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Abstract

Elliptic stochastic partial differential equations (SPDE) with polynomial pertur ation
terms defined in terms of Nelson’s Euclidean free field on R? are studied using results y
S. Kusuoka and A.S. Ustiinel and M. Zakai concerning transformation of measures on a strac-
t Wiener space. SPDEs of this type arise, in particular, in (Euclidean) quantum field theory
with interactions of the polynomial type. The pro a ility laws of the solutions of such SPDEs
are given y Girsanov probability measures, that are non-linearly transformed measures of
the pro a ility law of Nelson’s free field defined on su spaces of Schwartz space of tempered
distri utions.

Introduction

In this paper we study elliptic stochastic partial (pseudo) differential equations (SPDE) heuristi-
cally written as follows

(=A + D)p(z) + V() (z) = (A +1)2W(z) =z € R%, (1)

where A is the d-dimensional Laplace operator, V' is a (renormarized) polynomial function, and W
is an isonormal Gaussian process on R? (cf.Nualart [10], and for precise definition of (—A +1)2 1

see Theorem 1.1). W is often referred to as the Gaussian white noise on R?.

The existence problem for the solution ¢ of (1), as a tempered distribution valued random
variable, and the problem of deriving probabilistic properties for the solution, such as characterizing
a class of functionals of the solution possessing the so called reflection positivity, will be solved by
reducing these problems to the existence problem of the associated Girsanov probability measure
and the absolutely continuity of the measure with respect to a reference measure.
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1 Construction of nonlinear H — C' maps on Nelson’s free
field

We shall first recall the definition of a stochastic process on a parameter space D and its equivalent
class.

i) Let D be a locally convex topological vector space (TVS) which is separable, and (2, F,P)
be a complete probability space. A family of complex valued random variables {¥(p,w)} cp on
(Q,F,P) is called as a

stochastic process with parameter space D.

it)  Two stochastic processes {¥(p,w)} cp and {\i!(cp,w)}wep on
(Q,F, P) are said to be equivalent if

VoeD,  P({w|¥(p,w)=T(p,w)}) = 1.

iii)  Two stochastic processes {¥(p,w)}, cp and {T(p, w)},ep on (U, F, P) are said to be strongly
equivalent if

P({wlVp €D, ¥(p,w) = F(p,w)}) = 1.

Let S (Rd) be the Schwartz space of rapidly decreasing test functions equipped with usual
topology. S(R?) is a nuclear space. Let S’'(R?) be its topological dual.

Let A be the d-dimensional Laplacian, and set J% = (—=A + m?)” " for some fixed m > 0.
Precisely J® is the pseudo differential operator with the symbol (|¢|2 +m?2)~®, £ € R?. We denote
the kernel representation of J* by J*(x —y) : (J*p)(z) = fRd J*(x — y)e(y)dy, for p € S. This
is defined by the Fourier inverse transform such that

a _ —d V—=1z-£ 2 2\ —a 1 d.\d
J¥(x) = (2m) /Rde (1€ + m*)~“d¢ € L' (R"; \Y).
An integral representation of this Green kernel by means of a modified Bessel function, which also
puts into evidence its regularity, is well known (cf. for e.g. [15]).
For each a, b, d > 0 let B;“b be the linear subspace of S'(R?) defined by
By ={(lal” + 1) I f : f e L2 (R}, (2)

where X denotes the Lebesgue measure on RY. Bg’b is a separable Hilbert space with the scalar
product

<uly >= /Rd J((|jz? + 1)~ %u(z)) J (2 + 1)~ %v(z))dx, u, v € B, (3)

Note that if a, b, d > 0, then Co(R?) C B;’b. From the consideration of cylinder sets con-
structed from Cy(R?) and Bg’b it is easy to see that

B(Co(R* — R)) = {A NCo(R= R) : Ac B(BZ”’)} : (4)
where B(Co(R* — R)) and B(Bg’b) are the Borel o-fields of Co(R?) and Bg’b respectively (this is

obvious because the Borel ¢ field of a locally convex topological vector space which is separable is
generated by its cylinder sets, cf. Yoshida [15]).



We use the same terminology and notations concerning multiple stochastic integrals, abstract
Wiener spaces and transformations between abstract Wiener spaces which are used in [10] and
[14].

