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Abstract

Elliptic stochastic partial di�erential equations (SPDE) with polynomial perturbation
terms de�ned in terms of Nelson's Euclidean free �eld on Rd are studied using results by
S. Kusuoka and A.S. �Ust�unel and M. Zakai concerning transformation of measures on abstrac-
t Wiener space. SPDEs of this type arise, in particular, in (Euclidean) quantum �eld theory
with interactions of the polynomial type. The probability laws of the solutions of such SPDEs
are given by Girsanov probability measures, that are non-linearly transformed measures of
the probability law of Nelson's free �eld de�ned on subspaces of Schwartz space of tempered
distributions.

Introduction

In this paper we study elliptic stochastic partial (pseudo) di�erential equations (SPDE) heuristi-
cally written as follows

(��+ 1) (x) + V ( )(x) = (��+ 1)
1

2 _W (x) x 2 Rd; (1)

where � is the d-dimensional Laplace operator, V is a (renormarized) polynomial function, and W

is an isonormal Gaussian process on Rd (cf.Nualart [10], and for precise de�nition of (��+1)
1

2 _W

see Theorem 1.1). _W is often referred to as the Gaussian white noise on Rd.
The existence problem for the solution  of (1), as a tempered distribution valued random

variable, and the problem of deriving probabilistic properties for the solution, such as characterizing
a class of functionals of the solution possessing the so called re
ection positivity, will be solved by
reducing these problems to the existence problem of the associated Girsanov probability measure
and the absolutely continuity of the measure with respect to a reference measure.
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1 Construction of nonlinear H �C1 maps on Nelson's free

�eld

We shall �rst recall the de�nition of a stochastic process on a parameter space D and its equivalent
class.
i) Let D be a locally convex topological vector space (TVS) which is separable, and (
;F ; P )
be a complete probability space. A family of complex valued random variables f	('; !)g'2D on
(
;F ; P ) is called as a
stochastic process with parameter space D.

ii) Two stochastic processes f	('; !)g'2D and f~	('; !)g'2D on
(
;F ; P ) are said to be equivalent if

8' 2 D; P (f!j	('; !) = ~	('; !)g) = 1:

iii) Two stochastic processes f	('; !)g'2D and f~	('; !)g'2D on (
;F ; P ) are said to be strongly
equivalent if

P (f!j8' 2 D; 	('; !) = ~	('; !)g) = 1:

Let S(Rd) be the Schwartz space of rapidly decreasing test functions equipped with usual
topology. S(Rd) is a nuclear space. Let S 0(Rd) be its topological dual.

Let � be the d-dimensional Laplacian, and set J� = (�� + m2)
��

for some �xed m > 0.
Precisely J� is the pseudo di�erential operator with the symbol (j�j2+m2)��, � 2 Rd. We denote
the kernel representation of J� by J�(x� y) : (J�')(x) =

R
R

d J�(x� y)'(y)dy, for ' 2 S. This
is de�ned by the Fourier inverse transform such that

J�(x) = (2�)�d
Z
R

d

e
p�1x��(j�j2 +m2)��d� 2 L1(Rd;�d):

An integral representation of this Green kernel by means of a modi�ed Bessel function, which also
puts into evidence its regularity, is well known (cf. for e.g. [15]).

For each a; b; d > 0 let Ba;b
d be the linear subspace of S 0(Rd) de�ned by

B
a;b
d = f(jxj2 + 1)

b

4 J�af : f 2 L2(Rd;�d)g; (2)

where � denotes the Lebesgue measure on Rd. Ba;b
d is a separable Hilbert space with the scalar

product

< ujv >=

Z
R

d

Ja((jxj2 + 1)�
b

4u(x)) Ja((jxj2 + 1)�
b

4 v(x))dx; u; v 2 Ba;b
d : (3)

Note that if a; b; d > 0, then C0(R
d) � B

a;b

d . From the consideration of cylinder sets con-

structed from C0(R
d) and Ba;b

d it is easy to see that

B(C0(R
d ! R)) =

n
A \ C0(R

d ! R) : A 2 B(Ba;b
d )

o
; (4)

where B(C0(R
d ! R)) and B(Ba;b

d ) are the Borel �-�elds of C0(R
d) and Ba;b

d respectively (this is
obvious because the Borel � �eld of a locally convex topological vector space which is separable is
generated by its cylinder sets, cf. Yoshida [15]).
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We use the same terminology and notations concerning multiple stochastic integrals, abstract
Wiener spaces and transformations between abstract Wiener spaces which are used in [10] and
[14].

