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Abstract

We construct a set of exact ground states with a localized ferromagnetic domain
wall in a deformed flat-band Hubbard model. In the case of quarter filling, we show
the uniqueness of the ground state with a fixed magnetization. The ground states
with these structures are degenerated with the all spins up or all spins down states.
We represent spin one point functions in terms of local electron number density, and
find the domain wall structure in our model. We expect that the properties of the
ground state and the excitations above the domain wall ground state are similar to
those in the XXZ quantum spin model.

1 Introduction

Domain structures in a ferromagnetic system are interesting phenomena. If the system
has a translational symmetry, this symmetry is broken spontaneously by the domains. In
classical spin systems, universal natures of the domain wall have been studied extensively.
For example in the Ising model on the cubic lattice, Dobrushin proved that a horizontal
domain wall is stable against the thermal fluctuations at sufficiently low temperatures
[1]. This structure in the Ising model is also preserved under quantum perturbations.
Borgs, Chayes and Frölich proved that the horizontal domain wall on the d-dimensional
hyper cubic lattice is stable also against weak quantum perturbations at sufficiently low
temperatures for d ≥ 3 [2]. On the other hand, a diagonal domain wall structure is unstable
in classical systems, since many local operators can deform the diagonal domain wall state
to many other states without loss of energy. Nonetheless, the quantum perturbation is
known to stabilize the diagonal domain wall structure. No local operator can deform the
diagonal domain wall ground state to other ground states. Alcaraz, Salinas and Wreszinski
construct a set of ground state with diagonal domain wall structure in the XXZ model
with a critical boundary field in arbitrary dimensions for an arbitrary spin [3]. Koma and
Nachtergaele discussed the stability of the diagonal domain wall in the exact solution of
the XXZ quantum spin systems [4]. Datta and Kennedy also discuss the stability of a
domain wall in one-dimensional quantum spin models by a rigorous perturbation method
[5]. The role of the quantum effects should be studied more in many other contexts.

In this report, we study a diagonal domain wall ground state in a deformed flat-band
Hubbard model. The flat-band Hubbard model is proposed recently as a lattice elec-
tron model with a ferromagnetic ground state. Some remarkable results for ferromagnetic
ground states have been obtained in this class of models. Mielke and Tasaki have inde-
pendently shown that the ground state gives saturated ferromagnetism in a class of many-
electron models on a lattice with special properties, which are called flat-band Hubbard
models [6, 7]. Tasaki proved also the stability of the saturated ferromagnetism against a
perturbation which bends the electron band [8]. Tanaka and Ueda have shown the stability

1



of the saturated ferromagnetism in a more complicated two-dimensional model in Mielke’s
class [9]. Contrary to the Nagaoka ferromagnetism, this ferromagnetism is believed to
be stable against a small perturbation or change the electron number density [10]. The
flat-band Hubbard model can be a standard one in which we consider problems related to
ferromagnetism in many-electron systems. Unlike the ferromagnetic quantum spin model,
we expect strong quantum effects in the ferromagnetic ground state of the electrons on the
lattice. The fermion statistics and fully polarized spin configuration leads the electrons to
a microscopic entangled state with respect to the site configuration. Here, we deform a
flat-band Hubbard model by a complex anisotropy parameter q. The SU(2) spin rotation
symmetry in the original flat-band model is reduced to U(1) in our deformed model. This
anisotropy |q| �= 1 leads to a localized domain wall with finite width. The domain structure

is characterized in terms of the local order parameter 〈S(3)
x 〉, which represents the third

component of the localized spin at site x. This local order parameter takes the same sign
within one domain. The domain wall center is a set of sites x defined by zeros of the local
order parameter 〈S(3)

x 〉 = 0. We show the uniqueness of the ground state with a fixed
magnetization in a half filled electron number in the lowest energy band. We represent
〈S(3)

x 〉 in terms of the local electron density 〈nx〉, and see the profile of the ferromagnetic
domain wall.

