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Abstract

In this lecture we examine a nonlinear parabolic differencial equation associated with the
renormalization group transformation of the hierarchical two–dimensional Coulomb gas. We
review some of the results recently published in [GM]. The solution of the initial value problem
is shown to converge, as t → ∞, to one of the countably infinite equilibrium solutions. The j–
th nontrivial equilibrium solution bifurcates from the trivial solution at α = 2/j2, j = 1, 2, . . . ,
where α is a parameter related to the inverse temperature. We here describe these equilibrium
solutions and present their local stability analysis for all α > 0. Our results ruled out the
existence of an intermediate phase between the plasma and the Kosterlitz–Thouless phase, at
least in the hierarchical model considered.

1 Introduction

We consider the quasilinear parabolic differential equation

ut − α(uxx − u2
x)− 2u = 0 (1.1)

on R+ × (−π, π) with α > 0, u(t, 0) = 0 and periodic boundary conditions.

The following has been proven in [GM].

1. The initial value problem is well defined in a appropriated function space B and the solution
exists and is unique for all t > 0;
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2. As t → ∞, the solution converges in B to one of the infinitely many (equilibrium) solutions
φ of

α
(
φ′′ − (φ′)2

)
+ 2φ = 0

with φ(−π) = φ(π) and φ′(−π) = φ′(π);

3. For α > 2, φ0 ≡ 0 is the (globally) asymptotically stable solution of PDE;
4. For α < 2 such that 2/ (k + 1)2 ≤ α < 2/k2 holds for some k ∈ N+, there exist 2k non–trivial
equilibria solutions φ±

1 , . . . , φ
±
k ;

5. For j ≥ 1, φ±
j have a (j − 1) –dimensional unstable manifoldMj ⊂ B so φ±

j are more stable
than φ±

j′ if j < j′. Moreover, there exists a dense set of initial conditions in B such that φ±
1

(φ−
1 is not physically admissible) are the non–trivial stable solution for all α < 2.

Chaffe–Infant’s geometric analysis [CI] of a class of semilinear parabolic PDE, whose prototype
is

ut − α
(
uxx − u3

) − 2u = 0 ,
with u(t, 0) = u(t, π) = 0 (see e.g. [H]), is thus extended to equation (1.1). In the present lecture
we address only itens 1, 4 and the local stability analysis.

The above scenario can be state as follows: there exist a sufficient large ball B0 ⊂ B about
the origin such that, if u(t,B0) denotes the set of points reached at time t starting from any
initial function in B0, then the invariant set

⋂
t≥0 u(t,B0) coincide with the k–dimensional unstable

manifoldMk provided 2/(k + 1)
2 ≤ α < 2/k2.

The initial value problem above describes the renormalization group (RG) flow of the effective
potential in the two–dimensional hierarchical Coulomb system and the stationary solutions

{
φ+
j

}
,

the fixed points of RG, contain informations on its critical phenomena.

Gallavotti and Nicoló[GN] have conjectured a sequence of “intermediate” phase transitions from
the plasma phase (α ≤ α1 = 1) to the multipole phase (α ≥ α∞ = 2) with some partial screening
taking place when the inverse temperature α = β/4π, decreases from 2 to 1.

The Kosterlitz–Thouless phase (multipole phase) was established by Fröhlich–Spencer[FS] and
extended up to β = 8π by Marchetti and Klein[MK]. Debey screening (plasma phase) was only
proved for sufficiently small β << 4π[BF]. The excursion on the region [4π, 8π] has begun with the
work by Benfatto, Gallavotti and Nicoló[BGN] on the ultraviolet collapses of neutral clusters in
the Yukawa gas. Although a conclusive answer to Gallavotti–Nicoló’s conjecture seems unprovable
to appear sooner, the scenario of an intermediate phase has been contested by Fisher et al [FLL]
based on Debye–Hückel–Bjerrum theory and by Dimock and Hurd[DH] who have reinterpreted the
ultraviolet collapses in the Yukawa gas.

