energy of H_{p} is

$$
E(p)=\inf \sigma\left(H_{p}\right)=\inf _{\psi \in D\left(H_{p}\right),\|\psi\|=1}\left(\psi, H_{p} \psi\right)
$$

If $E(p)$ is an eigenvalue, the corresponding spectral projection is denoted by $P_{p} . \operatorname{Tr} P_{p}$ is identical with the multiplicity of ground states. The bottom of the continuous spectrum is denoted by $E_{\mathrm{c}}(p)$. Under our assumptions one knows that

$$
E_{\mathrm{c}}(p)=\inf _{k \in \mathbb{R}^{3}}(E(p-k)+\omega(k)) .
$$

See $[4,5,17]$. Thus it is natural to set

$$
\Delta(p)=E_{\mathrm{c}}(p)-E(p)=\inf _{k \in \mathbb{R}^{3}}(E(p-k)+\omega(k)-E(p)) .
$$

2.2 Total angular momentum

Let $\vec{n} \in \mathbb{R}^{3}$ be a unit vector. It follows that, for $\theta \in \mathbb{R}$,

$$
e^{i(\theta / 2) \vec{n} \cdot \theta} \sigma_{\mu} e^{-i(\theta / 2) \vec{n} \cdot \theta}=(R \sigma)_{\mu}, \quad \mu=1,2,3,
$$

where $R=\left(R_{\mu \nu}\right)_{1 \leq \mu, \nu \leq 3}=R(\vec{n}, \theta) \in \mathrm{SO}(3)$ presents the rotation around \vec{n} through an angle θ, and $(R \sigma)_{\mu}=\sum_{\mu=1,2,3} R_{\mu \nu} \sigma_{\nu}$. We define the field angular momentum relative to the origin by

$$
J_{\mathrm{f}}=\sum_{j=1,2} \int\left(k \times\left(-i \nabla_{k}\right)\right) a^{*}(k, j) a(k, j) d k
$$

and the helicity by

$$
S_{\mathrm{f}}=i \int \widehat{k}\left\{a^{*}(k, 2) a(k, 1)-a^{*}(k, 1) a(k, 2)\right\} d k .
$$

Let $a^{\sharp}(f, j)=\int a^{\sharp}(k, j) f(k) d k$. It holds that

$$
\begin{array}{rlrl}
{\left[a(f, 1), S_{\mathrm{f}}\right]} & =-i a(\widehat{k} f, 2), & {\left[a(f, 2), S_{\mathrm{f}}\right]=i a(\widehat{k} f, 1),} \\
{\left[a^{*}(f, 1), S_{\mathrm{f}}\right]} & =-i a^{*}(\widehat{k} f, 2), & {\left[a^{*}(f, 2), S_{\mathrm{f}}\right]} & =i a^{*}(\widehat{k} f, 1) .
\end{array}
$$

One sees that

$$
\begin{gathered}
e^{i \theta \vec{n} \cdot\left(J_{\mathrm{f}}+S_{\mathrm{f}}\right)} H_{\mathrm{f}} e^{-i \theta \vec{n} \cdot\left(J_{\mathrm{f}}+S_{\mathrm{f}}\right)}=H_{\mathrm{f}}, \\
e^{i \theta \vec{n} \cdot\left(J_{\mathrm{f}}+S_{\mathrm{f}}\right)} P_{\mathrm{f}} e^{-i \theta \vec{n} \cdot\left(J_{\mathrm{f}}+S_{\mathrm{f}}\right)}=R P_{\mathrm{f}}, \\
e^{i \theta \vec{n} \cdot\left(J_{\mathrm{f}}+S_{\mathrm{f}}\right)} A_{\varphi} e^{-i \theta \vec{n} \cdot\left(J_{\mathrm{f}}+S_{\mathrm{f}}\right)}=R A_{\varphi} .
\end{gathered}
$$

Define the total angular momentum by

$$
J_{\text {total }}=J_{\mathrm{f}}+S_{\mathrm{f}}+\frac{1}{2} \sigma .
$$

It follows that

$$
e^{i \theta \vec{n} \cdot J_{\text {total }}} H_{R p} e^{-i \theta \vec{n} \cdot J_{\mathrm{total}}}=\frac{1}{2}\left\{(R \sigma) \cdot\left(R p-R P_{\mathrm{f}}-e R A_{\varphi}\right)\right\}^{2}+H_{\mathrm{f}}=H_{p}
$$

In particular $E(p)=E(R p)$. Moreover taking $\vec{n}=\hat{p}=p /|p|$ we have

$$
e^{i \theta \hat{p} \cdot J_{\text {total }}} H_{p} e^{-i \theta \hat{p} \cdot J_{\text {total }}}=H_{p}
$$