This report is organized as follows. In section 2, we define a deformed flat-band Hubbard
model on a decorated d-dimensional integer lattice. In section 3, we construct a set of
ground states and prove the uniqueness of the ground state in a state sub-space with each
fixed magnetization. The domain wall structure is shown in terms of the spin one point
function. We also obtain a representation for the spin correlation function. In section 4,
we describe some results obtained in a one-dimensional model. By the estimate of the
correlation function, we observe the cluster property for the spin and the density of the
electrons. Therefore, we expect stability of this ferromagnetic domain wall ground state.
And we summarize in section 5.

2 Definition of the Model

The Hubbard model is a model which represents a many-electron system on an arbitrary
lattice. An electron is described by a fermion operator. In this section, we define a d-
dimensional model with illustrating it’s physical meanings.

2.1 Lattice

The lattice Λ on which defined our deformed Hubbard model is decomposed into two sub
lattices

Λ = Λo ∪ Λ′. (1)

Λo is d-dimensional integer lattice with linear size L, which defined

Λo :=

{
x = (x1, x2, · · · , xd) ∈ Z

d

∣∣∣∣|xj | ≤ L− 1

2
j = 1, 2, · · · , d

}
. (2)
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Λ′ can be further decomposed to Λj (j = 1, 2, · · · , d), i.e.

Λ′ =

d⋃
j=1

Λj. (3)

Λ′ is obtained as a half site translation of Λo to j-th direction,

Λj :=
{
x+ e(j)|x ∈ Λo

} ∪ {x− e(j)|x ∈ Λo

}
, (4)

where e(j) is defined
e(j) := (0, · · · , 0, 1

2
, 0, · · · , 0).

↑
j-th

(5)

We show the lattice in two-dimensional case in Fig. 1 as an example.
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Figure 1: Two dimensional lattice (with L = 3). The white circles are sites in Λo and the
black dots are sites in Λ′. Electrons at a site can hop to other site if the site is connected
to the original site with a line or a curve.

2.2 Electron Operators and the Fock Space

The creation and annihilation operators for electron are denoted by c†x,σ and cx,σ which
obey the standard anticommutation relations

{cx,σ, c
†
y,τ} = δx,yδσ,τ , {cx,σ, cy,τ} = 0 = {c†x,σ, c

†
y,τ}, (6)

for x, y ∈ Λ and σ, τ =↑, ↓ which are spin coordinates of electron. We define the no-electron
state Φvac by

cx,σΦvac = 0 (7)

for all x ∈ Λ and σ =↑, ↓. We construct a set of basis of Fock space which is domain of
the electron operators {(∏

x∈A

c†x,↑

)(∏
x∈B

c†x,↓

)
Φvac

∣∣∣∣A,B ⊂ Λ

}
. (8)
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We also define a number operator nx,σ by nx,σ = c†x,σcx,σ whose eigenvalue represents a
number of electron at site x with spin σ. Note anticommutation relations {c†x,σ, c

†
x,σ} = 0

i.e. c†x,σc
†
x,σ = 0. The latter implies the Pauli Principle. We take the open boundary

condition which is realized by cx,σ = 0 if xj > L/2 for some j = 1, 2, · · · , d with x = (xl)
d
l=1.

2.3 Deformed Flat-Band Hubbard Model

Before we define the Hamiltonian, we introduce new operators a†x,σ and dx,σ defined by

a†x,σ =

⎧⎪⎪⎨
⎪⎪⎩
−q p(σ)

4

d∑
j=1

c†
x−e(j),σ

+ λc†x,σ − q−
p(σ)

4

d∑
j=1

c†
x+e(j),σ

if x ∈ Λo

λ−1c†x,σ if x ∈ Λ′
, (9)

and

dx,σ =

{
λ−1cx,σ if x ∈ Λo

q−
p(σ)

4 cx−e(j),σ + λcx,σ + q
p(σ)