Let (©,F,P) be a complete probability space and consider an isonormal Gaussian process
W = {W(h),h € L?,,(R*; A%}, where A denotes the Lebesgue measure on R® and L2, is the

real rea

real L? space: W is a centered Gaussian family of random variables on (€, F, P) such that
BV W (o)) = [ hi)g@N(do). b g € (R,

where E denotes the expectation with respect to the probability measure P. € can be taken to be
the complete separable metric space R™ equipped with the metric

d(wvy) = ZQ_TLHIIDH;UTL - yn|71}7 T = ($1,$2,ZE3, t )7y = (y15y25y37' : ')7
n=1
P:N&Ol (5)

and F to be the completion of the Borel o-field of (2 with respect to P.
For A € B(R") such that A%(4) < co we set

W(A) = W(xa), where y 4 is the indicator function of the set A.

Then, for h € L2, (R% A% the random variable W (h) can be regarded as a stochastic integral,

real

and is denoted by
W(h) = / hdW.
Rd

In the sequel we sometimes use the notation W(p) =< go,W >g,s for ¢ € S. The multiple
stochastic integrals, such as (12) below, are defined in the usual way. Namely a multiple stochas-
tic integral is the limit of a sequence of multiple sums of Gaussian random variables such that
Zil,...,ip Wiy ,.ig W (A ) X - - x W(A;,), where a;, .. ;, = 0if i; =i for some j # k (i.e. by taking
sums with eliminaton of all diagonal parts), for a precise definition of multipe stochastic integral
cf. section 1.1.2 of [10].

We denote the Fourier and Fourier inverse transform of a function ¢ respectively by F[y] and
F~1[], which are defined by

FIRQ) = [, eV e

Fel(€) = (2m) ¢ /Rd eV 1o (z)da for ¢ € S(RY).

We sometimes denote F[p] = ¢. Let 1 € C5°(R?) be such that 1, (z) = n(y) for |z| = |y| and

(@) @={ ' = ©)
0<nm(x) <1, x) = 6
== " 0 jzl>2,
and let nx(z) = m (%) € Cs°(RY), k=1,2,3,.... Also define
p € C5°(RY) as follows:

Cosp(—i——3)  |e[<1

Xpl\l———= X
plz) = P e
0 |z| > 1



where the constant C' is taken to satisfy

/Rd p(x)dr = 1. (7)

Let
pr(x) = kep(kx), k=1,2,3,....

For a > 0 we define J® € S(RY), k=1,2,3,... by

Ji (z) = [ T () pr(z — y)dy. (8)
Also
Fe @y, yp) = (e(@) I (@ —y1) - T (2 = yp), (9)
and
FYxy1,-.,0p) =% —11) - I (z —yp), p=1,2,3,.... (10)
Then we see that the function F* and F'™ are symmetric in the last p variables (y1,...,y,) and
Fe e S(RY™Y,  Fe(xiyn,...,yp) =0 for |z] > 2k. (11)

Foreach a >0, p>1 and k >1 we define the random variable :; ¢%, , : as a multiple
stochastic integral such that

B (@) = /( o P )V ) V. ), (12)

Remark 1.1 (continuous version of :; ¢ :)  For each fized k € N it is easy to see that
{ie dho (l’)}zeRd satisfies the Kolmogorov’s continuity criterion for processes on R® (cf., e.g.,

Section A.8 of [10]), and has an equivalent process {:i q}&w : (.’E)}IERd which is a Co(R* — R)-
valued random variable:

P ¢h: (@) = bt (@) =1,  VreR,

Pk %, 1€ Co(R* —» R)) = 1.
We always take {:x #%, ,, : (m)}xeRd as its continuous modification

{k &g,w : (z)},cge and drop the tilde in the following. Then by (4) {x ¢4, : (2)}, ge i
understood as a B;’b (a, b > 0) valued random variable on (Q, F, P).

Theorem 1.1
Suppose that the positive integer p and the positive real numbers a, b and « satisfy

min (1, %) + p X min <1, %) > p, b>d. (13)

Then {:. ¢4, ,, :}oeN i85 a Cauchy sequence in L*( — Bg’b; P) (cf. Remark 1.1) and there exists
a B;’b—valued random variable : ¢¥, , :€ L*(Q — B;’b, P) such that

lim/”:k P g,w:|
Q

k—o0

2
Bg,b P(dw) = 0, (14)



P(<igh, no>ss =lu(p) =1,  VeeSRY, (15)

where
lpw(p) = o) J¥(x —y1) - J(x — yp) dz)dW,, (y1) - - - AW, (yp). 16
() /(d)p(/d() ( y1) ( Yp) dz) (y1) (Yp) (16)