The Kosterlitz–Thouless phase is manifested in the hierarchical model as a bifurcation from the
trivial solution[MP]. Our results rule out the existence of further phase transitions since no other
bifurcation occurs from the stable solution.
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2 The RG flow equation

The equilibrium Gibbs measure µΛ : Z
Λ −→ R+ of a hierarchical Coulomb system in Λ ⊂ Z

2 is
given by

µΛ(q) :=
1

ΞΛ

F (q) e−βE(q)

where β is the inverse temperature,

E(q) =
1

2

∑
x,y∈Λ

q(x)V (x, y) q(y)

is the energy of a configuration q,

V (x, y) = − 1
2π
lndh(x, y)

is the hierarchical Coulomb potential,

F (q) =
∏
x∈Λ

λ(q(x))

is an “a priori” weight and

ΞΛ =
∑
q∈ZΛ

F (q) e−βE(q)

is the grand partition function.

In the hierarchical model, the Euclidean distance |x− y| is replaced by the hierarchical distance
dh(x, y) := LN(x,y)

where

N(x, y) := inf
{
N ∈ N+ :

[ x

LN

]
=

[ y

LN

]}
,

L > 1 is an integer and [z] ∈ Z
2 has components the integer part of the components of z ∈ R

2.

Let Λ = ΛN = [−LN , LN − LN−1]2 ∩ Z
2, N > 1 , and define for each configuration q ∈ Z

Λ the
block configuration q1 : ΛN−1 −→ Z

q1(x) =
∑

0≤yi<L
i=1,2

q(Lx+ y) .

The renormalization group transformation R acts on the space of Gibbs measures
µ1

ΛN−1
(q1) = [RµΛN

](q1) =
∑

q∈ZΛN :
q1fixed

µΛN
(q)

=
1

Ξ1
ΛN−1

F 1(q1) e−βE(q1)
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where

F 1(q1) =
∏

x∈ΛN−1

λ1(q1(x))

with

λ1(p) = L−αp2(λ � λ � · · · � λ︸ ︷︷ ︸)
L2−times

(p) (2.2)

with α = β/4π and (λ � �)(p) =
∑
q∈Z

λ(p− q) �(q). Note that ΞΛN
(λ) = ΞΛN−1

(λ1).

Applying the convolution theorem and Poisson formula to equation (2.2), give

λ̃1(ϕ) = r̃λ(ϕ) =
(
ν ∗ λ̃L2

)
(ϕ)

where λ̃(ϕ) =
∑
q∈Z

λ(q) eiqϕ and

(ν ∗ f)(ϕ) = Lα lnL(d2/dϕ2) f(ϕ)

is a convolution by a Gaussian measure with mean zero and variance β lnL/(2π).

For t := n lnL, let us define

u(t, x) = − ln λ̃n(x)
with λn = rnλ. Taking the limit L ↓ 1 together with n → ∞ maintaining t fixed, we have

ut = α
(
uxx − u2

x

)
+ 2u .

3 Existence, uniqueness and continuous dependence

To avoid the appearance of zero modes upon linearization, we differentiate the PDE (1.1) with
respect to x and consider the equation for v = ux,

vt − α (vxx − 2v vx)− 2v = 0
with v (t,−π) = v (t, π) and vx (t,−π) = vx (t, π), in the subspace of odd functions and initial value
v(0, ·) = v0. Note the equation preserves this subspace.

The standard initial condition u0(x) = z (1− cosx), corresponding to the standard gas with
particle activity z, satisfies u(0) = u′

0(π) = u′
0(−π) = 0. Note the condition u (s, 0) = 0 is already

imposed for all s if u(s, x) =

∫ x

0

v(s, y) dy.

The boundary and initial value problem can be written as an ordinary differential equation

dz

dt
+ Az = F (z) (3.3)
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in a Banach space B where

Az = −αz ′′ − 2z and F (z) = −2αzxz ,

with initial value z(0) = z0.

The linear operator A is defined on the space C2
o,p of smooth odd and periodic real–valued

functions in [−π, π], with inner product (f, g) :=

∫ π

−π
f(x) g(x) dx, and since (f, Ag) = (Af, g) , it

may be extended to a self–adjoint operator in L2
o,p (−π, π). The domain D(A) of A is

D(A) =
{
f ∈ L2

o,p (−π, π) : Af ∈ L2
o,p (−π, π)

}
and the spectrum of A,

σ(A) =
{
λn = αn2 − 2, n ∈ N+

}
consists of simple eigenvalues with corresponding eigenfunctions φn(x) = (1/π)

1/2 sin nx .

Let A1 denote a positive definite linear operator given by A if α > 2 and A + aI for some
a > 2− α, otherwise.

