Absence of Phase Transitions in two-dimensional O(N) Spin Models and Anderson Localization

K. R. Ito

ito@mpg.setsunan.ac.jp.jp Department of Mathematics and Physics, Setsunan University, Ikeda-Naka, Neyagawa 572, Japan

Though spontaneous mass generations in 2D non-Abelian sigma models and quark confinement in 4 dimensional (4D) non-Abelian lattice gauge theories are widely believed [1], they remained unsolved in the last century.

Most of mathematical physicists believe that non-abelian systems (SO(N) spin models, lattice gauge theories) do not exhibit phase transitions in lower dimensions. But this is too optimistic. See [2] for another type of spin models (of non-linear interaction) which exhibit phase transitions of first order. Our main result is for the original Heisenberg model (SO(N) spin model of linear interaction):

Theorem The following bound holds for $\beta_c(N)$:

$$\beta_c(N) \ge c_1 e^{c_2 N} \tag{1}$$

where c_1 and c_2 are positive constants.

This is proved by our new analysis [3] based on the argument [4] of the Anderson localization type. This will be improved to

$$\beta_c(N) = \infty, \quad N \ge 3 \tag{2}$$

by some additional calculations which will be published in the near future.

The ν dimensional O(N) spin (Heisenberg) model at the inverse temperature $N\beta$ is defined by

$$\langle f \rangle \equiv \frac{1}{Z_{\Lambda}(\beta)} \int f(\phi) \exp[-H_{\Lambda}(\phi)] \prod_{i} \delta(\phi_{i}^{2} - N\beta) d\phi_{i}$$
 (3)

Here $\phi(x) = (\phi(x)^{(1)}, \dots, \phi(x)^{(N)})$ is the vector valued spin at $x \in \Lambda$, Z_{Λ} is the partition function defined so that $\langle 1 \rangle = 1$, and

$$H_{\Lambda} \equiv -\frac{1}{2} \sum_{|x-y|_1=1} \phi(x)\phi(y),$$
 (4)

Using $\delta(\phi^2 - N\beta) = \int \exp[-ia(\phi^2 - N\beta)]da/2\pi$ [5] where $\operatorname{Im} a_i = -(\nu + m^2/2)$, $\operatorname{Re} a_i = (1/\sqrt{N})\psi_i$ and m > 0, we have

$$Z_{\Lambda} = c^{|\Lambda|} \det(m^2 - \Delta)^{-N/2} \int \cdots \int F(\psi) \prod \frac{d\psi_j}{2\pi}$$
(5)

where $\Delta_{ij} = -2\nu \delta_{ij} + \delta_{|i-j|,1}$ is the lattice Laplacian,

$$F(\psi) = \det(1 + i\kappa G\psi)^{-N/2} \exp[i\sqrt{N\beta}\sum_{j}\psi_{j}], \quad \kappa \equiv \frac{2}{\sqrt{N}}$$
(6)

and $G = (m^2 - \Delta)^{-1}$. We choose the mass parameter m > 0 so that $G(0) = \beta$, where $\tilde{G}(p) = [m^2 + 2\sum(1 - \cos p_i)]^{-1}$. Then this is possible if $\nu \leq 2$, and $m^2 \sim 32e^{-4\pi\beta}$ for $\nu = 2$ as $\beta \to \infty$. Thus for $\nu = 2$,

$$F(\psi) = \det_{3} - \frac{N}{2} (1 + i\kappa G\psi) \exp[-\langle \psi, G^{\circ 2}\psi \rangle], \tag{7}$$

$$\det_{3}(1+A) \equiv \det[(1+A)e^{-A+A^{2}/2}]$$
(8)

where $G^{\circ 2}(x,y) = G(x,y)^2$ so that $\operatorname{Tr}(G\psi)^2 = \langle \psi, G^{\circ 2}\psi \rangle$.

To show the analyticity of the free energy, we polymer-expand the determinant $F(\psi)$ and establish the convergence. This is not so easy since $G(x, y) \sim e^{-m|x-y|}$ yields long-range interactions of $\psi(x)$. The following facts are essential to overcome this difficulty:

Facts 1. We note that $[G^{\circ 2}]^{-1} \sim (m^2 - \Delta)/2\beta$ for large β . In fact, the Fourier transform of $G^2(x, y)$ is about $(p^2 + m^2)^{-1} \log(1 + p^2/m^2)$, which comes from the infrared divergences in the theory. Therefore the Gaussian measure $\exp[- \langle \psi, G^{\circ 2}\psi \rangle] \prod d\psi$ has short-range correlations (of order O(1)) though $G^{\circ 2}(x, y)$ has long-range correlations of order $m^{-1} \sim e^{2\pi\beta}$.

Fact 2. The determinant $det_3^{-N/2}(1 + i\kappa G\psi)$ is factorized and decomposed by the Feshbach-Krein transformation of matrices.

Fact 3. In the factorization, we see that the Green's function $G_{\psi}(x,y) \equiv [-\Delta + m^2 + i\kappa\psi]^{-1}(x,y)$ plays important roles. Though $G_0(x,y) \equiv [-\Delta + m^2]^{-1}(x,y)$ exhibits very long correlations, $G_{\psi}(x,y)$ has rather short correlations by the (complex) "impurities" $i\psi$. This is the famous Anderson localization, and improve the convergences.

These facts enable us to establish the convergence.

References

- A.Polyakov, Interactions of Goldstone Bosons in Two Dimensions, Phys. Lett, 59B: 79 (1975); K. Wilson, Confinement of Quarks, Phys. Rev. D 10: 2455 (1974) and Renormalization Groups and Critical Phenomena, Rev. Mod.Phys. 55: 583 (1983)
- [2] A.C.D. Enter and S.B.Shlosman, First Order Transiitons for *n*-Vector Models in Two and More Dimensions: Rigorous Proof, Phys.Rev.Letters, 89, 285702 (2002).
- [3] K.R.Ito, Renormalization Recursion formulas and Flows of 2D O(N) Spin Models, Jour. Stat. Phys., 107: 821-856 (2002); K.R.Ito, Paper in Preparation (2003).
- J.Fröhlich and T.Spencer, Absence of Diffusion in the Anderson Tight Binding Model for Large Disorder or Low Energy, Commun. Math. Phys., 88: 151-184 (1983)
- [5] D. Brydges, J. Fröhlich and T. Spencer, The Random Walk Representation of Classical Spin Systems and Correlation Inequalities, Commun. Math. Phys.83: 123 (1982).