The proof of Theorem 1.1 has been given by Yoshida [15]. By Remark 1.1 and (4), since
the Co(R* — R)-valued random variable :; #*, ., : can be understood as a Bg’b (@, b > 0)-valued
random variable by making use of its multiple stochastic integral expression, it is easy to see
that this random variable is in L?(Q — B;’b; P). Then by making use of a Fubini type theorem
concerning the stochastic integral resp. Lebesgue integral on R?, the theorem follows. [ ]

In the sequel we shall denote 1, @}, , : and : ¢}, , : by £¢a,. and da . respectively. In particular
is a

when a = 3, then for each given d the S'(R%)-valued random variable (cf. Theorem 1.1) DL

stochastic integral expression for Nelson’s free Euclidean field, we denote it simply by ¢,
and we write

b = JEW,.
Now, by making use of the above results and notations let us study non-linear shifts on Nelson’s

free field in the context of abstract Wiener spaces. For given d, let u be the probability law of

¢o = ¢1,- Since @, is a B;’b—valued random variable (@ > 92, b > d by Theorem 1.1) on

(Q,F,P), uis a probability measure on Bg’b :
d—2
n(4) = P({wlés € 4}), A€BBY") (a>=—, b>d). (17)

We remark that for the complete probability space (2, F, P) defined by (5), the following holds:
If we let
B* = {A{w|¢. € A} € T},

then the probability space (B;’b, B*, 1) is a complete probability space, i.e.

m
B* = B(B%") = the completion of B(B}") with respect to . (18)

Hence, the map 7 defined by (21) below is a B;I’b—valued random variable on (B;’b, BH, ).

Theorem 1. 2 Suppose that a, 8, a’, p and b satisfy
4
min(1, —) + min(1, =) > 1, (19)
d d
4a’ 4
min(1, 7“) + p x min(1, 7ﬁ) >p,  b>d (20)

For each k let 7. = 7(3,,),1 be the measurable map from B;7b to B;”b defined by

(5]

@)@ = @) %@ Ba—).0 0 >ss)

for ¢ e Bg’b, (21)

where



Then
P ({w (b)) (@) =2 ¢, < () Va e Rd}) —1, (22)

the Bgl’b—valued measurable functions {7,(¢)} on (BY b,B“,,u) form a Cauchy sequence in the
Banach space L? (B;’b — Bj . 1), and there exists a B(Bj Y/ BA-measurable function T = T(3,p) €
L*(BY" - B;I’b;u) such that

lim 7 (¥) — T(@ZJ)IIQBgr.bu(d@/J) =0, (23)

k— oo B
d

or equivalently
hm / |7k (do) — w)|| P(dw) = 0. (24)

Moreover one has
m(¢w) =1 95, P—as. we. (25)

W

By the definition of Wick power and multiple stochastic integral (22) can easily be proved. The
existence of 7 is proved by using Theorem 1.1 and (22), these proofs have been given in [15] ®

Next, we shall see that Nelson’s Euclidean free field possesses the structure of an abstract
Wiener space, and then show that the map 7(3,) on the abstract Wiener space has sufficient
regularity.

As usual let H” = HY(R") be the Sobolev space on R? such that

(Y = {6 e S@RY| [P0+ o) ds <
In order to make the notations simple, we equip H”(R?) with the inner product
< v = (2m) /Rd (Fu) (@) (Fo) (@) (m? + |22) de

for a given constant m >0 (interpreted as "mass parameter ).
Then by Theorem 1.1 for a > ¢ — 1 we see that (B’ b p) is an abstract Wiener space and one has,
for p € S(RY):

/TS ()
B

= [ V=T [ ([ o)1t -y )] Pa
Q R
= Lo = ! Jlol|? 26
=exp | =5llellz-1 ) =exp (=517 ¢l ) - (26)
The inclusion map ¢ : H~! — B;’b defined by

i(h) = J'h, heH™! (27)

is continuous and i(H ') = H' is dense in B%". By this we can identify H ' with H', and we
have the following continuous injection:

(By" — H™' = H' — BS".



Setting
H=H"'
we will consider the abstract Wiener space (B%",i(#), 1) with Cameron-Martin space
i(H)=J'H'=H' (28)

We then apply the results given by [7], [14] concerning the (non-linear) shifts on Wiener spaces to
the maps 7 defined above.