Let (
;F ; P ) be a complete probability space and consider an isonormal Gaussian process
W = fW (h); h 2 L2

real(R
d;�d)g, where �d denotes the Lebesgue measure on Rd and L2

real is the
real L2 space: W is a centered Gaussian family of random variables on (
;F ; P ) such that

E[W (h)W (g)] =

Z
R

d
h(x) g(x)�d(dx); h; g 2 L2

real(R
d;�d);

where E denotes the expectation with respect to the probability measure P . 
 can be taken to be
the complete separable metric space R1 equipped with the metric

d(x;y) =

1X
n=1

2�nminfjxn � ynj; 1g; x = (x1; x2; x3; � � �);y = (y1; y2; y3; � � �);

P = N1
0;1 (5)

and F to be the completion of the Borel �-�eld of 
 with respect to P:
For A 2 B(Rd) such that �d(A) <1 we set

W (A) =W (�A); where �A is the indicator function of the set A:

Then, for h 2 L2
real(R

d;�d) the random variable W (h) can be regarded as a stochastic integral,
and is denoted by

W (h) =

Z
Rd

h dW:

In the sequel we sometimes use the notation W (') =< '; _W >S;S0 for ' 2 S. The multiple
stochastic integrals, such as (12) below, are de�ned in the usual way. Namely a multiple stochas-
tic integral is the limit of a sequence of multiple sums of Gaussian random variables such thatP

i1;...;ip
ai1;...;ipW (Ai1 )�� � � �W (Aip); where ai1;...;ip = 0 if ij = ik for some j 6= k (i.e. by taking

sums with eliminaton of all diagonal parts), for a precise de�nition of multipe stochastic integral
cf. section 1.1.2 of [10].

We denote the Fourier and Fourier inverse transform of a function ' respectively by F ['] and
F�1['], which are de�ned by

F ['](�) =
Z
Rd

e�
p�1x��'(x)dx;

F�1['](�) = (2�)�d
Z
Rd

e
p�1x��'(x)dx for ' 2 S(Rd):

We sometimes denote F ['] = '̂. Let �1 2 C10 (Rd) be such that �1(x) = �1(y) for jxj = jyj and

0 � �1(x) � 1; �1(x) =

(
1 jxj � 1

0 jxj � 2;
(6)

and let �k(x) = �1(
x
k
) 2 C10 (Rd); k = 1; 2; 3; . . .. Also de�ne

� 2 C10 (Rd) as follows:

�(x) =

8<
: C exp(� 1

1� jxj2 ) jxj < 1

0 jxj � 1
;
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where the constant C is taken to satisfy Z
Rd

�(x)dx = 1: (7)

Let
�k(x) = kd�(kx); k = 1; 2; 3; . . . :

For � > 0 we de�ne J�k 2 S(Rd); k = 1; 2; 3; . . . by

J�k (x) =

Z
Rd

J�(y)�k(x� y)dy: (8)

Also
F�k (x; y1; . . . ; yp) = (�k(x))

pJ�k (x� y1) � � � J�k (x� yp); (9)

and
F�(x; y1; . . . ; yp) = J�(x� y1) � � � J�(x� yp); p = 1; 2; 3; . . . : (10)

Then we see that the function F�k and F� are symmetric in the last p variables (y1; . . . ; yp) and

F�k 2 S((Rd)
p+1

); F�k (x; y1; . . . ; yp) = 0 for jxj � 2k: (11)

For each � > 0; p � 1 and k � 1 we de�ne the random variable :k �
p
�;! : as a multiple

stochastic integral such that

:k �
p
�;! : (x) =

Z
(Rd

)
p
F�k (x; y1; . . . ; yp)dW!(y1) � � � dW!(yp): (12)

Remark 1. 1 (continuous version of :k �
p
� :) For each �xed k 2 N it is easy to see that

f:k �p�;! : (x)g
x2Rd satis�es the Kolmogorov's continuity criterion for processes on Rd (cf., e.g.,

Section A.3 of [10]), and has an equivalent process f:k ~�p�;! : (x)g
x2Rd which is a C0(R

d ! R)-
valued random variable:

P (:k �
p
�;! : (x) =:k ~�p�;! : (x)) = 1; 8x 2 Rd;

P (:k ~�p�;! :2 C0(R
d ! R)) = 1:

We always take f:k �p�;! : (x)g
x2Rd as its continuous modi�cation

f:k ~�p�;! : (x)g
x2Rd and drop the tilde in the following. Then by (4) f:k �p�;! : (x)g

x2Rd is

understood as a Ba;bd (a; b � 0) valued random variable on (
;F ; P ).