4 cx+e(j),σ if x ∈ Λj

, (10)

where q is a complex parameter, λ is a positive parameter and p(σ) is a function which
takes +1 if σ =↑ and −1 if σ =↓. And we formally define a†x,σ = 0 and dx,σ = 0 if
xj > L/2 for some j = 1, 2, · · · , d with x = (xl)

d
l=1. This definitions correspond to the

open boundary condition for the original electron operators. Note that these a†x,σ and dx,σ

satisfy the canonical anticommutation relations,

{a†x,σ, dy,τ} = δx,yδσ,τ , {a†x,σ, ay,τ} = 0 = {dx,σ, dy,τ}. (11)

We can easily obtain the inverse relations of (9) and (10)

c†x,σ =

⎧⎪⎪⎨
⎪⎪⎩
q

p(σ)
4

d∑
j=1

a†
x−e(j),σ

+
1

λ
a†x,σ + q−

p(σ)
4

d∑
j=1

a†
x+e(j),σ

if x ∈ Λo

λa†x,σ if x ∈ Λ′
, (12)

and

cx,σ =

⎧⎨
⎩
λdx,σ if x ∈ Λo

−q− p(σ)
4 dx−e(j),σ +

1

λ
dx,σ − q

p(σ)
4 dx+e(j),σ if x ∈ Λj

. (13)

The existence of inverse relations implies that the Fock space is also spanned by another
basis {(∏

x∈A

a†x,↑

)(∏
x∈B

a†x,↓

)
Φvac

∣∣∣∣A,B ⊂ Λ

}
. (14)

This fact is useful to obtain the ground states.
The definition of our Hubbard Hamiltonian is given by

H = Hhop +Hint, (15)

where Hhop and Hint defined

Hhop = t
∑
σ=↑,↓

∑
x∈Λ′

d†x,σdx,σ (16)
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and
Hint = U

∑
x∈Λ

nx,↑nx,↓ (17)

with t, U > 0. The hopping Hamiltonian Hhop can be written in the following form

Hhop =
∑

x,y∈Λ

t(σ)
x,yc

†
x,σcy,σ (18)

where

t(σ)
x,y = (t(σ)

y,x)
∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

td(|q| 12 + |q|− 1
2 ) if x = y ∈ Λo

tλ2 if x = y ∈ Λ′

tλqp(σ)/4 if x ∈ Λ′, y ∈ Λo with x < y and |x− y| = 1
2

tλq−p(σ)/4 if x ∈ Λ′, y ∈ Λo with x > y and |x− y| = 1
2

te−ip(σ)θ/2 if x, y ∈ Λo with x > y

0 otherwise

. (19)

with a parametrization q = |q|eiθ by 0 ≤ θ < 2π 1. Each term t
(σ)
x,yc†x,σcy,σ in the hopping

Hamiltonian represents that an electron with spin σ hops from site x to site y with a
probability proportional to |t(σ)

x,y|2.
Since the interaction Hamiltonian Hint represents a on-site repulsive interaction, we

regard this Hamiltonian as a simplification of the Coulomb interaction between two elec-
trons.

Note that this system conserve the number of electron. The total electron number
operator N̂e is defined by

N̂e :=
∑
x∈Λ

∑
σ=↑,↓

nx,σ. (20)

Since the Hamiltonian commutes with this operator, we can set the electron number as we
want. In present report, we only consider that electron number is equal to |Λo| i.e. we
consider only the Hilbert space H which is spanned by the following basis 1

{(∏
x∈A

c†x,↑

)(∏
x∈B

c†x,↓

)
Φvac

∣∣∣∣A,B ⊂ Λ with |A| + |B| = |Λo|
}
, (21)

or {(∏
x∈A

a†x,↑

)(∏
x∈B

a†x,↓

)
Φvac

∣∣∣∣A,B ⊂ Λ with |A| + |B| = |Λo|
}
. (22)