Remark 1.2 Nelson’s Euclidean free field is defined originally as a Gaussian process indexed by
H = H=! (c¢f. Nelson [8]), i.e. Gaussian process with the index set H=' of which characteristic
function is

ew(=5lelly ), e e HT (ef (26))

By this, here we prefer to denote the Cameron-Martin space by i(H), and denote the abstract

Wiener space by (BZ’b,i(H),,u). Then our calculus on the abstract Wiener space will be performed
through H.

Definition 1.1 (Representative for 73 ) For each p by (23) we can take subsequences
{T6,10),k; 1>+ s 1T(3,p).k, } and a set B(3,p) € B satisfying u(B(3,p)) = 1 such that

G 7.0,k () = 760 W)lGar =0, V¥ EB(Bp) ¢=1...,p.

We denote by B(3,p) the set of all ) € B;’b such that the limits

limg; 00 7(3,q),k; (¥) exist, q=1,...,p, in Bgr’b for some a < a'. Then B(B,p) is B*-measurable.
In the sequel we fiz a representative T3 ) of 7(g ) defined as follows:

_ { lim 73 )., (V) ¥ € B(B,p)
T(B,p) =

k}]' — 00
0 elsewhere.

T(3,p) will be simply denoted by 73 ,)-

Theorem 1.3 (polynomial H — C' map) Let b > d and a be a number such that a > % —
%. Let (B;7b,i(7{),u) be the abstract Wiener space defined above, and denote the ”Gross-Sobolev
derivative” and ”divergence” operators on (Bg’b,i(”;‘{),u) by V and ¢, respectively (cf. [7], [10],
[14]). For M >0 let nas be the space-cut-off such that nar(x) = m(57) (cf. (6)).

1°)  Let the integer p and the real number 3 > 0 satisfy

dp+1

8> 4m. (29)

Then the map u, () = J°~2 (nm7(,p) (V) (H-valued Wiener functional) is an element of D (1)
(Vk > 1), and the following holds:

Vup@)@,9) = p(mt, om0y ()OI = 2) TP (-~ y))
€ L*(H®H;u).

8,8



Let B(3,p) be as in Definition 1-ii) for these p and 3, then u(B(B,p)) = 1 and B(B,p) + H' C
B(B,p).
The divergence of u, is given by

Sup(¥) =<, T(gp41) () >s.60  p—as. € B (30)
) If
d,p—2 2
Z(p—1 T3

(which is a particular case of i — 1°)), then

Vuy (¢ +i(h))(x,y)

S (") e P G -0

B> ) (31)

xJ’Bf%(—.’L')J'Bi%(_y)> V'l/JeB(ﬂap)a Vh e H. (32)

s,8"”
up is an H — C" map on (B i(H), ) (cf. [7], [10], [14]):

HSh+— Vu,( +i(h)) € HOH is continuous for all ¢ € B(3,p). (33)
Definition 1.2  Foru € Dy 1(H) and A € R we define

Anult) = deta(Iy + XV () exp(—Adu() — % () o), (39

where dety (I3 + AVu(v)) denotes the Carleman-Fredholm determinant of the Hilbert-Schmidt op-
erator AVu(y) € H®H and | |y denotes the norm of the Hilbert space H.

2 Main results for SPDE with cubic perturbation

In this section we shall consider elliptic SPDE on R? formally given by
(A +m2(z) + Aar(z) 103 (2) := (—A + m?)2 W (z), = € R%. (35)

where nys(x) = m1(57) is the "space-cut-off” defined by (6), and W is an isonormal Gaussian

process on R?. Using the measurable maps defined by Theorem 1.2 and Definition 1.1, the above
SPDE can be written in the following form:

(= +m2)(a) + M ()74 ) (0)(@) = (~A+m?)PW (), we R (36)

We reduce the existence problem of the solution of (36) to the existence of corresponding
Girsanov measures. We shall adopt the notion of ”Girsanov measure” given in section 1.3 of
[14] for our problem as follows. Let S be a topological space and B(S) be its Borel o-field.
Let p be a complete probability measure on (S, Wu), and let T" be a measurable map such
that T : (S, B(S)") — (S, B(S)), where B(S)" = ”the completion of B(S) with respect to p”. A
signed measure v on

(S,B(S)") will be called as a ” Girsanov measure on (S,B(S)") associated with 1 and T” if and
only if it satisfies

/ F(T8)dv(s) = / F(6)du(@)
S S



for any bounded measurable f : (S,B(S)) — (R, B(R)). (37)

In particular if such a signed measure v is a probability measure on

(S, (S)M), then this will be called the ” Girsanov probability measure on

(S,B(S)") associated with p and T .