Theorem 1. 1
Suppose that the positive integer p and the positive real numbers a; b and � satisfy

min

�
1;

4a

d

�
+ p�min

�
1;

4�

d

�
> p; b > d: (13)

Then f:k �p�;! :g
k2N is a Cauchy sequence in L2(
! Ba;bd ;P ) (cf. Remark 1.1) and there exists

a Ba;bd -valued random variable : �p�;! :2 L2(
! Ba;bd ; P ) such that

lim
k!1

Z





:k �p�;! : � : �p�;! :


2
B
a;b

d

P (d!) = 0; (14)
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P
�
<: �p�;! :; '>S0;S = lp;!(')

�
= 1; 8' 2 S(Rd); (15)

where

lp;!(') =

Z
(Rd

)
p
(

Z
Rd

'(x) J�(x� y1) � � �J�(x� yp) dx)dW!(y1) � � � dW!(yp): (16)

The proof of Theorem 1.1 has been given by Yoshida [15]. By Remark 1.1 and (4), since

the C0(R
d ! R)-valued random variable :k �

p
�;! : can be understood as a Ba;bd (a; b > 0)-valued

random variable by making use of its multiple stochastic integral expression, it is easy to see
that this random variable is in L2(
 ! Ba;bd ;P ). Then by making use of a Fubini type theorem

concerning the stochastic integral resp. Lebesgue integral on Rd, the theorem follows.
In the sequel we shall denote :k �

1
�;! : and : �1�;! : by k��;! and ��;! respectively. In particular

when � = 1
2 , then for each given d the S 0(Rd)-valued random variable (cf. Theorem 1.1) � 1

2
;! is a

stochastic integral expression for Nelson's free Euclidean �eld, we denote it simply by �!
and we write

�! = J
1

2 _W!:

Now, by making use of the above results and notations let us study non-linear shifts on Nelson's
free �eld in the context of abstract Wiener spaces. For given d, let � be the probability law of

�! = � 1

2
;!. Since �! is a Ba;bd -valued random variable (a > d�2

4 ; b > d by Theorem 1.1) on

(
;F ; P ), � is a probability measure on Ba;bd :

�(A) = P
�f!j�! 2 Ag�; A 2 B(Ba;bd ) (a >

d� 2

4
; b > d): (17)

We remark that for the complete probability space (
;F ; P ) de�ned by (5), the following holds:
If we let

B� = fAjf!j�! 2 Ag 2 Fg ;
then the probability space (Ba;bd ;B�; �) is a complete probability space, i.e.

B� = B(Ba;bd )
�

= the completion of B(Ba;bd ) with respect to �: (18)

Hence, the map �k de�ned by (21) below is a Ba
0;b
d -valued random variable on (Ba;bd ;B�; �).

Theorem 1. 2 Suppose that a, �, a0, p and b satisfy

min(1;
4a

d
) + min(1;

2

d
) > 1; (19)

min(1;
4a0

d
) + p�min(1;

4�

d
) > p; b > d: (20)

For each k let �k = �(�;p);k be the measurable map from Ba;bd to Ba
0;b
d de�ned by

�k( )(x) = p!(�k(x))
p

[ p
2
]X

n=0

(� 1
2c�;k)

n

n!(p� 2n)!

�
< J�k (x� �); (J�

1

2 )(�) >S;S0
�p�2n

;

for  2 Ba;bd ; (21)

where

c�;k =

Z
Rd

(J�k (y))
2
dy:
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Then
P
�
f! j �k(�!)(x) =:k �p�;! : (x) 8x 2 Rdg

�
= 1; (22)

the Ba
0;b
d -valued measurable functions f�k( )g on (Ba;bd ;B�; �) form a Cauchy sequence in the

Banach space L2(Ba;bd ! Ba
0;b
d ;�), and there exists a B(Ba0;bd )=B�-measurable function � = �(�;p) 2

L2(Ba;bd ! Ba
0;b
d ;�) such that

lim
k!1

Z
B
a;b

d

k�k( )� �( )k2
B
a0;b

d

�(d ) = 0; (23)

or equivalently

lim
k!1

Z



k�k(�!)� �(�!)k2
B
a0;b

d

P (d!) = 0: (24)

Moreover one has
�(�!) =: �

p
�;! : P � a:s: ! 2 
: (25)

By the de�nition of Wick power and multiple stochastic integral (22) can easily be proved. The
existence of � is proved by using Theorem 1.1 and (22), these proofs have been given in [15]

Next, we shall see that Nelson's Euclidean free �eld possesses the structure of an abstract
Wiener space, and then show that the map �(�;p) on the abstract Wiener space has su�cient
regularity.

As usual let H
 = H
(Rd) be the Sobolev space on Rd such that

H
(Rd) =

�
� 2 S 0(Rd) j

Z
Rd

jF�j2(x)(1 + jxj2)
dx <1
�
:

In order to make the notations simple, we equip H
(Rd) with the inner product

< u; v >H
= (2�)�d
Z
Rd

(Fu)(x) (Fv)(x) (m2 + jxj2)
dx

for a given constant m > 0 (interpreted as "mass parameter").