The operator A generates an analytic semi–group T (t) = e−tA. Given γ ≥ 0, A−γ
1 is a bounded

operator (compact if γ > 0) with A
−1/2
1 (d/dx) and (d/dx)A

−1/2
1 bounded in the L2

o,p norm. In
addition, for γ > 0, Aγ1 is closely defined with the inclusion D(Aγ1) ⊂ D(Aτ1) if γ > τ .

It thus follows the basic estimate

∥∥Aγ1e−tA1
∥∥ ≤ Cγ

tγ
e−ct (3.4)

holds for 0 < γ < 1, t > 0 where Cγ = sup
n∈N+

∣∣(tλn)γ e−tλn
∣∣ ≤ (γ

e

)γ
.

Following Picard’s method, the integral equation

z(t) = e−tAz0 +

∫ t

0

e−(t−s)AF (z(s)) ds (3.5)

solves the initial value problem provided F (z(s)) is shown to be locally Hölder continuous on the
interval 0 ≤ t < T .

Let Bγ = D(Aγ), γ ≥ 0, denote the Banach space with the graph norm

‖f‖γ := ‖Aγf‖

F : Bγ −→ L2
p,o (−π, π) is said to be locally Lipschtzian if there exist U ⊂ Bγ and a finite constant

L such that

‖F (z1)− F (z2)‖ ≤ L ‖z1 − z2‖γ (3.6)

holds for any z1, z2 ∈ U .
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Theorem 3.1 The initial value problem has a unique solution z(t) for all t ∈ R+ with z(0) = z0 ∈
B1/2. In addition, if ‖z(t)‖1/2 is bounded as t → ∞, the trajectories {z(t)}t≥0 is in a compact set

in B1/2.

Proof. The proof is divided into four parts. First, F (z(t)) is shown to be Hölder continuous under
Lipschtz condition establishing the equivalence between the integral equation the initial problem.
Second, the Banach fixed point theorem is used to show the existence of a unique solution z(t)
for 0 ≤ t ≤ T . Hence, using an extension of Gronwell lemma, the solution z(t) is extended to all
t ∈ R+by a compactness argument. Finally, assuming that ‖z(t)‖1/2 stays bounded for all t > 0,
the proof is concluded by the domain inclusion.

Skipping Part I on Hölder continuity (see [GM]), we go to Part II.

Local existence. Let V =
{
z ∈ B1/2 : ‖z − z0‖ ≤ ε

}
be an ε–neighborhood and let L be the Lipschitz

constant of F on V . We set B = ‖F (z0)‖ and let T be a positive number such that

∥∥(
e−hA − I

)
z0

∥∥
1/2

≤ ε

2
(3.7)

with 0 ≤ h ≤ T and

C1/2 (B + Lε)

∫ T

0

s−1/2 e−cs ds ≤ ε

2
(3.8)

hold.

Let S denote the set of continuous functions y : [t0, t0 + T ] −→ B1/2 such that ‖y(t)− z0‖ ≤ ε.
Provided with the sup–norm

‖y‖T := sup
t0≤t≤t0+T

‖y(t)‖1/2

S is a complete metric space.
Defining Φ[y] : [t0, t0 + T ] −→ B1/2 for each y ∈ S by

Φ[y](t) = e−(t−t0)Az0 +

∫ t

t0

e−(t−s)A F (y(s)) ds ,

we now show that, under the conditions (3.7) and (3.8), Φ : S −→ S is a strict contraction. Using

‖F (y(t))‖ ≤ ‖F (y(t))− F (z0)‖+ ‖F (z0)‖ ≤ L ‖y(t)− z0‖1/2 +B ≤ Lε+B

and (3.4), we have

‖Φ[y](t)− z0‖1/2 ≤ ∥∥(
e−(t−t0)A − I

)
z0

∥∥
1/2
+

∫ t0+T

t0

∥∥A1/2e−(t−s)A∥∥ ‖F (y(s))‖ ds

≤ ε

2
+ C1/2 (B + Lε)

∫ T

0

s−1/2 e−cs ds ≤ ε
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and since Φ[y] is continuous, Φ[y] ∈ S.
Analogously, from (3.6) and (3.8), for any y, w ∈ S

‖Φ[y](t)− Φ[w](t)‖1/2 ≤
∫ t0+T

t0

∥∥A1/2e−(t−s)A∥∥ ‖F (y(s))− F (w(s))‖ ds

≤ C1/2L

∫ T

0

s−1/2 e−cs ds ‖y − w‖T ≤ 1
2
‖y −w‖T

holds uniformly in t ∈ [t0, t0 + T ] concluding our claim.