Formally wa may say that H_{p} has a "field angular momentum + helicity $+\mathrm{SU}(2)$ " symmetry. It is easily seen that $\sigma\left(\hat{p} \cdot\left(J_{\mathrm{f}}+S_{\mathrm{f}}\right)\right)=\mathbb{Z}$ and $\sigma(\hat{p} \cdot \sigma)=\{-1,1\}$. Thus

$$
\sigma\left(\hat{p} \cdot J_{\text {total }}\right)=\mathbb{Z}+\frac{1}{2},
$$

which is independent of p. Thus $\mathbb{C}^{2} \otimes L^{2}\left(\mathbb{R}^{3}\right)$ and H_{p} are decomposable as

$$
\mathbb{C}^{2} \otimes \mathcal{F}=\bigoplus_{z \in \mathbb{Z}+\frac{1}{2}} \mathcal{H}(z)
$$

and

$$
H_{p}=\bigoplus_{z \in \mathbb{Z}+\frac{1}{2}} H_{p}(z) .
$$

As our main result we state
Theorem 2.1 Suppose $|e|<e_{0}$ with some constant e_{0} given in (3.3), and $\Delta(p)>0$.
Then H_{p} has two orthogonal ground states, $\psi_{ \pm}$, with $\psi_{ \pm} \in \mathcal{H}(\pm 1 / 2)$.
We emphasize that all our estimates on the allowed ranges for p and e do not depend on m_{ph} if we take $\omega(k)=\sqrt{|k|^{2}+m_{\mathrm{ph}}^{2}}$.

3 A proof of Theorem 2.1

In what follows $\psi_{p}=\binom{\psi_{p+}}{\psi_{p-}}$ denotes an arbitrary ground state of H_{p}. The number operator is defined by

$$
N_{\mathrm{f}}=\sum_{j=1,2} \int a^{*}(k, j) a(k, j) d k
$$

The following lemma is shown in [15]
Lemma 3.1 Suppose $\Delta(p)>0$. Then

$$
\left(\psi_{p}, N_{\mathrm{f}} \psi_{p}\right) \leq 2 e^{2} \int \frac{|k|^{2} / 4+6 E(p)}{(E(p-k)+\omega(k)-E(p))^{2}} \frac{|\hat{\varphi}(k)|^{2}}{\omega(k)} d k\left\|\psi_{p}\right\|^{2} .
$$

We set

$$
\theta(p)=2 \int \frac{|k|^{2} / 4+6 E(p)}{(E(p-k)+\omega(k)-E(p))^{2}} \frac{|\widehat{\varphi}(k)|^{2}}{\omega(k)} d k
$$

Let P_{Ω} be the projection onto $\{\mathbb{C} \Omega\}$.
Lemma 3.2 Suppose that $\Delta(p)>0$ and $e^{2}<1 / \theta(p)$. Then $\left(\psi_{p}, P_{\Omega} \psi_{p}\right)>0$.
Proof: Since $P_{\Omega}+N_{\mathrm{f}} \geq 1$, we have

$$
\left(\psi_{p}, P_{\Omega} \psi_{p}\right) \geq\left\|\psi_{p}\right\|^{2}-\left\|N_{\mathrm{f}}^{1 / 2} \psi_{p}\right\|^{2}>\left(1-e^{2} \theta(p)\right)\left\|\psi_{p}\right\|^{2}
$$

Thus the lemma follows.

Let $\varphi_{+}=\binom{\Omega}{0}$ and $\varphi_{-}=\binom{0}{\Omega}$, which are the ground states of $H_{p 0}$ with $p=(0,0,1)$ and $\varphi_{ \pm} \in \mathcal{H}(\pm 1 / 2)$. Let us denote by P the projection onto $\left\{c_{1} \varphi_{1}+\right.$ $\left.c_{2} \varphi_{2}, c_{1}, c_{2} \in \mathbb{C}\right\}$.

Let $\left\{\phi_{i}\right\}$ be a base of the space spanned by ground states of H_{p} and $\left\{\psi_{j}\right\}$ that of the complement.

Lemma 3.3 Suppose $e^{2}<1 /(3 \theta(p))$. Then $\operatorname{Tr} P_{p} \leq 2$.
Proof: For $\psi=\binom{\psi_{+}}{\psi_{-}}$, since $(\psi, P \psi)=\left|\left(\Omega, \psi_{+}\right)\right|^{2}+\left|\left(\Omega, \psi_{-}\right)\right|^{2}=\left(\psi,\left(1 \otimes P_{\Omega}\right) \psi\right)$, we have $\left(\psi,\left(P+1 \otimes N_{\mathrm{f}}\right) \psi\right)=\left(\psi, 1 \otimes\left(P_{\Omega}+N_{\mathrm{f}}\right) \psi\right) \geq\|\psi\|^{2}$. Hence $P+N_{\mathrm{f}} \geq 1$. Then

$$
\begin{aligned}
\operatorname{Tr}\left(P_{p}(1-P)\right)= & \sum_{\phi \in\left\{\phi_{i}\right\} \oplus\left\{\psi_{j}\right\}}\left(\phi, P_{p}(1-P) \phi\right)=\sum_{\phi \in\left\{\phi_{i}\right\}}(\phi,(1-P) \phi) \\
\leq & \sum_{\phi \in\left\{\phi_{i}\right\}}\left(\phi, N_{\mathrm{f}} \phi\right)=\sum_{\phi \in\left\{\phi_{i}\right\}}\left(\phi, P_{p} N_{\mathrm{f}} \phi\right)=\sum_{\phi \in\left\{\phi_{i}\right\} \oplus\left\{\psi_{j}\right\}}\left(\phi, P_{p} N_{\mathrm{f}} \phi\right)=\operatorname{Tr}\left(P_{p} N_{\mathrm{f}}\right) .
\end{aligned}
$$