Remark 2.1 i) If a "Girsanov probability measure v on (S, (S)M) associated with p and T
¥ exists, then by (37) the probability law of T'¢ under v is u. In other words, for a random variable
¢ taking values in S with probability law v there exists a random variable v with probability law w,
and the following holds:

To=1.
In case v is not a probability measure but a signed Girsanov measure on (S,B(S)M) associated
with p and T, if we set By = {T~'A|A € B(S)}, and restrict v to Br, then v|p, is a probability
measure on (S,Br) and the probability law of T¢ under v is u. Such signed measures may be im-

portant to be considered in relation with the indefinite metric quantum field theory (cf. Albeverio,
Gottschalk and Wu [1]).

Let p be the probability law of Nelson’s free field ¢ on R? then i is a complete probability
measure on (B;’b,B”) (cf. (18)). Let T be the map defined on B;7b such that

T(y) =+ J Onura g () v e By’

We may set S = Bg’b and B(S) = B(Bg’b) in the above general discussion. If there exists v which
is a ” Girsanov probability measure on (Bg’b,B”) associated with p and T, then for a Bg’b—valued

random variable ¢ with probability law v there exists a Nelson’s free field ¢ on R? and the following
holds:

Y+ J1(>\77MT(§73)(¢)) = ¢.

Since ¢ can be expressed by ¢ = J2W for some isonormal Gaussian process W on R?, in the sense
of distribution valued random variables this equation means that

(= +m2)(a) + M ()74 ) (0)(@) = (~A+m?)PW (), we R (33)

By this way we can reduce the existence problem of the solution of the SPDE (38) to the existence
problem of the corresponding Girsanov probability measure.
In general we give the following definition

Definition 2.1 (Solution of SPDE)  For given d let (B;7b,i(7-[),u) be the abstract Wiener
space, which is Nelson’s Euclidean free field, defined in section 1. For an H valued B*-measurable
function u : B;’b — H and for some A € R (note that by Theorem 1.3 u(v) = narr(a,p) () and

u(y)) = nmT(p,ec) (¥)



Lemma 2.1 (Key lemma for the cubic power perturbation) Let d > 2 be given, and
suppose that the assumptions of Theorem 1.3-1°) hold for p = 3. Also take the numbers X > 0 and
€ > 0 to satisfy \(1+€) < 5%, where L = [pa(J*"(z))?dz. Then for

w() = us(®) = I % (75, (%))
defined by Theorem 1.3-1°), the following holds

1+e
exp{—/\du + TA2||VU||§} € Ng<oo L (1), (39)

where || ||2 denotes the Hilbert-Schmidt norm || ||nen-

By making use of the fact that du and Vu are the 4-th and 2nd Wick power of ¢ respectively,
this lemma can be proved by applying Nelson’s exponential bounds:

Proof of Lemma 2.1 We will prove (39):

1—|—€

exp{—Adus + || Vusl3} € Ng<oo LY(p). (40)

For simplicity we will give a proof only for the case d =2 and 3 = 1.
The proof will be perfomed by following a strategy given by Nelson (cf. Simon [13]). Namely,
let

1
= _Mous + —X2||v 2 and Vi = —Augy + %invug,kng,

where )
us(v) = J° 2 (Mm78,3),6(¥))-

Suppose that we can show that there exist k1, k2 and « that do not depend on k such that
Vie(¥) < ky(cr)? Vk, p—a.s. e B (41)
(B IV = VI <mala— 1K a2, (42)
where ¢, = ¢y ), = fR2(J,f (y))2dy, defined in Theorem 1.2. Then through the same discussion as
Lemma V.5 of [13], we see that there exist @' > 0 and 8 > 0, independent of k, such that
u{v |V > B(logk)®} < e*ka’, for all large k.

(40) easily follows from this inequality (cf. Theorem V.7 of [13]).
Hence, it suffices to show that (41) and (42) hold for our exponent.