By the contraction mapping theorem, Φ has a unique fixed point z in S which is the continuous
solution of the integral equation (3.5) on (t0, t0 + T ) and, by Part I, is the solution of (3.3) in the
same interval with z(t0) = z0 ∈ B1/2.

We shall briefly sketch Part III (for details see [GM]).

Global existence. One can define an open maximal interval Imax = (t−, t+) (containing the
origin), where the solution z(t) of (3.3) is uniquely given by patching together the solutions zj(t)
on intervals Ij with zj(tj) = z0,j. By construction, there is no solution to (3.3) on (t0, t

′) if t′ > t+.
Therefore, either t+ = ∞, or else there exist a sequence {tn}n∈N+

, with tn → t+ as n → ∞ such
that z(tn) tend to the boundary ∂U of the compact set U where (3.6) holds.

It thus follows that, if t+ is finite, the solution z(t) blows–up at finite time. In what follows we
show that ‖z(t)‖1/2 remains finite for all t > t0 and this implies global existence of z(t) . Let us
begin with the following generalization of the Gronwall inequality (for proof, see Lemma 7.1.1 in
[H]).

Lemma 3.2 (Gronwall) Let ξ and γ be numbers and let θ and ζ be non–negative continuous
functions defined in a interval I = (0, T ) such that ξ ≥ 0, γ > 0 and

ζ(t) ≤ θ(t) + ξ

∫ t

0

(t− τ )γ−1 ζ(τ ) dτ . (3.9)

Then

ζ(t) ≤ θ(t) +

∫ t

0

E ′
γ(t− τ ) θ(τ ) dτ (3.10)

holds for t ∈ I, where E ′
γ = dEγ/dt,

Eγ(t) =
∞∑
n=0

1

Γ (nγ + 1)
(ξΓ(γ) tγ )n

and Γ(z) =

∫ ∞

0

tz−1e−tdt is the gamma function. In addition, if θ(t) ≤ K for all t ∈ I, then

ζ(t) ≤ KEγ(t) ≤ K ′ eξΓ(γ)T (3.11)

holds for some finite constant K ′.
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Taking the graph norm of (3.5), we have in view of (3.4) and (3.11)

‖z(t)‖1/2 ≤ ∥∥e−(t−t0)Az0

∥∥
1/2
+ L

∫ t

t0

∥∥A1/2e−(t−s)A∥∥ ‖ z(s)‖1/2 ds

≤ C ‖z0‖1/2 + L

∫ t

t0

(t− s)−1/2 ‖ z(s)‖1/2 ds (3.12)

≤ C exp
(
LC1/2

√
πt

) ‖z0‖1/2 ,

which is finite for any t ∈ R+.

Compact trajectories. Since Bγ ⊂ B1/2 has compact inclusion if 1/2 < γ < 1 [H], it suffices to
show that ‖z(t)‖γ remains bounded as t → ∞. The hypothesis ‖z(t)‖1/2 < ∞ combined with (3.6)
implies the existence of C ′ < ∞ such that, analogously as in (3.12),

‖z(t)‖γ ≤ ∥∥e−tAz0

∥∥
γ
+

∫ t

0

∥∥Aγe−(t−s)A∥∥ ‖F ( z(s))‖ ds

≤ Cγ−1/2 t
1/2−γ e−ct ‖z0‖1/2 + C ′Cγ

∫ t

0

(t− s)−γ e−c(t−s) ds ,

which is bounded for t > 0 provided c > 0 (i.e. infλ σ(A) > 0 ). Although the spectrum of A is not
positive if β ≤ 8π, we shall see in Section 5 that A in the integral equation (3.5) can be replaced
by a positive linear operator L.

This concludes the proof of Theorem 3.1.

✷

We may also consider the dependence of z with respect to the parameter α. The next statement
is a corollary of the above analysis.

Theorem 3.3 The solution z(t) : R+ ×B1/2 −→ B1/2 to the initial value problem as a function of
the bifurcation parameter α and the initial value z0 is continuous.