Then by Theorem 1.1 for a > d
4 � 1

2 we see that (Ba;bd ; �) is an abstract Wiener space and one has,

for ' 2 S(Rd):

Z
B
a;b

d

e
p�1< ;'>

S0;S�(d )

=

Z



exp

�p�1Z
Rd

(

Z
Rd

'(x)J
1

2 (x � y)dx)dW!(y)

�
P (d!)

= exp

�
�1

2
k'k2H�1

�
= exp

�
�1

2
kJ1'k2H1

�
: (26)

The inclusion map i : H�1 ! Ba;bd de�ned by

i(h) = J1h; h 2 H�1 (27)

is continuous and i(H�1) = H1 is dense in Ba;bd . By this we can identify H�1 with H1, and we
have the following continuous injection:

(Ba;bd )
�
,! H�1 �= H1 ,! Ba;bd :
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Setting
H = H�1

we will consider the abstract Wiener space (Ba;bd ; i(H); �) with Cameron-Martin space

i(H) = J1H�1 = H1: (28)

We then apply the results given by [7], [14] concerning the (non-linear) shifts on Wiener spaces to
the maps � de�ned above.

Remark 1. 2 Nelson's Euclidean free �eld is de�ned originally as a Gaussian process indexed by
H = H�1 (cf. Nelson [8]), i.e. Gaussian process with the index set H�1 of which characteristic
function is

exp(�1

2
k'k2H�1); ' 2 H�1 (cf. (26)):

By this, here we prefer to denote the Cameron-Martin space by i(H), and denote the abstract

Wiener space by (Ba;bd ; i(H); �). Then our calculus on the abstract Wiener space will be performed
through H.

De�nition 1. 1 (Representative for �(�;p)) For each p by (23) we can take subsequences
f�(�;1);kjg; . . . ; f�(�;p);kjg and a set B(�; p) 2 B� satisfying �(B(�; p)) = 1 such that

lim
kj!1

k�(�;q);kj ( )� �(�;q)( )k2Ba;b

d

= 0; 8 2 B(�; p) q = 1; . . . ; p:

We denote by B(�; p) the set of all  2 Ba;bd such that the limits

limkj!1 �(�;q);kj ( ) exist, q = 1; . . . ; p, in Ba
0;b
d for some a � a0. Then B(�; p) is B�-measurable.

In the sequel we �x a representative � (�;p) of �(�;p) de�ned as follows:

� (�;p) =

(
lim
kj!1

�(�;p);kj ( )  2 B(�; p)
0 elsewhere.

� (�;p) will be simply denoted by �(�;p).

Theorem 1. 3 (polynomial H � C1 map) Let b > d and a be a number such that a > d
4 �

1
2 . Let (Ba;bd ; i(H); �) be the abstract Wiener space de�ned above, and denote the "Gross-Sobolev

derivative" and "divergence" operators on (Ba;bd ; i(H); �) by r and �, respectively (cf. [7], [10],
[14]). For M � 0 let �M be the space-cut-o� such that �M (x) = �1(

x
M
) (cf. (6)).

1�) Let the integer p and the real number � > 0 satisfy

� >
d

4

p+ 1

p+ 2
: (29)

Then the map up( ) = J��
1

2

�
�M �(�;p)( )

�
(H-valued Wiener functional) is an element of D2;k(H)

(8k � 1), and the following holds:

rup( )(x; y) = p
D
�M ; �(�;p�1)( )(�)J��

1

2 (� � x)J��
1

2 (� � y)
E
S;S0

2 L2(H
H;�):
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Let B(�; p) be as in De�nition 1-ii) for these p and �, then �(B(�; p)) = 1 and B(�; p) +H1 �
B(�; p).
The divergence of up is given by

�up( ) =< �M ; �(�;p+1)( ) >S;S0 �� a:s:  2 Ba;bd : (30)

2�) If

� >
d

4
(
p� 2

p� 1
+

2

3(p� 1)
) (31)

(which is a particular case of i� 1�)), then

rup( + i(h))(x; y)

= p

p�1X
q=0

�
p� 1

q

�D
�M ; (J

�� 1

2 (i(h)))q�(�;p�1�q)( )(�)

�J�� 1

2 (� � x)J��
1

2 (� � y)
E
S;S0

; 8 2 B(�; p); 8h 2 H: (32)

up is an H � C1 map on (Ba;bd ; i(H); �) (cf. [7], [10], [14]):
H 3 h 7�! rup( + i(h)) 2 H
H is continuous for all  2 B(�; p): (33)

De�nition 1. 2 For u 2 D2;1(H) and � 2 R we de�ne

��u( ) = det2(IH + �ru( )) exp(���u( )� �2

2
ju( )j2H); (34)

where det2(IH + �ru( )) denotes the Carleman-Fredholm determinant of the Hilbert-Schmidt op-
erator �ru( ) 2 H
H and j jH denotes the norm of the Hilbert space H.