Let us discuss the symmetry of the model. First important symmetry is a U(1) sym-
metry. We define spin operators at site x by

S(l)
x :=

∑
σ,τ=↑,↓

c†x,σ

P(l)
σ,τ

2
cx,τ , (23)

1Through out the present report, we denotes a complex conjugate of α ∈ C by α∗ and it’s absolute
value by |α|. We also denote |v| to represent a norm of a vector v in d-dimensional Euclidean space and
|A| to represent a cardinality of a set A.
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where P(l) (l = 1, 2, 3) denote Pauli matrices

P(1) =

(
0 1
1 0

)
, P(2) =

(
0 −i
i 0

)
, P3 =

(
1 0
0 −1

)
. (24)

The Hamiltonian commutes with the third component of total spin operator

[H,S
(3)
tot ] = 0, (25)

with
S

(l)
tot =

∑
x∈Λ

S(l)
x . (26)

Note that this symmetry is enhanced to a SU(2) symmetry in the case of q = 1 i.e.
Hamiltonian commutes with any component of total spin operator. In this case, this
model become original flat-band Hubbard model given by Tasaki [7, 8]. Another important
symmetry is generated by a product of a parity and spin rotation defined by

Π = Π−1 = P exp
(
iπS

(1)
tot

)
, (27)

where P is a parity operator defined by Pcx,σP = c−x,σ and Pc†x,σP = c†−x,σ. Π transforms

cx,σ and c†x,σ to c−x,σ and c†−x,σ, where σ =↓ if σ =↑ or σ =↑ if σ =↓. Note the following

transformation of the total magnetization ΠS
(3)
totΠ = −S(3)

tot . An energy eigenstate with
the total magnetization M is transformed by Π into another eigenstate with the total
magnetization −M , which belongs to the same energy eigenvalue.

3 Ground States

In this section, we obtain the ground state of the model with fixed electron number Ne =
|Λo|. The representation of the hopping Hamiltonian in terms of dx,σ,

Hhop =
∑
σ=↑,↓

∑
x∈Λ′

d†x,σdx,σ, (28)

indicates the positive semi-definiteness Hhop ≥ 0. The positive semi-definiteness of the
interaction Hamiltonian Hint ≥ 0 is also clear because nx,σ = c†x,σcx,σ ≥ 0, then the total
Hamiltonian is also positive semi-definite

H = Hhop +Hint ≥ 0. (29)

First, we consider a fully polarized state Φ↑ defined by

Φ↑ =

(∏
x∈Λo

a†x,↑

)
Φvac. (30)

We easily verifyHΦ↑ = 0 from the anticommutation relations of a†x,σ and dx,σ, and therefore
Φ↑ is a ground state of H . Next, we determine all other ground states.

6



The conditions that Φ is a ground state are obviously HhopΦ = 0 and HintΦ = 0. In
other words,

dx,σΦ = 0 (31)

for all x ∈ Λ′ with σ =↑, ↓ and
cy,↑cy,↓Φ = 0 (32)

for all y ∈ Λ.
We consider a restricted Hilbert space HM spanned by the states with a magnetization

M which is an eigenvalue of the operator S
(3)
tot . Since the magnetization is good quantum

number by the commutation relation (25), we look for other ground states in each restricted
sub-space HM . Let Φ(M) be a ground state with a magnetization M . We expand Φ(M)
into the following series

Φ(M) =
∑
A,B

ψ(A,B)

(∏
x∈A

a†x,↑

)(∏
y∈B

a†y,↓

)
Φvac, (33)

where the sum is taken over all subsets A,B ⊂ Λ with |A| = (L + 2M)/2 and |B| =
(L − 2M)/2 and ψ(A,B) is a coefficient. The first condition (31) implies that ψ(A,B)
does not vanish only for A∩ Λ′ = ∅ and B ∩ Λ′ = ∅. The second condition (32) for y ∈ Λo

becomes
dy,↑dy,↓Φ(M) = 0, (34)

since the definition of dy,σ for y ∈ Λo. To satisfy this condition, ψ(A,B) takes 0 for
A ∩B �= ∅. Thus the expansion (33) can be written in the form:

Φ(M) =
∑

σ∈SM

φ(σ)
∏
x∈Λo

a†x,σx
Φvac (35)

where SM is a set of all possible spin configurations σ = (σx)x∈Λo with a magnetization M :

SM =

{
σ = (σx)x∈Λo

∣∣∣∣∣ 1

2

∑
x∈Λo

(−1)
1−p(σx)

2 = M, σx =↑, ↓
}
. (36)

In this representation, the second condition (32) for y ∈ Λj is equivalent to(
dy−e(j),↑dy+e(j),↓ − qdy−e(j),↓dy+e(j),↑

)
Φ = 0. (37)

We find that the coefficient satisfies

φ(σ) = q

{
p(σ

y−e(j)
)−p(σ

y+e(j)
)
}

/2
φ(σy−e(j),y+e(j)) (38)

for y ∈ Λj, where σx,y is spin configuration obtained by the exchange σx and σy in the orig-
inal configuration σ. This relation implies the uniqueness of the ground state with a fixed
total magnetization, since two arbitrary spin configurations can be related by successive
exchanges of two nearest neighbour spins. Therefore the degeneracy of those ground states
is exactly the same as that in the SU(2) symmetric model, as in the domain wall ground
states in the XXZ model [3].

7



We define S−
q by

S−
q =

∑
x∈Λ

q[x]a†x,↓dx,↑, (39)

where [x] =
∑d

j=1 xj . The ground state with a magnetization M is obtained by acting this
operator certain times on the all spins up state

Φ(M) =
(
S−

q

)|Λo|−2M
Φ↑. (40)

3.1 Canonical States

To explore the nature of the ground state, we write it in a more explicit way as obtained
by Gottstein and Werner in [11]. We define the canonical state Ψ(ζ) by

Ψ(ζ) =

(∏
x∈Λ0

α†
x(ζ)

)
Φvac =

L∑
n=0

ζn(S−
q )nΦ↑ (41)

where α†
x(ζ) = a†x,↑ + ζq[x]a†x,↓. Since the state which corresponds to this canonical state

in the XXZ model is pure state in the infinite volume limit, we expect that this canonical
state in our model is also pure state as well in the infinite volume limit. Note that the
state Ψ(ζ) defined here in the Hubbard model is not a product state unlike in the XXZ
model.

3.2 Spin One Point Functions

Let us now consider expectation values of the spin operators in the canonical state. We
denotes a expectation values of an operator A in the canonical state Ψ(ζ) by 〈A〉ζ. A spin
expectation value of a localized spin at site x is written in

〈S(j)
x 〉ζ =

1

2

∑
σ,τ=↑,↓

P(j)
σ,τ

(Ψ(ζ), c†x,σcx,τΨ(ζ))

‖Ψ(ζ)‖2
=

1

2

∑
σ,τ=↑,↓

P(j)
σ,τ

(cx,σΨ(ζ), cx,τΨ(ζ))

‖Ψ(ζ)‖2
. (42)

The following anticommutation relations with y ∈ Λo,

{cx,σ, α
†
y(ζ)} = λ{dx,↑, a

†
y,↑ + ζqya†y,↓} = ληx,σδx,y, (43)

for x ∈ Λo, and

{cx,σ, α
†
y(ζ)} = −ηx,σ

(
q−

1
4 δx− 1

2
,y + q

1
4 δx+ 1

2
,y

)
, (44)

for x ∈ Λ′ are useful to calculate the expectation value, where ηx,↑ = 1 and ηx,↓ = ζq[x].
These anticommutation relations (43) and (44) yield an equation

cx,σΨ(ζ) = ηx,σΨx(ζ), (45)

where Ψx(ζ) is defined by

Ψx(ζ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sgn(x)λ

(∏
y �=x

α†
y(ζ)