4 Equilibrium Solutions

The equilibrium ordinary differential equation

α (ψ′′ − 2ψψ′) + 2ψ = 0 (4.13)

with periodic conditions ψ(−π) = ψ(π) and ψ′(−π) = ψ′(π), can be written as


w′ = 2p (w − α−1)

p′ = w ,
(4.14)

by setting p = ψ and w = ψ′.

We give a qualitative and quantitative description of the solutions in the phase space R
2 and

study their implications for the equilibrium solutions.
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Theorem 4.4 The equilibrium equation has two distinct regimes separated by α = 2. For α ≥ 2,
ψ0 ≡ 0 is the unique solution. For α < 2 such that 2/ (k + 1)2 ≤ α < 2/k2 holds for some
k ∈ N+, there exist 2k non–trivial solutions ψ

+
j , ψ

−
j , j = 1, . . . , k, with fundamental period 2π/j

and ψ−
j (x) = ψ+

j (x+π). Moreover, each pair of non–trivial solutions are bifurcating branches from
the trivial solution ψ0 at αj = 2/j

2 with lim
α↑αj

ψ±
j = 0.

In the phase space, these solutions
(
ψ′
j, ψj

)
, are closed orbits around (0, 0) whose distance from

the origin increases monotonically as α decreases. Numerical computations indicate that these
orbits approach rapidly to the open orbit {(α−1, α−1x) , x ∈ R} from the left as α → 0.

The vector field f : R2 −→ R
2,

(w, p) −→ f(w, p) =
(
2p(w − α−1), w

)
,

defines a smooth autonomous dynamical system. It thus follows from Piccard’s theorem that there
exist a unique solution (w(x), p(x)) of this system, globally defined in R

2, with (w(0), p(0)) =
(w0, p0). As a consequence, the phase space R

2 is foliated by non–overlapping orbits

γP = {(w(x), h(x)) : x ∈ R and P = (w(0), p(0))}

which passes by P = (w0, p0) ∈ R
2 at x = 0.

By the chain rule, the system can be written as

dp

dw
=

w

2p (w − α−1)
(4.15)

provided αw �= 1. The trajectories γw0 , obtained by integrating (4.15) with initial point P = (w0, 0),

p2 = w − w0 + α−1 ln

(
1− αw

1− αw0

)

are portrayed in Figure 1.

Proof of Theorem 4.4. By fixing the period T of an orbit γw0 to be 2π, the label w0 becomes
dependent on the parameter α. Let T = T (α,w0) denote the period of the dynamical system with
initial value (w0, 0):

T =

∫
γw0

dx = 2

∫
dp

w
,

We set

Gj = T − 2π
j

and note that Gj : D = {(α,w0) ∈ R+ × R+ : αw0 ≤ 1} −→ R is a continuous function of both
variables satisfying

Gj

(
2/j2, 0

)
= 0.
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Figure 1: Trajectories of the dynamical system (4.14).

Note that the period TL of an elliptic orbit of the linearized system at the origin (f(w, p) replaced
by (2α−1p,w))

TL = 4

∫ (α/2)1/2

0

dp

(1− (2/α) p2)1/2
= 2π

(α
2

)1/2

and limw0→0 T (α,w0) = TL.

Provided

∂T

∂w0
> 0 (4.16)

holds for all (α,w0) ∈ D, by the implicit function theorem, there exist a unique (strictly) monotone
decreasing function ŵj : [0, 2/j

2] −→ R+ with ŵj(2/j
2) = 0 such that Gj(α, ŵj(α)) = 0.

Note that (4.16) and

T (α,w0) = α1/2T (1, αw0)

(rescaling x → x = x/α1/2, w → w = αw and p → p = α1/2p) imply that T is an increasing
function of both α and w0 and explains the monotone behavior of ŵj.

It thus follows that, if α < 2, for each j = 1, . . . , k such that 2/ (k + 1)2 ≤ α < 2/k2 holds, a
unique function ŵj such that ŵj(2/j

2) = 0 exists. The non–trivial solutions ψ±
1 , . . . , ψ

±
k are the

p–component of γbwj , j = 1, . . . , k, which winds around the origin j–times: ψ+
j is 2π–periodic with
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fundamental period 2π/j,
(
ψ+
j

)′
(0) > 0 and satisfies ψ+

j (x+π) = ψ−
j (x). If α ≥ 2, because T (α,w0)

is a strictly increasing function of w0 and T (α, 0) ≥ 2π there is no solution of G1(α,w0) = 0.