2 Main results for SPDE with cubic perturbation

In this section we shall consider elliptic SPDE on Rd formally given by

(��+m2) (x) + ��M (x) :  3(x) := (��+m2)
1

2 _W (x); x 2 Rd: (35)

where �M (x) = �1(
x
M
) is the "space-cut-o�" de�ned by (6), and W is an isonormal Gaussian

process on Rd. Using the measurable maps de�ned by Theorem 1.2 and De�nition 1.1, the above
SPDE can be written in the following form:

(��+m2) (x) + ��M (x)�( 1
2
;3)( )(x) = (��+m2)

1

2 _W (x); x 2 Rd: (36)

We reduce the existence problem of the solution of (36) to the existence of corresponding
Girsanov measures. We shall adopt the notion of "Girsanov measure" given in section 1.3 of
[14] for our problem as follows. Let S be a topological space and B(S) be its Borel �-�eld.

Let � be a complete probability measure on (S;B(S)�), and let T be a measurable map such

that T : (S;B(S)�) 7�! (S;B(S)), where B(S)� = "the completion of B(S) with respect to �". A
signed measure � on

(S;B(S)�) will be called as a "Girsanov measure on (S;B(S)�) associated with � and T" if and
only if it satis�es Z

S

f(T�)d�(�) =

Z
S

f(�)d�(�)

8



for any bounded measurable f : (S;B(S)) 7�! (R;B(R)): (37)

In particular if such a signed measure � is a probability measure on

(S;B(S)�), then this will be called the "Girsanov probability measure on

(S;B(S)�) associated with � and T".

Remark 2. 1 i) If a "Girsanov probability measure � on (S;B(S)�) associated with � and T
" exists, then by (37) the probability law of T� under � is �. In other words, for a random variable
� taking values in S with probability law � there exists a random variable  with probability law �,
and the following holds:

T� =  :

In case � is not a probability measure but a signed Girsanov measure on (S;B(S)�) associated
with � and T , if we set BT � fT�1AjA 2 B(S)g, and restrict � to BT , then �jBT is a probability
measure on (S;BT ) and the probability law of T� under � is �. Such signed measures may be im-
portant to be considered in relation with the inde�nite metric quantum �eld theory (cf. Albeverio,
Gottschalk and Wu [1]).

Let � be the probability law of Nelson's free �eld � on Rd, then � is a complete probability
measure on (Ba;bd ;B�) (cf. (18)). Let T be the map de�ned on Ba;bd such that

T ( ) =  + J1(��M �( 1
2
;3)( ))  2 Ba;bd :

We may set S = Ba;bd and B(S) = B(Ba;bd ) in the above general discussion. If there exists � which

is a "Girsanov probability measure on (Ba;bd ;B�) associated with � and T", then for a Ba;bd -valued

random variable  with probability law � there exists a Nelson's free �eld � onRd and the following
holds:

 + J1(��M �( 1
2
;3)( )) = �:

Since � can be expressed by � = J
1

2 _W for some isonormal Gaussian processW on Rd, in the sense
of distribution valued random variables this equation means that

(��+m2) (x) + ��M (x)�( 1
2
;3)( )(x) = (��+m2)

1

2 _W (x); x 2 Rd: (38)

By this way we can reduce the existence problem of the solution of the SPDE (38) to the existence
problem of the corresponding Girsanov probability measure.

In general we give the following de�nition

De�nition 2. 1 (Solution of SPDE) For given d let (Ba;bd ; i(H); �) be the abstract Wiener
space, which is Nelson's Euclidean free �eld, de�ned in section 1. For an H valued B�-measurable
function u : Ba;bd 7�! H and for some � 2 R (note that by Theorem 1.3 u( ) = �M �(�;p)( ) and
u( ) = �M �(�;e�)( )



Lemma 2. 1 (Key lemma for the cubic power perturbation) Let d � 2 be given, and
suppose that the assumptions of Theorem 1.3-1�) hold for p = 3. Also take the numbers � > 0 and
� > 0 to satisfy �(1 + �) < 2

9L , where L =
R
Rd(J2�(x))2dx. Then for

u( ) = u3( ) = J��
1

2 (�M �(�;3)( ))

de�ned by Theorem 1.3-1�), the following holds

exp
����u+ 1 + �

2
�2kruk22

	 2 \q<1Lq(�); (39)

where k k2 denotes the Hilbert-Schmidt norm k kH
H.