Thus $\operatorname{Tr}\left(P_{p}(1-P)\right) \leq \operatorname{Tr}\left(P_{p} N_{\mathrm{f}}\right)$. It follows that

$$
\operatorname{Tr}\left(P_{p} P\right)=\sum_{\phi \in\left\{\phi_{i}\right\} \oplus\left\{\psi_{j}\right\}}\left(\phi, P_{p} P \phi\right)=\sum_{\phi \in\left\{\phi_{i}\right\}}\left(\phi, P_{p} \phi\right) \leq 2 .
$$

Thus $\operatorname{Tr}\left(P_{p} P\right) \leq 2$. Moreover we have $\operatorname{Tr}\left(P_{p} N_{\mathrm{f}}\right) \leq e^{2} \theta(p) \operatorname{Tr} P_{p}$, since

$$
\begin{gathered}
\operatorname{Tr}\left(P_{p} N_{\mathrm{f}}\right)=\sum_{\phi \in\left\{\phi_{i}\right\} \oplus\left\{\psi_{j}\right\}}\left(\phi, P_{p} N_{\mathrm{f}} \phi\right)=\sum_{\phi \in\left\{\phi_{i}\right\}}\left(\phi, N_{\mathrm{f}} \phi\right) \\
\leq e^{2} \theta(p) \sum_{\phi \in\left\{\phi_{i}\right\}}(\phi, \phi)=e^{2} \theta(p) \operatorname{Tr} P_{p} .
\end{gathered}
$$

Then $\operatorname{Tr} P_{p}-\operatorname{Tr}\left(P_{p} P\right)=\operatorname{Tr} P_{p}(1-P) \leq \operatorname{Tr}\left(P_{p} N_{\mathrm{f}}\right) \leq e^{2} \theta(p) \operatorname{Tr} P_{p}$. Hence it follows that $\left(1-e^{2} \theta(p)\right) \operatorname{Tr} P_{p} \leq \operatorname{Tr}\left(P_{p} P\right) \leq 2$. We have

$$
\operatorname{Tr} P_{p} \leq \frac{2}{1-e^{2} \theta(p)}<3
$$

Thus the lemma follows.
We say that $\psi \in \mathcal{F}$ is real, if $\psi^{(n)}\left(k_{1}, j_{1}, \cdots, k_{n}, j_{n}\right)$ is a real-valued function on $L^{2}\left(\mathbb{R}^{3 n} \times\{1,2\}^{n}\right)$ for all $n \geq 0$. The set of real ψ is denoted by $\mathcal{F}_{\text {real }}$. We define the set of reality-preserving operators $\mathcal{O}_{\text {real }}(\mathcal{F})$ as follows:

$$
\mathcal{O}_{\text {real }}(\mathcal{F})=\left\{A \mid A: \mathcal{F}_{\text {real }} \cap D(A) \longrightarrow \mathcal{F}_{\text {real }}\right\}
$$

It is seen that H_{f} and P_{f} are in $\mathcal{O}_{\text {real }}(\mathcal{F})$. Since, for all $k \in \mathbb{R}$ and $z \in \mathbb{R}^{3}$,

$$
\begin{gathered}
\left(\left(H_{p 0}+z\right)^{k} \psi\right)^{(n)}\left(k_{1}, j_{1}, \cdots, k_{n}, j_{n}\right) \\
=\left(\frac{1}{2}\left(p-\sum_{i=1}^{n} k_{i}\right)^{2}+\sum_{i=1}^{n} \omega\left(k_{i}\right)+z\right)^{k} \psi^{(n)}\left(k_{1}, j_{1}, \cdots, k_{n}, j_{n}\right),
\end{gathered}
$$

$\left(H_{p 0}+z\right)^{k}$ is also in $\mathcal{O}_{\text {real }}(\mathcal{F})$. Moreover A_{φ} and $i B_{\varphi}$ are in $\mathcal{O}_{\text {real }}(\mathcal{F})$.
Lemma 3.4 Suppose $|e|<e_{*}$. Let $x \in \mathbb{C}^{2}$. Then there exists $a(t) \in \mathbb{R}$ independent of x such that for $t \geq 0$

$$
\begin{equation*}
\left(x \otimes \Omega, e^{-t\left(H_{p}-E(p)\right)} x \otimes \Omega\right)_{\mathcal{H}}=a(t)(x, x)_{\mathbb{C}^{2}} \tag{3.1}
\end{equation*}
$$