)
Φvac if x ∈ Λo⎛

⎝sgn(x− e(j))q−
1
4

∏
y �=x−e(j)

α†
y(ζ) + sgn(x+ e(j))q

1
4

∏
y �=x+e(j)

α†
y(ζ)

⎞
⎠Φvac if x ∈ Λj

, (46)
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where sgn(x) takes ±1. Then, the expectation value of c†x,σcx,τ for all x ∈ Λ in the canonical
ground state can be written in terms of a state Ψx(ζ),

〈c†x,σcx,τ〉ζ = η∗x,σηx,τ
‖Ψx(ζ)‖2

‖Ψ(ζ)‖2
. (47)

And also an expectation value of the electron number operator at site x can be written in

〈nx〉ζ = (1 + |ζq[x]|2)‖Ψx(ζ)‖2

‖Ψ(ζ)‖2
, (48)

where nx = nx,↑ + nx,↓. Thus we obtain the representations of spin one-point function at
site x ∈ Λ in terms of a electron number density 〈nx〉ζ,

〈S(1)
x 〉ζ =

〈nx〉ζ
2

ζq[x] + (ζq[x])∗

1 + |ζqx|2 , (49)

〈S(2)
x 〉ζ =

〈nx〉ζ
2i

ζq[x] − (ζq[x])∗

1 + |ζqx|2 , (50)

〈S(3)
x 〉ζ =

〈nx〉ζ
2

1 − |ζq[x]|2
1 + |ζq[x]|2 . (51)

where ε = λ2 + |q| 12 + |q|− 1
2 . We can expect the electron number density in the canonical

sate takes almost constant on Λo or on Λ′ respectively, from the definition of Ψ(ζ). Indeed,
in one-dimensional model, we have confirmed that this conjecture by obtaining the exact
bounds [12]. These results are shown in section 4.

As discussed the domain wall ground state in the XXZ models in [4, 13, 14], the two

domains are distinguished by the sign of the local order parameter 〈S(3)
x 〉ζ. The domain wall

center is defined by the zeros of 〈S(3)
x 〉ζ which is located at x = − log|q| |ζ |. The function

1
2
〈nx〉 − |〈S(3)

x 〉ζ| decays exponentially as x leave far away from the center. This decay
length defines the domain wall width 1/ log |q|. If the number density is almost constant
on each sub-lattice Λo or Λ′ as we conjectured, the behaviors of the one point spin functions
are not controlled by the number density mainly. In large λ limit for real q > 1, electrons
are completely localized at integer sites, and the one point spin functions exactly the same
as those obtained in the XXZ model defined on Λo. For a complex q = |q|eiθ, one can see

the spiral structure with a pitch angle θ. The vector 〈Sx〉ζ := (〈S(j)
x 〉ζ)3

j=1 is rotated with

the angle θ
∑d

j=1 xj around the third spin axis depending on the site x = (xj)
d
j=1. Note

that this spiral structure of the ground state does not exist in the XXZ model, though
the complex anisotropy parameter q = eiθ is possible in the XXZ Hamiltonian. The
corresponding model is described in the Tomonaga-Luttinger liquid without ferromagnetic
order in one-dimension. The translational symmetry in the infinite volume limit is broken
by the domain wall or the spiral structure for finite log |ζ |. Both symmetries generated by
S(3) and Π are broken spontaneously as well.
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3.3 Spin Correlation Functions

The spin correlation function can be also represented in terms of the correlation function
of the local electron number operators

〈S(j)
x S(l)

y 〉ζ =
∑

σ,τ,σ′,τ ′

η∗x,σ
1
2
P(j)

σ,τηx,τ

1 + |ζqx|2
η∗y,σ′

1
2
P(l)

σ′,τ ′ηy,τ ′

1 + |ζqy|2 〈nxny〉ζ. (52)

We can rewrite

〈S(j)
x S(l)

y 〉ζ = 〈S(j)
x 〉ζ〈S(l)

y 〉ζ 〈nxny〉ζ
〈nx〉ζ〈ny〉ζ . (53)

if λ <∞. If one estimates the correlation function of the local electron number operators,
one can check the cluster property of the ground state. In the following section, actually
we show that this can be done for the one-dimensional model.