(41) can be shown as follows. For 1) € B3’ let iy (2) =< Jk% (z =), (J729)(") >s.s1, then by
(21)

7126 (¥)(2) = 2!k (2))° { (¢k - —Ck}
by this we see that
1 +e

BN < (), 3.2y k(W) = 2) T = y) >s.5 [

=ELi%E&L/;nymaammwfﬂ¢m@V—cwmA%xW@ﬁV

10



x { (¢, )) — e} (TN (z = 2'))2dzd?’
=IOV [ @ ) - e
(

(=) (e (1))? - ck}] " (= = #)2dzd
+ QHIBVL [ @ ) () - euft, (43)

Vi € BS?,  where L= /R2(J1(z))2dz

— (2"

On the other hand, from (21)
—A(S’U,?,(il]) =A< nM,T(l 4), k(’(/}) >

= =2 [ ) [ ) o) = B () +
Vzpeng. (44)

Since the first term of the RHS of (43) can not be positive, from (43) and (44) we have the
evaluation

—Aug () + [V () |30

<A / e (2) (2 { = W) + 6 (2))* = 3(en)?

+%/\LUM(Z)((¢I€(Z))4 — 2c(Yr(2))? + (Ck)2)}dz’

Vi) € By'. (45)
Since 0 < mar(z) < 1, if € and X satisfy 2 (1+€) AL < 1, then the term in the bracket of the RHS of
(45), the biquadratlc formula of 14, can not be greater than &/ (cx)?, where ] is a constant which

is independent of z and k. Hence, we can take k1 = A&} fRz nM(z)dz, and obtain (41)
Next, (42) can be proved as follows. By Hoélder’s inequality we see that

" 2 2|77y
(B[] 19054l = IVusll3] )7
< (B"[||Vusl3) 2 (E*[||Vus x — Vus|[37])2
+(B || Vg b]|27]) % (B [[| Vus e — Vug|[37])% . (46)

But each term in the above expectation such as ||Vus||3, [|[Vusr — Vus||3 and ||Vus.||3 has an
expression by means of multiple stochastic integrals, for example

[Vus ()13
32

= s = a7
xJ2 (2 = 2})J2 (2 — ab)dzdz")dW,, (z1)dW,, (22)dW,, () dW,, (z})

+4/ 4(/R2xR2(J1 (2 = ") (e (2) T2 (2 — 1) T3 (2 — @) dzd2)

=

(z — wl)J%(z — I3)

11



W, (21)dW,, () + 2 / (T (2 = 2)) e (2) e () dzdl2,
R*xR*?
P—as. well (47)

Using the properties of pr(§) and passing to a standard argument concerning the calculation of
the expectation of multiple stochastic integrals (cf. [15] and also Section V.1 of [13]), by (47) and
the corresponding expressions through multiple stochastic integrals for the other terms, it is easy
to see that there exists C; which depends only on M such that

(E*[(IIVuslI3)?)E < C1,

(E*[(||Vus [3)2)* < Ci;
also for each a > 0 there exists Cy which depends only on M such that

(E*[([Vus,x — Vus||2)?])? < Cok™.

Since for random variables having multiple stochastic integral representation we can apply Nelson’s
Hypercontractive bound (cf. Theorem 1.22 of [13]), from the above inequality we can deduce the
following;:

(B*[(IVus]2)4])7 < (¢ — 1)%Ch, (48)
(B [(IVusl12)])7 < (¢ — 1)*Ch, (49)
(50)

(B*[(IVuse = Vus|3)T < (0= 1°Cak™,  q=23,....
Then, by (46), (48), (49) and (50) we conclude that there exists some C' that depends only o
such that .
(B[ IVuskll3 = [Vusl31]) e < (¢ —1)°C'k™°.

Moreover using that dusr(d.) and dus(d.) have expressions by means of multiple stochastic
integral we easily see that

(E*[|6us i, — dus)?])® < (¢ — 1)2C'k™".

Combining these evaluations we obtain (40).
|
Let Ay, (1) be the random variable given in Definition 1.2. Then from Theorem 1.3-1°), for u
as in Lemma 2.1 the following holds:

A)\u('ﬁb)
= deta (T + 3N (), o2 ()OI H( =) T3 (=) o)
X exp {—/\<77M, T5,(%)) g0 = % |77~ (a8 () 3 } : (51)

Lemma 2. 2 Let a > %—% and b > d. Under the assumptions of Theorem 1.3-2°) the following
holds:
Ay € Ngcoo L (1), EfAN] = 1. (52)

Let
D = {y € BY" | dety (I3 + AVu(y)) # 0},

and let N(¢, D) denote the cardinality of the set T-{)} N D for T() = v + i(Au(x))), then
N (2, D) is a measurable function and the following holds:

n({11< N, D) < oo}) = 1. (53)
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Proof.  First of all we recall a crucial result for H —C" maps on abstract Wiener spaces derived
by Kusuoka [7] (cf. also Proposition 3.5.1 of [14]): For a map u that is H — C' let T be the
shift defined by Definition 2.1, then there exists a sequence of measurable sets G,, C Bg’b, n €N,
such that U,G, = D, and there exists a sequence of shifts T,,, n € IN, such that T, = T a.s. on
G, T, is bijective and the inverse T}, ! is measurable.