Proof: Note that $\left\|H_{\mathrm{I} p}\left(1+H_{p 0}\right)^{-1}\right\|<1$ for $|e|<e_{*}$. Then, by spectral theory, one has

$$
\begin{gathered}
e^{-t\left(H_{p}-E(p)\right)}=\lim _{n \rightarrow \infty}\left(1+\frac{t}{n}\left(H_{p}-E(p)\right)\right)^{-n} \\
=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}\left\{\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}\left(\sum_{k=0}^{m}\left(-\frac{t}{n} \widetilde{H_{\mathrm{I} p}}\right)^{k}\right)\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}\right\}^{n}
\end{gathered}
$$

Here

$$
\begin{gathered}
\widetilde{H_{\mathrm{I} p}}=\widetilde{H}_{\mathrm{II} p}+i \sigma \cdot \widetilde{B}, \\
\widetilde{B}=\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}\left(i B_{\varphi}\right)\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}, \\
\widetilde{H}_{\mathrm{II} p}=\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}\left(H_{\mathrm{II} p}-E(p)\right)\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}, \\
H_{\mathrm{II} p}=-e\left(p-P_{\mathrm{f}}\right) \cdot A_{\varphi}+\frac{e^{2}}{2} A_{\varphi}^{2} .
\end{gathered}
$$

It is seen that

$$
{\widetilde{H_{\mathrm{I} p}}}^{2}=\widetilde{H}_{\mathrm{II} p} \widetilde{H}_{\mathrm{II} p}-\widetilde{B} \cdot \widetilde{B}+i \sigma \cdot\left(\widetilde{H}_{\mathrm{II} p} \widetilde{B}+\widetilde{B} \widetilde{H}_{\mathrm{II} p}-\widetilde{B} \wedge \widetilde{B}\right)=M+i \sigma \cdot L
$$

Here both of $M=\widetilde{H}_{\mathrm{II} p} \widetilde{H}_{\mathrm{I} p}-\widetilde{B} \cdot \widetilde{B}$ and $L=\widetilde{H}_{\mathrm{I} p} \widetilde{B}+\widetilde{B} \widetilde{H}_{\mathrm{I} p p}-\widetilde{B} \wedge \widetilde{B}$ are in $\mathcal{O}_{\text {real }}(\mathcal{F})$. Moreover

$$
{\widetilde{H_{\mathrm{I} p}}}^{3}=\widetilde{H}_{\mathrm{II} p} M-\widetilde{B} L+i \sigma \cdot\left(\widetilde{B} M+\widetilde{H}_{\mathrm{II} p} L-\widetilde{B} \wedge L\right)
$$

where both of $\widetilde{H}_{\mathrm{II} p} M-\widetilde{B} L$ and $\widetilde{B} M+\widetilde{H}_{\mathrm{I} p} L-\widetilde{B} \wedge L$ are also in $\mathcal{O}_{\text {real }}(\mathcal{F})$. Thus, repeating above procedure, one obtains

$$
\sum_{k=0}^{m}\left(-\frac{t}{n} \widetilde{H_{\mathrm{I} p}}\right)^{k}=a_{m}+i \sigma \cdot b_{m}
$$

where a_{m} and b_{m} are in $\mathcal{O}_{\text {real }}(\mathcal{F})$. Hence there exist $a_{n m} \in \mathcal{O}_{\text {real }}(\mathcal{F})$ and $b_{n m} \in \mathcal{O}_{\text {real }}(\mathcal{F})$ such that

$$
\left\{\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}\left(\sum_{k=0}^{m}\left(-\frac{t}{n} \widetilde{H_{\mathrm{I} p}}\right)^{k}\right)\left(1+\frac{t}{n} H_{0 p}\right)^{-1 / 2}\right\}^{n}=a_{n m}+i \sigma \cdot b_{n m} .
$$

Finally

$$
\left(x \otimes \Omega, e^{-t\left(H_{p}-E(p)\right)} x \otimes \Omega\right)=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}(x, x)\left(\Omega, a_{n m} \Omega\right)+i \lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}(x, \sigma x)\left(\Omega, b_{n m} \Omega\right) .
$$

Since the left-hand side is real, the second term of the right-hand side vanishes and $a(t)=\lim _{n \rightarrow \infty} \lim _{k \rightarrow \infty}\left(\Omega, a_{n m} \Omega\right)$ exists, which establishes the desired result.

Lemma 3.5 Suppose $|e|<e_{*}$ and $|e|<1 / \sqrt{\theta(p)}$. Then there exists $a>0$ such that

$$
P P_{p} P=a P .
$$

Proof: Note that $P_{p}=s-\lim _{t \rightarrow \infty} e^{-t\left(H_{p}-E(p)\right)}$. Thus by Lemma 3.4,

$$
\left(x \otimes \Omega, P_{p} x \otimes \Omega\right)=\lim _{t \rightarrow \infty}\left(x \otimes \Omega, e^{-t\left(H_{p}-E(p)\right)} x \otimes \Omega\right)=\lim _{t \rightarrow \infty} a(t)(x, x)
$$

for all $x \in \mathbb{C}^{2}$. Since by Lemma $3.2,\left(x \otimes \Omega, P_{p} x \otimes \Omega\right) \neq 0$ for some $x \in \mathbb{C}^{2}, \lim _{t \rightarrow \infty} a(t)$ exists and it does not vanish. For arbitrary $\phi_{1}, \phi_{2} \in \mathcal{H}$, the polarization identity leads to $\left(\phi_{1}, P P_{p} P \phi_{2}\right)=a\left(\phi_{1}, P \phi_{2}\right)$. The lemma follows.