By making use of the fact that �u and ru are the 4-th and 2nd Wick power of  respectively,
this lemma can be proved by applying Nelson's exponential bounds:

Proof of Lemma 2.1 We will prove (39):

exp
����u3 + 1 + �

2
�2kru3k22

	 2 \q<1Lq(�): (40)

For simplicity we will give a proof only for the case d = 2 and � = 1
2 .

The proof will be perfomed by following a strategy given by Nelson (cf. Simon [13]). Namely,
let

V � ���u3 + 1+ �

2
�2kru3k22 and Vk � ���u3;k + 1 + �

2
�2kru3;kk22;

where
u3;k( ) = J��

1

2 (�M �(�;3);k( )):

Suppose that we can show that there exist �1, �2 and � that do not depend on k such that

Vk( ) � �1(ck)
2 8k; �� a:s:  2 Ba;b2 ; (41)

�
E�[jVk � V jq]� 1

q � �2(q � 1)2k��; q � 2; (42)

where ck = c 1
2
;k =

R
R2(J

1

2

k (y))
2dy, de�ned in Theorem 1.2. Then through the same discussion as

Lemma V.5 of [13], we see that there exist �0 > 0 and � > 0, independent of k, such that

�
�
 jV � �(log k)2

	 � e�k
�0

; for all large k:

(40) easily follows from this inequality (cf. Theorem V.7 of [13]).
Hence, it su�ces to show that (41) and (42) hold for our exponent.

(41) can be shown as follows. For  2 Ba;b2 let  k(z) �< J
1

2

k (z � �); (J�
1

2 )(�) >S;S0 , then by
(21)

�( 1
2
;2);k( )(z) = 2!(�k(z))

2
� 1
2!
( k(z))

2 � 1

2
ck
	
;

by this we see that

1 + �

2
(3�)2k < �M (�); �( 1

2
;2);k( )(�)J0(� � x)J0(� � y) >S;S0 k2H
H

=
(1 + �)(3�)2

2

Z
R2�R2

�M (z)(�k(z))
2f( k(z))2 � ckg�M (z0)(�k(z0))2

10



� f( k(z0))2 � ckg(J1(z � z0))2dzdz0

= � (1 + �)(3�)2

4

Z
R2�R2

h
�M (z)(�k(z))

2f( k(z))2 � ckg

� �M (z0)(�k(z0))2f( k(z0))2 � ckg
i2
(J1(z � z0))2dzdz0

+
(1 + �)(3�)2L

2

Z
R2

(�M (z))2(�k(z))
4f( k(z))2 � ckg2dz; (43)

8 2 Ba;b2 ; where L =

Z
R2

(J1(z))2dz:

On the other hand, from (21)

���u3( ) = �� < �M ; �( 1
2
;4);k( ) >

= ��
Z
R2

�M (z)
h
4!(�k(z))

4f 1
4!
( k(z))

4 �
1
2ck

2!
( k(z))

2 +
( 12ck)

2

2!
g
i
dz;

8 2 Ba;b2 : (44)

Since the �rst term of the RHS of (43) can not be positive, from (43) and (44) we have the
evaluation

���uk( ) + 1 + �

2
�2kruk( )k2H
H

� �

Z
R2

�M (z)(�k(z))
4
n
�( k(z))4 + 6ck( k(z))

2 � 3(ck)
2

+
32(1 + �)

2
�L�M (z)(( k(z))

4 � 2ck( k(z))
2 + (ck)

2)
o
dz;

8 2 Ba;b2 : (45)

Since 0 � �M (z) � 1, if � and � satisfy 32(1+�)
2 �L < 1, then the term in the bracket of the RHS of

(45), the biquadratic formula of  k, can not be greater than �01(ck)
2, where �01 is a constant which

is independent of z and k. Hence, we can take �1 = ��01
R
R2 �M (z)dz, and obtain (41)

Next, (42) can be proved as follows. By H�older's inequality we see that

(E�[
��� kru3;kk22 � kru3k22���q ]) 1q
� (E�[kru3k2q2 ])

1

2q (E�[kru3;k �ru3k2q2 ])
1

2q

+(E�[kru3;kk2q2 ])
1

2q (E�[kru3;k �ru3k2q2 ])
1

2q : (46)

But each term in the above expectation such as kru3k22, kru3;k � ru3k22 and kru3;kk22 has an
expression by means of multiple stochastic integrals, for example

kru3(�!)k22
32

=

Z
R8

(

Z
R2�R2

(J1(z � z0))2�M (z)�M (z0)J
1

2 (z � x1)J
1

2 (z � x2)

�J 1

2 (z0 � x01)J
1

2 (z0 � x02)dzdz
0)dW!(x1)dW!(x2)dW!(x

0
1)dW!(x

0
2)

+4

Z
R4

(

Z
R2�R2

(J1(z � z0))3�M (z)�M (z0)J
1

2 (z � x1)J
1

2 (z0 � x01)dzdz
0)