Under the assumptions of Theorem 1.3-2°) since u3 is an H—C'" map, by this fundamental obser-
vation we can consider the properties of such measurable functions N (¢, D) and ZyeT—l(w) sign(Ax.(v))-
Namely, in theorem 9.3.2 and Remark 9.3.3 of [14] it is shown that if u satisfies (39) then (52)
holds. On the other hand, in Theorem 9.2.4 of [14] it is shown that (39) is also a sufficient condition
for u under which the following holds:

E' A= > sign(Ar(y), p-—as veBy. (54)
yeT(¢)

Since Ay (y) = 0 and sign(Ax,(y)) = 0 for y ¢ D, by (52) and (54) we see that
Yo sign(A@) = Y sign(Aw() =1 p—as.y € By

yeT~1(¢)ND yET~1(¢)

By this we have

1< Y ien(bu@)l= ) 1=N(@,D)

yeT~1(¥)ND yeT~1(¥)ND

w—as. PE B;7b.
On the other hand by (52) since EF[|Axy|] < 00, and by Theorem 3.5.2 of [14] since EF[|Axy|] =
EH*[N (-, D)] we have
N(¢,D) < oo uw—a.s. PE B;’b.
Combining these facts we have (53). [ |

Theorem 2.3 (Solution for the space-cut-off cubic perturbation case)  For givend and
p = 3 take the positive numbers a, a’' and B to satisfy the assumptions of Theorem 1.3-2°). Also
take number A > 0 to satisfy A < 9%, where L is the number defined in Lemma 2.1. For some fized
positive number M let nar(x) = m(5z) (c¢f. (6)), and define

Ts(0) =¥ +iQua(),  us(¥) = I (narrp.0(®)) (55)
and
dvs = q o T3] Ay |dp for q such that
1

W) ={ Ng,py  TNODI#O

0 otherwise,

where Ayy, is given by (51), and the measurable function N (i, D) is defined in Lemma 2.2. Then

Ayt i a (signed) Girsanov measure and vs is a Girsanov probability measure on (B;’b,[)’“)
associated with p and Ts :

i)

E([f o TsAnu] = E[f],  E*[f o T3] = E*[f] Vf € Co(By"). (56)
ii) vs gives a solution of (57) below in the following sense: if ¢ is a Bg’b-valued random variable
with probability law vs, then the following holds for some isonormal Gaussian process W on R%:

(=A +m?) =2 () + Xr (0)7(5,3) (0 () = (=A +m?) W (@). (57)
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Proof of Theorem 2.3.  First of all we note that ¢(T3(¢)))|Axus (¥)| can be taken as a B¥-
measurable function: For the B*-measurable shift T3(¢)) with the H — C! map wus, since T3 *
(1| D) (the image measure of T5(¢) restricted to D) is absolutely continuous with respect to p (cf.
Theorem 3.5.2 in [14]), we can define the random variable q(7T5(1))|Axus (10)| without ambiguity
by using a Borel measurable (1)) which is defined through any Borel measurable version N(v)) of
N (%)) such that

N(@,D)=N(,D)  p-as o€By
(cf. the proof of Lemma 2.2).

Noticing this, by (53) we can apply Corollary 3.5.3 of [14] to our shift 75, which then yields
the results. [ ]

Remark 2.2 (Comparison with (¢*), field) When d = 2 we can take 8 = 1 a case of
special interest in Fuclidean quantum field theory. In this case the above theorem tells us that the
measure vs gives a solution of (35) with space-cut-off:

(=A +m2(z) + A (@) 1 07 (2) := (—A + m?)2W (z), = € R>. (58)

vs can be written by
va(d) = (T ())|deta (T + 3Anar () 2 42(2) : 31y (0) |

X exp{—/\/R2 () s Y (x) @ do — %2 /R2 (J% (nar = p? :)(a:))2da:}
xp(dy),

where we have used the fact that J°== (z) = Sgoy(z) for B=1 (cf. Theorem 1.3).
On the other hand, the (¢*)> Euclidean field with space-cut-off nar is a random field on R*
with the probability measure v,,, such that (cf., e.g., Definition in Section 1 of [13] (pp.141))