Lemma 3.6 Suppose $|e|<e_{*}$ and $|e|<1 / \sqrt{\theta(p)}$. Then $\operatorname{Tr} P_{p} \geq 2$.
Proof: Suppose $\operatorname{Tr} P_{p}=1$. Let $P=\left|\varphi_{+}\right\rangle\left\langle\varphi_{+}\right|+\left|\varphi_{-}\right\rangle\left\langle\varphi_{-}\right|$and $P_{p}=\left|\psi_{p}\right\rangle\left\langle\psi_{p}\right|$. Lemma 3.5 yields that

$$
\begin{gather*}
P P_{p} P=\left(\left|\varphi_{+}\right\rangle\left\langle\varphi_{+}\right|+\left|\varphi_{-}\right\rangle\left\langle\varphi_{-}\right|\right)\left|\psi_{p}\right\rangle\left\langle\psi_{p}\right|\left(\left|\varphi_{+}\right\rangle\left\langle\varphi_{+}\right|+\left|\varphi_{-}\right\rangle\left\langle\varphi_{-}\right|\right) \\
=\left|\left(\varphi_{+}, \psi_{p}\right)\right|^{2}\left|\varphi_{+}\right\rangle\left\langle\varphi_{+}\right|+\left|\left(\varphi_{-}, \psi_{p}\right)\right|^{2}\left|\varphi_{-}\right\rangle\left\langle\varphi_{-}\right| \\
+\left(\varphi_{+}, \psi_{p}\right)\left(\psi_{p}, \varphi_{-}\right)\left|\varphi_{+}\right\rangle\left\langle\varphi_{-}\right|+\left(\varphi_{-}, \psi_{p}\right)\left(\psi_{p}, \varphi_{+}\right)\left|\varphi_{-}\right\rangle\left\langle\varphi_{+}\right| \\
=a\left(\left|\varphi_{+}\right\rangle\left\langle\varphi_{+}\right|+\left|\varphi_{-}\right\rangle\left\langle\varphi_{-}\right|\right) . \tag{3.2}
\end{gather*}
$$

It follows that $\left(\varphi_{+}, \psi_{p}\right)\left(\psi_{p}, \varphi_{-}\right)=0$. Let us assume $\left(\psi_{p}, \varphi_{-}\right)=0$. It implies in terms of (3.2) that $\left|\left(\varphi_{+}, \psi_{p}\right)\right|^{2}\left|\varphi_{+}\right\rangle\left\langle\varphi_{+}\right|=a\left(\left|\varphi_{+}\right\rangle\left\langle\varphi_{+}\right|+\left|\varphi_{-}\right\rangle\left\langle\varphi_{-}\right|\right)$. This contradicts $\left(\varphi_{+}, \psi_{p}\right) \neq 0$ and $a \neq 0$. Thus the lemma follows.

We define

$$
\begin{equation*}
e_{0}=\inf \left\{|e|| | e\left|<1 / \sqrt{3 \theta(p)},|e|<e_{*}\right\} .\right. \tag{3.3}
\end{equation*}
$$

A proof of Theorem 2.1
By Lemma 3.6, $\operatorname{Tr} P_{p} \geq 2$, and by Lemma 3.3, $\operatorname{Tr} P_{p} \leq 2$. Hence $\operatorname{Tr} P_{p}=2$ follows. Without loss of generalization we may assume that $p=(0,0,1)$. Then $\varphi_{ \pm} \in \mathcal{H}(\pm 1 / 2)$. Let $\psi_{ \pm}$be ground states of H_{p} such that $\psi_{+} \in \mathcal{H}(z)$ and $\psi_{-} \in \mathcal{H}\left(z^{\prime}\right)$ with some $z, z^{\prime} \in \mathbb{Z}+1 / 2$. Since $P P_{p} P=a P$ we have $\left(\varphi_{ \pm}, P_{p} \varphi_{ \pm}\right)=a>0$. Let $Q_{ \pm}$be the projections to $\mathcal{H}(\pm 1 / 2)$. Then $Q_{+} P_{p} \varphi_{+} \neq 0$ and $Q_{-} P_{p} \varphi_{-} \neq 0$. The alternative $Q_{+} \psi_{+} \neq 0$ or $Q_{+} \psi_{-} \neq 0$ holds, or the altenative $Q_{-} \psi_{+} \neq 0$ or $Q_{-} \psi_{-} \neq 0$ holds. We may set $Q_{+} \psi_{+} \neq 0$. Then $\psi_{+} \in \mathcal{H}(+1 / 2)$ and $\psi_{-} \in \mathcal{H}(-1 / 2)$. The theorem follows.