11



�dW!(x1)dW!(x
0
1) + 2

Z
R2�R2

(J1(z � z0))4�M (z)�M (z0)dzdz0;

P � a:s: ! 2 
: (47)

Using the properties of �̂k(�) and passing to a standard argument concerning the calculation of
the expectation of multiple stochastic integrals (cf. [15] and also Section V.1 of [13]), by (47) and
the corresponding expressions through multiple stochastic integrals for the other terms, it is easy
to see that there exists C1 which depends only on M such that

(E�[(kru3k22)2])
1

2 � C1;

(E�[(kru3;kk22)2])
1

2 � C1;

also for each � > 0 there exists C2 which depends only on M such that

(E�[(kru3;k �ru3k22)2])
1

2 � C2k
��:

Since for random variables having multiple stochastic integral representation we can apply Nelson's
Hypercontractive bound (cf. Theorem 1.22 of [13]), from the above inequality we can deduce the
following:

(E�[(kru3k22)q ])
1

q � (q � 1)2C1; (48)

(E�[(kru3;kk22)q ])
1

q � (q � 1)2C1; (49)

(E�[(kru3;k �ru3k22)q ])
1

q � (q � 1)2C2k
��; q = 2; 3; . . . : (50)

Then, by (46), (48), (49) and (50) we conclude that there exists some C 0 that depends only on M
such that

(E�[j kru3;kk22 � kru3k22jq])
1

q � (q � 1)2C 0k��:

Moreover using that �u3;k(�!) and �u3(�!) have expressions by means of multiple stochastic
integral we easily see that

(E�[j�u3;k � �u3jq ])
1

q � (q � 1)2C 0k��:

Combining these evaluations we obtain (40).

Let ��u( ) be the random variable given in De�nition 1.2. Then from Theorem 1.3-1�), for u
as in Lemma 2.1 the following holds:

��u( )

= det2

�
IH�1 + 3�



�M (�) ; �(�;2)( )(�)J��

1

2 (� � x)J��
1

2 (� � y)
�
S;S0

�
� exp

�
��
�M ; �(�;4)( )�S;S0 � �2

2

��J�� 1

2 (�M �(�;3)( ))
��2
H�1

�
: (51)

Lemma 2. 2 Let a > d
4� 1

2 and b > d. Under the assumptions of Theorem 1.3-2�) the following
holds:

��u 2 \q<1Lq(�); E�[��u] = 1: (52)

Let
D = fy 2 Ba;bd j det2(IH + �ru(y)) 6= 0g;

and let N( ;D) denote the cardinality of the set T�1f g \ D for T ( ) =  + i(�u( )), then
N( ;D) is a measurable function and the following holds:

�
�f j 1 � N( ;D) <1g� = 1: (53)
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Proof. First of all we recall a crucial result forH�C1 maps on abstract Wiener spaces derived
by Kusuoka [7] (cf. also Proposition 3.5.1 of [14]): For a map u that is H � C1 let T be the

shift de�ned by De�nition 2.1, then there exists a sequence of measurable sets Gn � Ba;bd ; n 2N ;
such that [nGn = D, and there exists a sequence of shifts Tn; n 2 N , such that Tn = T a:s: on
Gn, Tn is bijective and the inverse T�1n is measurable.

Under the assumptions of Theorem 1.3-2�) since u3 is anH�C1 map, by this fundamental obser-
vation we can consider the properties of such measurable functionsN( ;D) and

P
y2T�1( ) sign(��u(y)).

Namely, in theorem 9.3.2 and Remark 9.3.3 of [14] it is shown that if u satis�es (39) then (52)
holds. On the other hand, in Theorem 9.2.4 of [14] it is shown that (39) is also a su�cient condition
for u under which the following holds:

E�[��u] =
X

y2T�1( )

sign(��u(y)); �� a:s:  2 Ba;bd : (54)

Since ��u(y) = 0 and sign(��u(y)) = 0 for y =2 D, by (52) and (54) we see thatX
y2T�1( )\D

sign(��u(y)) =
X

y2T�1( )

sign(��u(y)) = 1 �� a:s:  2 Ba;bd :

By this we have

1 �
X

y2T�1( )\D
jsign(��u(y))j =

X
y2T�1( )\D

1 = N( ;D)

�� a:s:  2 Ba;bd :

On the other hand by (52) since E�[j��uj] < 1, and by Theorem 3.5.2 of [14] since E�[j��uj] =
E�[N(�; D)] we have

N( ;D) <1 �� a:s:  2 Ba;bd :

Combining these facts we have (53).