A () = o= [ () 0*(a) + el

with the normalization constant Zyr = E*[exp{—A [gz nm(z) : *(z) : dx}]. Then, there is a

similarity between vs and v,,, in the sense that their Radon-Nikodym densities dd—’:f resp. dl;LM
have the common term exp{—X [z nm (x) : 1*(x) : dz}. But, because of the existence of the other
non-linear (also non-local) terms in dd—‘;f such that q(T'(¥)), A1 = |detal(Tg-1 + 3Mar(z) = Y3 (x) :
023 (y)] and Ay = exp{%2 fRz(J%(nM % 1) (2))?dz}, we have to distinguish vs from vy, ( as far
as q(T(¢)), A1 and Ay do not cancel each other).

We also remark that (J2 (ny : 3 :)(x))?, which is the integrand of A,, is non-local in the sense
that (J=(nay = ¢ 2)(2))? = ([me J2(z — ) (y) : 3 (y) : dy)? is not measurable with respect to
the o-field generated by the random variable < ¢(-),5§z} > with §¢ a C3°(R?) approzimation of
the Dirac measure at the point z.

Moreover, since fRz(J%(nM s P ) () de = [ge o ge I — v ) () (y) (G P (y) o)
V3 (y") )dydy' and J'(y) on R? diverges like ”—log|y|” (near 0), it is possible to say that the
exponent of Ay contains a term of higher order than : ¢* :.

References

[1] Albeverio, S., Gottschalk, H., Wu, J.-L.:  Models of local relativistic quantum fields with
indefinite metric (in all dimensions). Commun. Math.Phys.184, 509-531 (1997).

14



[2] Albeverio, S., Gottschalk, H., Yoshida, M.W.: Systems of classical particles in the grand
canonical ensemble, scaling limits and quantum field theory. SFB 256 preprint No. 719, Bonn
2001.

[3] Albeverio, S., Hgegh-Krohn, R., Zegarlinski, B.: Uniqueness and global Markov property
for Euclidean fields: The case of general polynomial interactions. Comm. Math. Phys. 123,
377-424 (1989).

[4] Albeverio, S., Kusuoka, S.: Mazimality of infinite dimensional Dirichlet forms and Hpegh-
Krohn’s model of quantum fields. Ideas and methodos in quantum and statistical physics. eds.
Albeverio, S., Fenstad, J. E., Holden, H., Lindstrgm, T., Cambridge Univ. Press, Cambridge;
New York, 1992, pp.301-330.

[5] Albeverio, S., Rockner, M.: Stochastic differential equations in infinite dimensions: solution
via Dirichlet forms. Probab. Th. Rel. Fields 89, 347-386 (1991).

[6] Cruzeiro, A.B., Zambrini, J.C.: Malliavin calculus and Euclidean quantum mechanics II.
Variational principle for infinite dimensional processes. J. Funct. Analysis 130, 450-476 (1995).

[7] Kusuoka, S.: The non-linear transformation of Gaussian measure on Banach space and its
absolute continuity (I). J. Fac. Sci. Univ. Tokyo IA 29, 567-597 (1982).

[8] Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 221-227 (1973).

[9] Nelson, E.: Remarks on Markov field equations. Functional integration and its applications
(Proc. Internat. Conf., London, 1974) ed. Arthurs, A. M., pp. 136-143, Clarendon Press,
Oxford (1975).

[10] Nualart, D.: The Malliavin calculus and related topics.  Springer-Verlag, New Y-
ork/Heidelberg/Berlin, 1995.

[11] Reed, M., Simon, B.: Fourier analysis, Self-Adjointness. Academic Press, London, 1975.

[12] Rockner, M., Zegarlinski, B.: The Dirichlet problem for quasi-linear partial differential oper-
ators with boundary data given by a distribution. Stochastic processes and their applications
in mathematics and physics. eds. Albeverio, S., Blanchard, Ph., Streit, L., Kluwer Academic
Publishers, 1990.

[13] Simon, B.: The P(®), Fuclidean (Quantum) Field Theory. Princeton Univ. Press, Princeton,
NJ., 1974.

[14] Ustiinel, A.S., Zakai, M.: Transformation of measure on Wiener space. Springer-Verlag, New
York/Heidelberg/Berlin, 2000.

[15] Yoshida, M.W.: Non-linear continuous maps on abstract Wiener spaces defined on space of
tempered distributions. Bulletin of the Univ. Electro-Commun., 12, 101-117 (1999).

15