4 Confining potentials

In this section we set $\omega(k)=|k|$ and

$$
H=\frac{1}{2}\left(-i \nabla_{x}-e A_{\varphi}(x)\right)^{2}+H_{\mathrm{f}}-\frac{e}{2} \sigma B_{\varphi}(x)+V .
$$

Let V be relatively bounded with respect to $-\Delta / 2$ with a relative bound strictly smaller than one. It has been established in $[10,11]$ that H is self-adjoint on $D(-\Delta) \cap D\left(H_{\mathrm{f}}\right)$ and bounded from below, for arbitrary e. A confining potential V breaks the total momentum invariance,

$$
\begin{equation*}
\left[P_{\text {total }}, H\right] \neq 0 \tag{4.1}
\end{equation*}
$$

Existence of ground states of H is expected by (4.1). Actually by many authors it has been established that H has ground states, e.g., $[1,6,7,8,14,13]$, and in a spinless case, the ground state is unique [9].

Let $H_{0}=H_{\mathrm{el}}+H_{\mathrm{f}}$ and $H_{\mathrm{el}}=\frac{1}{2} p^{2}+V$. We set $E=\inf \sigma(H), E_{\mathrm{el}}=\inf \sigma\left(H_{\mathrm{el}}\right)$ and $\Sigma_{\mathrm{el}}=\inf \sigma_{\mathrm{ess}}\left(H_{\mathrm{el}}\right)$.

We define a class of external potentials.
Definition 4.1 (1) We say $V=Z+W \in V_{\exp }$ if the following (i)-(iv) hold, (i) $Z \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right)$, (ii) $Z>-\infty$, (iii) $W<0$, (iv) $W \in L^{p}\left(\mathbb{R}^{3}\right)$ for some $p>3 / 2$.
(2) We say $V \in V(m), m \geq 1$, if (i) $V \in V_{\exp }$, (ii) $Z(x) \geq \gamma|x|^{2 m}$, outside a compact set for some positive constant γ.
(3) We say $V \in V(0), m \geq 1$, if (i) $V \in V_{\exp }$, (ii) $\lim _{\inf }^{|x| \rightarrow \infty} \mid ~ Z(x)>\inf \sigma(H)$.

We assume that V satisfies that (1) $\|V f\| \leq a\left\|\left(p^{2} / 2\right) f\right\|+b\|f\|$ with some $a<1$ and some $b \geq 0$, (2) $V \in V(m)$ with some $m \geq 0$, (3) $V(x)=V(-x)$, (4) $\Sigma_{\text {el }}-E_{\text {el }}>0$ and the ground state ϕ_{0} of H_{el} is unique and real.
(1) guarantees self-adjointness of H, (2) derives a boundedness of $\left\||x| \psi_{0}\right\|$ for ground states ψ_{0} of H, and (3) will be needed to estimate a lower bound of the multiplicity of ground states of H. (4) ensures that H has ground states and H_{0} has twofold ground states. Actually H_{0} has the two ground states, $\phi_{+}=\binom{\phi_{0} \otimes \Omega}{0}$, and $\phi_{-}=$ $\binom{0}{,\phi_{0} \otimes \Omega}$.

Let $P_{\phi_{0}}$ denote the projection onto $\left\{\mathbb{C} \phi_{0}\right\}$. Define

$$
P=P_{\phi_{0}} \otimes P_{\Omega}, \quad Q=P_{\phi_{0}}^{\perp} \otimes P_{\Omega} .
$$

Furthermore P_{e} denotes the projection onto the space spanned by ground states of H. Let ψ be arbitrary ground state of H. It is proven in [1] that

$$
\begin{equation*}
\left\|N_{\mathrm{f}}^{1 / 2} \psi\right\|^{2} \leq \theta_{1}(e)\||x| \psi\|^{2} \tag{4.2}
\end{equation*}
$$

and in $[2,12]$ that

$$
\begin{equation*}
\left\||x|^{k} \psi\right\|^{2} \leq \theta_{2}(e)\|\psi\|^{2} \tag{4.3}
\end{equation*}
$$

Then together with (4.2) and (4.3), we have

$$
\begin{equation*}
\left\|N_{\mathrm{f}}^{1 / 2} \psi\right\|^{2} \leq \theta_{1}(e) \theta_{2}(e)\|\psi\|^{2} . \tag{4.4}
\end{equation*}
$$

Suppose $\Sigma_{\mathrm{el}}-E>0$. Then there exists $\theta_{3}(e)$ such that

$$
\begin{equation*}
\|Q \psi\|^{2} \leq \theta_{3}(e)\|\psi\|^{2} \tag{4.5}
\end{equation*}
$$

Note that $\lim _{|e| \rightarrow 0} \theta_{j}(e)=0$.
Lemma 4.2 Suppose $\theta_{1}(e) \theta_{2}(e)+\theta_{3}(e)<1$. Then $\left(\psi_{0}, P \psi_{0}\right)>0$.
Proof: It follows from (4.4), (4.5) and $P \geq 1-N_{\mathrm{f}}-Q$.