4 Results in the One-Dimensional Model

In one-dimensional case, we introduce the following normalization function

A(x, y; ζ) :=

∥∥∥∥∥
(

y∏
w=x

α†
w(ζ)

)
Φvac

∥∥∥∥∥
2

, (54)

for y, x ∈ Λo with y > x. Note A(−L−1
2
, L−1

2
; ζ) = ‖Ψ(ζ)‖2. This normalization function

obeys a useful recursion relation

A(x, y; z) = ε(1 + |ζqy|2)A(x, y − 1; ζ)− (1 + |ζqy− 1
2 |2)2A(x, y − 2; ζ) (55)

where ε ≡ λ2 + |q|1/2 + |q|−1/2. This recursion relation enables us to estimate bounds for
expectation values of several local operators in the domain wall ground states and we can
take the infinite volume limit [12]. We find the following bounds for number density

0 <
λ2

√
ε2 − 4

− 〈nx〉ζ < F (x, L, ζ) if x ∈ Λo

−F−(x, L, ζ) < 1 − λ2

√
ε2 − 4

− 〈nx〉ζ < F+(x, L, ζ) if x ∈ Λ′
(56)

where F (x, L, ζ) and F±(x, L, ζ) are strictly positive, and they consist of terms which decay
exponentially as L or

∣∣x+ log|q| |ζ |
∣∣ become large. Then, the number density approaches to

the asymptotic values λ2/
√
ε2 − 4 for Λo or 1−λ2/

√
ε2 − 4 for Λ′ exponentially as x moves

away from the site − log|q| |ζ |. This fact ensure our conjecture that the number density is
almost constant for Λo or Λ′ respectively. We also find bounds

−F−
1 (x, y, L, ζ) < 〈nxny〉ζ − 〈nx〉ζ〈ny〉ζ < F+

1 (x, y, L, ζ) (57)

where F±
1 (x, y, L, ζ) are positive and consist of terms which decay exponentially as L,

|x − y|, |x + log|q| |ζ || or |y + log|q| |ζ || become large. This fact shows that electrons are
localized, in other words Ψ(ζ) is a almost product state. The spin correlation functions
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are almost a product of two spin-one-point functions, and it satisfies the cluster property.
Then, we expect that the ground state is a pure state in the infinite volume limit. In large
λ limit, the spin correlation function is reduced to just a product of two one-point spin
function. This property is the same as the domain wall ground state in XXZ model. We
consider that our model is closely related to XXZ model if q ∈ R.

To see the actual shape of the spin one point function, a numerical calculation for the
electron number density is useful in the one-dimensional model. We can solve the recursion
relation for the normalization function numerically in order to calculate the electron number
density. The spin one point function can be obtained by this numerical evaluation and the
representation in the number density (51). We show the profile of the domain wall at x = 0
in Figure 2.

〈S
(3

)
x

〉 ζ

�40 �20 0 20 40

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

x

Figure 2: Spin one point function in the one-dimensional model for L = 101, q = 1.2, z = 0
and λ = 2. The black dots plot x ∈ Λo and the gray dots plot x ∈ Λ′.

5 Summary

In this report, we construct a set of exact ground state with a ferromagnetic domain
wall structure and a spiral structure in a deformed flat-band Hubbard model. We dis-
cuss similarity and difference of the domain wall solutions in our lattice electron model
and quantum XXZ model. We proved these states satisfy the cluster property in a one-
dimensional model. We expect that cluster property is satisfied in any dimensions, and
therefore this curious structure should be stable in the infinite volume limit.
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