This reduces the proof to the proof of inequality (4.16).

Let

q = ln (1− αw)

be defined for αw < 1. There is no loss of generality in taking α = 1. The system is equivalent to
the Hamiltonian system 


q′ = 2p

p′ = 1− eq,

whose energy function is given by

H(q, p) = p2 + eq − q − 1 .

We denote by γE the orbits and note that there is a one–to–one correspondence between the
two families of closed orbits {γw0 , 0 ≤ w0 < 1} and {γE , 0 ≤ E < ∞}.
Let T̃ = T̃ (E) be the period of an orbit γE ,

T̃ =

∫
γE

dx =

∫ q+

q−

dq

p
.

Using the energy conservation law, we have

p = p(q, E) = (E − v(q))1/2 ,

where the potential energy is given by

v(q) = eq − q − 1 ,
and q± = q±(E) are the positive and negative roots of equation v(q) = E.

Equation (4.16) holds if and only if
dT̃

dE
> 0 holds uniformly in E ∈ R+. But this follows from

the monotonicity criterion given by C. Chicone [C]:

Lemma 4.5 Let v ∈ C3(R) be a three–times differentiable function and let F (q) = −v′(q) be the
force acting at q. If v/F 2 is a convex function with

( v

F 2

)′′
=
6v (v′′)2 − 3 (v′)2 v′′ − 2vv′v′′′

(v′)4
> 0 , q �= 0

then the period T̃ is a monotone (strictly) increasing function of E.

This concludes the proof of Theorem 4.4.

✷
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Remark 4.6 The value α = 2 is a bifurcation point as one can see by linearizing the equation about
ψ ≡ 0. The linear operator L[0] = A in the subspace of odd 2π–periodic functions has eigenvalues
and associate eigenfunctions as given before. Hence, if α > 2, the eigenvalues are all postive and
ψ ≡ 0 is locally stable. When α < 2 (but close to 2) a single eigenvalue becomes negative and one can
apply Crandall–Rabinowitz bifurcation theory to locally describe the stable solution which branches
from the trivial one. Note that Crandall–Rabinowitz theory can also be applied in the neighborhood
of αj = 2/j

2, j > 1, in the orthogonal complement of the span
{
π−1/2 sinmx, m = 1, ..., j − 1}

corresponding to the odd functions with fundamental period T = 2π/j.

With this Theorem we have given a global characterization of the non–trivial stationary solu-
tions.

Remark 4.7 In the sine–Gordon representation, the effective potential φ(x) =
∫ x
0
ψ(y) dy =

x2/ (2α) at γα−1 corresponds the Debye–Hückel regime with Debye length α. Although this regime
is not reached for all β > 0, it gets closed quite fast as β = 4πα approaches 0.

5 Stability

Let z(t; z0) denote the solution of the initial value problem. It follows

S(t)z0 = z(t; z0)

defines a dynamical system on a closed subset V ⊂ D (A) of B1/2 with the topology induced by the
graph norm ‖·‖1/2. Note that z(t; z0) is continuous in both t and z0 with z(0; z0) = z0 and satisfies
the (nonlinear) semi–group property S(t+ τ )z0 = z(t; z(τ ; z0)) = S(t)S(τ )z0.

Local stability means that z(t; z0) is uniformly continuous in V for all t ≥ 0. It is uniformly
asymptotically stable if, in addition, lim

t→∞
‖z(t; z0) − z(t; z1)‖1/2 = 0.

Theorem 5.8 (Local Stability) There exist a neighborhood U ∈ B1/2 of origin such that, if
α > 2 and z0 in U , then ψ0 ≡ 0 is stable, i.e., lim

t→∞
‖z(t; z0)‖1/2 = 0. If α < 2 is such that

2/ (k + 1)2 ≤ α < 2/k2 holds, among all equilibrium solutions of (4.13), ψ0, ψ
±
j , j = 1, . . . , k,

ψ±
1 are the only asymptotically stables. So, there exist ρ > 0 such that if ‖z0 − ψ‖1/2 ≤ ρ, then

lim
t→∞

‖z(t; z0)− ψ‖1/2 = 0 for ψ = ψ±
1 and sup

t>0
‖z(t; z0)− ψ‖1/2 ≥ ε > 0 for ψ �= ψ±

1 .