Lemma 4.3 Suppose $\theta_{1}(e) \theta_{2}(e)+\theta_{3}(e)<1 / 3$. Then $\operatorname{Tr} P_{e} \leq 2$.

Proof: It can be proven in the similar way as Lemma 3.3.

Next we estimate $\operatorname{Tr} P_{e}$ from below using the realness argument used in the previous section. Let F denote the Fourier transformation on $L^{2}\left(\mathbb{R}^{3}\right)$. We define the unitary operator \mathcal{O} on \mathcal{H} by $\mathcal{O}=(F \otimes 1) e^{i x \otimes P_{\mathrm{f}}}$. Then \mathcal{O} maps $D(-\Delta) \cap D\left(H_{\mathrm{f}}\right)$ onto $D\left(|x|^{2}\right) \cap$ $D\left(H_{\mathrm{f}}\right)$ with

$$
\widetilde{H}=\mathcal{O} H \mathcal{O}^{-1}=\frac{1}{2}\left(x-P_{\mathrm{f}}-e A(0)\right)^{2}+\widetilde{V}+H_{\mathrm{f}}-\frac{e}{2} \sigma \cdot B(0) .
$$

Here \tilde{V} is defined by

$$
\tilde{V} f=F V F^{-1} f=\widehat{V} * f
$$

where $*$ denotes the convolution. By the assumption $V(x)=V(-x)$ we see that \widetilde{V} is a reality preserving operator. Let

$$
\widetilde{H}_{0}=\frac{1}{2}\left(x-P_{\mathrm{f}}\right)^{2}+H_{\mathrm{f}}+\widetilde{V} .
$$

Lemma 4.4 We have $\left(\widetilde{H}_{0}-z\right)^{-n} \in \mathcal{O}_{\text {real }}\left(L^{2}\left(\mathbb{R}^{3} ; \mathcal{F}\right)\right)$ for all $z \in \mathbb{R}$ with $z \notin \sigma\left(\widetilde{H}_{0}\right)$ and $n \in \mathbb{R}$.

Proof: We have

$$
\left(\widetilde{H}_{0}-z\right)^{-n}=\frac{1}{\Gamma(n)} \int_{0}^{\infty} t^{-1+n} e^{-t \widetilde{H}_{0}} e^{t z} d t
$$

where $\Gamma(\cdot)$ denotes the Gamma function. It is enough to prove $e^{-t \widetilde{H}_{0}} \in \mathcal{O}_{\text {real }}\left(L^{2}\left(\mathbb{R}^{3} ; \mathcal{F}\right)\right)$. Since by the Trotter product formula,

$$
\begin{gathered}
e^{-t \widetilde{H}_{0}}=s-\lim _{n \rightarrow \infty}\left(e^{-(t / n)\left(P_{\mathrm{f}}-x\right)^{2} / 2} F^{-1} e^{-(t / n) V} F\right)^{n}, \\
F^{-1} e^{-s V} F \in \mathcal{O}_{\text {real }}\left(L^{2}\left(\mathbb{R}^{3} ; \mathcal{F}\right)\right)
\end{gathered}
$$

and

$$
e^{-s\left(P_{\mathrm{f}}-x\right)^{2}} \in \mathcal{O}_{\text {real }}\left(L^{2}\left(\mathbb{R}^{3} ; \mathcal{F}\right)\right)
$$

it follows that $e^{-t \widetilde{H}_{0}} \in \mathcal{O}_{\text {real }}\left(L^{2}\left(\mathbb{R}^{3} ; \mathcal{F}\right)\right)$. The lemma follows.
From this lemma it follows that $\left(\widetilde{H}_{0}-z\right)^{-1},\left(\widetilde{H}_{0}-z\right)^{-1 / 2} \in \mathcal{O}_{\text {real }}\left(L^{2}\left(\mathbb{R}^{3} ; \mathcal{F}\right)\right)$. We decompose $\bar{H}=\widetilde{H}-E$ as $\bar{H}=\widetilde{H}_{0}+\widetilde{H}_{\mathrm{I}}$, where

$$
\widetilde{H}_{\mathrm{I}}=-\frac{e}{2}\left(x-P_{\mathrm{f}}\right) A_{\varphi}(0)-\frac{e}{2} A_{\varphi}(0)\left(x-P_{\mathrm{f}}\right)+\frac{e^{2}}{2} A_{\varphi}^{2}(0)-\frac{e}{2} \sigma B_{\varphi}(0)-E .
$$

Lemma 4.5 There exists $e_{c}>0$ such that for all $|e|<e_{c}, \operatorname{Tr} P_{e} \geq 2$.