Theorem 2. 3 (Solution for the space-cut-o� cubic perturbation case) For given d and
p = 3 take the positive numbers a; a0 and � to satisfy the assumptions of Theorem 1.3-2�). Also
take number � � 0 to satisfy � < 2

9L , where L is the number de�ned in Lemma 2.1. For some �xed
positive number M let �M (x) = �1(

x
M
) (cf. (6)), and de�ne

T3( ) =  + i(�u3( )); u3( ) = J��
1

2 (�M �(�;3)( )) (55)

and
d�3 = q � T3j��u3 jd� for q such that

q( ) =

8<
:

1

N( ;D)
if N( ;D) 6= 0

0 otherwise;

where ��u3 is given by (51), and the measurable function N( ;D) is de�ned in Lemma 2.2. Then

��u3� is a (signed) Girsanov measure and �3 is a Girsanov probability measure on (Ba;bd ;B�)
associated with � and T3 :
i)

E�[f � T3��u3 ] = E�[f ]; E� [f � T3] = E�[f ] 8f 2 Cb(Ba;bd ): (56)

ii) �3 gives a solution of (57) below in the following sense: if  is a Ba;bd -valued random variable

with probability law �3, then the following holds for some isonormal Gaussian process W on Rd:

(��+m2)1+(�� 1

2
) (x) + ��M (x)�(�;3)( (x)) = (��+m2)� _W (x): (57)
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Proof of Theorem 2.3. First of all we note that q(T3( ))j��u3 ( )j can be taken as a B�-
measurable function: For the B�-measurable shift T3( ) with the H � C1 map u3, since T3 �
(�jD) (the image measure of T3( ) restricted to D) is absolutely continuous with respect to � (cf.
Theorem 3.5.2 in [14]), we can de�ne the random variable q(T3( ))j��u3( )j without ambiguity
by using a Borel measurable q( ) which is de�ned through any Borel measurable version ~N( ) of
N( ) such that

N( ;D) = ~N( ;D) �� a:s:  2 B
a;b
d

(cf. the proof of Lemma 2.2).
Noticing this, by (53) we can apply Corollary 3.5.3 of [14] to our shift T3, which then yields

the results.

Remark 2. 2 (Comparison with (�4)2 �eld) When d = 2 we can take � = 1

2
a case of

special interest in Euclidean quantum �eld theory. In this case the above theorem tells us that the
measure �3 gives a solution of (35) with space-cut-o�:

(��+m2) (x) + ��M (x) :  3(x) := (��+m2)
1

2 _W (x); x 2 R2: (58)

�3 can be written by

�3(d ) = q(T ( ))
���det2�IH�1 + 3��M (x) :  2(x) : �fxg(y)

����
� exp

n
��

Z
R

2

�M (x) :  4(x) : dx �
�2

2

Z
R

2

�
J

1

2 (�M :  3 :)(x)
�2
dx

o

��(d );

where we have used the fact that J��
1

2 (x) = �f0g(x) for � = 1

2
(cf. Theorem 1.3).

On the other hand, the (�4)2 Euclidean �eld with space-cut-o� �M is a random �eld on R2

with the probability measure ��M such that (cf., e.g., De�nition in Section 1 of [13] (pp.141))

d��M ( ) =
1

ZM
expf��

Z
R

2

�M (x) :  4(x) : dxgd�;

with the normalization constant ZM = E�[expf��
R
R

2 �M (x) :  4(x) : dxg]. Then, there is a

similarity between �3 and ��M in the sense that their Radon-Nikodym densities d�3
d�

resp.
d��M
d�

have the common term expf��
R
R

2 �M (x) :  4(x) : dxg. But, because of the existence of the other

non-linear (also non-local) terms in d�3
d�

such that q(T ( )), �1 = jdet2l(IH�1 + 3��M (x) :  2(x) :

�fxg(y)j and �2 = expf�
2

2

R
R

2(J
1

2 (�M :  3 :)(x))2dxg, we have to distinguish �3 from ��M ( as far
as q(T ( )), �1 and �2 do not cancel each other).

We also remark that (J
1

2 (�M :  3 :)(x))2, which is the integrand of �2, is non-local in the sense

that (J
1

2 (�M :  3 :)(x))2 = (
R
R

2 J
1

2 (x � y)�M (y) :  3(y) : dy)2 is not measurable with respect to

the �-�eld generated by the random variable <  (�); ��fxg > with �� a C1
0
(R2) approximation of

the Dirac measure at the point x.
Moreover, since

R
R

2(J
1

2 (�M :  3 :)(x))2dx =
R
R

2
�R

2 J1(y � y0)�M (y)�M (y0)(:  3(y) :)(:

 3(y0) :)dydy0 and J1(y) on R2 diverges like "� log jyj" (near 0), it is possible to say that the
exponent of �2 contains a term of higher order than :  4 :.
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