Proof. Consider the equation

dζ

dt
+ Lζ = F (ζ)

for ζ = z − ψ where ψ is an equilibrium solution and

Lζ = L [ψ] ζ = −αζ ′′ + 2αψζ ′ − 2 (1− αψ′) ζ

is the linearization around ψ and F as before. Note L = A if ψ = ψ0 = 0.

The local stability is consequence of the following two results.
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Theorem 5.9 If the spectrum σ(L) lies in {λ ∈ R : λ ≥ c} for some c > 0, then ζ = 0 is the
unique uniformly asymptotically stable solution. On the other hand, if σ(L)∩ {λ ∈ R : λ < 0} �= ∅,
then ζ = 0 is unstable.

Theorem 5.10 σ(L) > 0 whenever ψ = ψ0 and α > 2 or ψ = ψ±
1 and α < 2. If α is such that

2/ (k + 1)
2 ≤ α < 2/k2 holds for some k ∈ N+, then σ(L) ∩ {λ ∈ R : λ < 0} �= ∅ for ψ = ψ0 and

ψ = ψ±
j , j = 2, . . . , k.

Proof. For ψ = ψ0 the proff with α ≥ 0 follows from the spectral computation of L[ψ0] = A.

Let ψ be a nontrivial equilibrium solution and note that ψ(0) = ψ(π) = 0 by parity. ψ is
asymptotically stable if σ(L) > 0 and unstable if σ(L)∩ {λ < 0} �= ∅.
Let ϕ be the solution of

L[ψ]ϕ = 0

in the domain 0 < x < π satisfying

ϕ(0) = 0 and ϕ′ (0) = 1.

By the comparison theorem[CL], ψ is asymptotically stable if ϕ(x) > 0 on 0 < x ≤ π and
unstable if ϕ(x) < 0 somewhere in 0 < x < π.

To apply the comparison theorem a weight

p(x) := e−2
R x
0 ψ(y) dy

is introduced in order to make L a self–adjoint operator:

pL[ψ]ζ = −α (p ζ ′)′ − 2p (1− αψ′) ζ .

Note that (Lζ, η)p = (ζ, Lη)p for any odd periodic functions ζ and η of period 2π were (f, g)p :=∫ π

−π
f(x) g(x) p(x) dx .

Let

χ = c (−αψ′′ + 4ψ) , (5.17)

where c > 0 is chosen so that χ′(0) = 1.

It follows from the equation −αψ′′ = 2 (1− αψ′)ψ ,

χ(0) = 0 and χ > 0

whenever ψ > 0. In addition, we can verify

L[ψ]χ = 8cα2ψ (ψ′)2 > 0 .

If ψ = ψ+
1 , then χ > 0 on (0, π). By the comparison theorem, ϕ > ψ ≥ 0 on (0, π] which implies

the stability of ψ+
1 by the stability criterium.
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For instability, we observe that ψ′ satisfies

L[ψ]ψ′ = −αψ′′′ + 2αψψ′′ − 2 (1− αψ′)ψ′

= (−αψ′′ + 2αψψ′ − 2ψ)′ = 0 ,
in view of equilibrium equation. Recall that ψ = ψ+

j with j ≥ 2, has fundamental period 2π/j and
satisfies ψ(π/j) = ψ′′(π/j) = 0 by the odd parity and equilibrium equation. Since ψ′(0) > 0, this

implies ψ < 0 on (π/j, 2π/j) and the minimum of ψ is attained at x =
3π

2j
. Since ψ′ and ϕ satisfies

the same self–adjoint equation pL[ψ]ζ = 0, their Wronskian

W (ϕ, ψ′; x) =

∣∣∣∣ ϕ ψ′

−αpϕ′ −αpψ′′

∣∣∣∣
= αp (ϕ′ψ′ − ϕψ′′) = αψ′(0) > 0

is a non–vanishing constant (recall p(0) = 1, ϕ(0) = 0 and
(
ψ+
j

)′
(0) > 0). As a consequence

W (ϕ, ψ′; π/j) = −αp(x)ϕ (x)ψ′′ (x) > 0

implies ϕ (x) < 0 because ψ′′ (x) > 0. It thus follows from the stability criterium that ψ+
j , j =

2, . . . , k, are unstable since x ∈ (0, π) provided j ≥ 2 and there exist x ∈ (0, π), x < x, such that
ϕ(x) = 0.
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