Proof: First we prove $P P_{e} P=a P$ with some $a>0$ in the similar way as Lemma 3.4 with H_{p} and $H_{\mathrm{I} p}$ replaced by \widetilde{H} and $\widetilde{H}_{\mathrm{I}}$, respectively. Then the lemma follows from the proof of Lemma 3.6.

Theorem 4.6 Suppose $\Sigma_{\mathrm{el}}-E>0,|e|<e_{\mathrm{c}}$ and $\theta_{1}(e) \theta_{2}(e)+\theta_{3}(e)<1 / 3$. Then $\operatorname{Tr} P_{e}=2$.

Proof: It follows from Lemmas 4.3 and 4.5.
Suppose that V is rotation invariant. Let

$$
\mathcal{J}_{\text {total }}=x \times\left(-i \nabla_{x}\right)+J_{\mathrm{f}}+S_{\mathrm{f}}+\frac{1}{2} \sigma .
$$

Then we have for $\theta \in \mathbb{R}, \vec{n} \in \mathbb{R}^{3}$ with $|\vec{n}|=1$,

$$
e^{i \theta \vec{n} \cdot \mathcal{J}_{\text {total }}} H e^{-i \theta \vec{n} \cdot \mathcal{J}_{\text {total }}}=H
$$

Since $\sigma\left(\vec{n} \cdot \mathcal{J}_{\text {total }}\right)=\mathbb{Z}+1 / 2$ for each \vec{n}, \mathcal{H} and H are decomposable as $\mathcal{H}=\bigoplus_{z \in \mathbb{Z}+\frac{1}{2}} \mathcal{H}(z)$, and $H=\bigoplus_{z \in \mathbb{Z}+\frac{1}{2}} H(z)$. In the same way as the proof of Theorem 2.1 one can prove the following corollary.

Corollary 4.7 Suppose that V is translation invariant, and $\Sigma_{\mathrm{el}}-E>0,|e|<e_{\mathrm{c}}$ and $\theta_{1}(e) \theta_{2}(e)+\theta_{3}(e)<1 / 3$. Then H has two orthogonal ground states, $\psi_{ \pm}$, with $\psi_{ \pm} \in \mathcal{H}(\pm 1 / 2)$.

Acknowledgment This work is in part supported by the Graduiertenkolleg "Mathematik in ihrer Wechselbeziehung zur Physik" of the LMU München and Grant-in-Aid 13740106 for Encouragement of Young Scientists from the Ministry of Education, Science, Sports, and Culture.

References

[1] V. Bach, J. Fröhlich, I. M. Sigal, Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field, Commun. Math. Phys. 207 (1999), 249-290.
[2] V. Betz, F. Hiroshima, J. Lorinczi, R. A. Minlos and H. Spohn, Gibbs measure associated with particle-field system, to be published in Rev. Math. Phys.
[3] T. Chen, Operator-theoretic infrared renormalization and construction of dressed 1-particle states in non-relativistic QED, mp-arc 01301, preprint, 2001.
[4] J. Fröhlich, On the infrared problem in a model of scalar electrons and massless, scalar bosons, Ann. Inst. Henri Poincaré 19 (1973), 1-103.
[5] J. Fröhlich, Existence of dressed one electron states in a class of persistent models, Fortschritte der Physik 22 (1974), 159-198.
[6] M. Griesemer, E. Lieb and M. Loss, Ground states in non-relativistic quantum electrodynamics, mp-arc 00313, preprint, 2000.
[7] F. Hiroshima, Ground states and spectrum of non-relativistic quantum electrodynamics, Trans. Amer. Math. Soc. 353 (2001), 4497-4528.
[8] F. Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics I, J. Math. Phys. 40 (1999), 6209-6222.
[9] F. Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics II, J. Math. Phys. 41 (2000), 661-674.
[10] F. Hiroshima, Essential self-adjointness of translation-invariant quantum field models for arbitrary coupling constants, Commun. Math. Phys. 211 (2000), 585-613.
[11] F. Hiroshima, Self-adjointness of translation-invariant quantum field models for arbitrary coupling constants, mp-arc 01137, preprint, 2001.
[12] F. Hiroshima, Embedded eigenvalues, localization and asymptotics of quantum field models: a functional integral approach, to be published in J. Phys. A: Math. Gen.
[13] F. Hiroshima, The analysis of the ground states of atoms interacting with a quantized radiation field, to be published in Int. J. Mod. Phys. B.
[14] F. Hiroshima and H. Spohn, Enhanced binding through a coupling to a quantum field, to be published in Ann. Henri. Poincaré.
[15] F. Hiroshima and H. Spohn, Ground state degeneracy of the Pauli-Fierz Hamiltonian including spin, mp-arc 01407, preprint, 2001.
[16] G. Panati, S. Teufel, and H. Spohn, Space-adiabatic perturbation to all orders, preprint, 2001.
[17] H. Spohn, The polaron at large total momentum, J. Phys. A: Math. Gen. 21 (1988), 1199-1211.

[^0]: ${ }^{1}$ [12].
 ${ }^{2}$ Zentrum Mathematik, Technische Universität München, D80290, München, Germany.

